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This paper aims to demonstrate the importance and
feasibility of fusing multimodal information for emotion
recognition. It introduces a multimodal framework for
emotion understanding by fusing information from
visual facial features and remote
photoplethysmography (rPPG) signals extracted from
videos. A permutation feature importance-based
interpretability technique has also been implemented
to compute the contributions of rPPG and visual
modalities toward classifying a given input video into a
particular emotion class. The experiments on Interactive
Emotional Dyadic Motion Capture (IEMOCAP) dataset
demonstrate the improvement in the emotion
classification performance on combining the
complementary information from multiple modalities.

• Emotion Recognition: unimodal vs multimodal

• Real-life applications⇒ deployable

• Prominent modalities: visual and physiological

• rPPG: Non-invasive, additional dynamic information

• Interpretability techniques in literature for emotion
recognition: visual modality ✓multimodal✘

Contributions:

• A multimodal emotion recognition framework

• A permutation feature importance (PFI) based
interpretability technique

• Experiments on IEMOCAP dataset, quantitative &
qualitative results and modality-wise contribution scores

• Demonstrated the importance and feasibility of
multimodal emotion recognition using physiological and
visual information

• Head-start for real-world applications of interpretable
emotion analysis using aforementioned modalities

Table 1: Detailed performance of the individual and fusion models

Table 2: Average contribution of each modality towards emotion recognition

Experimental Setup
• IEMOCAP dataset with 10,039 video samples

• 10 discrete emotion labels (neutral, happy, sad, angry,
excited, frustrated, fearful, surprised, distressed and other)

• Model training – epochs: 50, batch size: 32, learning rate:
0.001

• Model evaluation using accuracy, precision, recall & F1
score metrics and modality-wise contribution scores

Results

• Tables 1 & 2: performance for individual & fusion models

• Better emotion recognition accuracy for fusion models than
the models using individual modalities

• Late fusion underperforms compared to early fusion

Figure 1: Schematic illustration of the proposed framework

2) Multimodal Fusion: early and late fusion of the 
extracted rPPG and visual features

3) Emotion Classification: Deep ResNet based 
convolutional networks for rPPG and visual models

4) Interpretability

• Permute the values of each feature

• Measure the resulting impact on model’s
performance

• Estimate the feature importance from the
difference among model performance scores

• Find rPPG features’ importance scores, visual
features’ importance scores and overall
importance scores

• Compute individual modality’s contribution

The proposed method is illustrated in Figure 1 and consists of following four phases:

1) Feature Extraction

rPPG Signals: Input video → region of interest (ROI) → Haar cascades → mean intensity → rPPG signal

Facial Features: For each face in every frame, compute 68 landmarks using Dlib shape predictor and extract facial features from them
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• Emotion Recognition: unimodal vs multimodal [1]

• Real-life applications ⇒ deployable [2,3]

○ Healthcare, 

○ Education,

○ Human computer interaction,

○ User experience design, etc.

• Prominent modalities [4,5,6]

○ Visual facial features

○ Physiological signals 

• Why remote photoplethysmography (rPPG)? 

• Emotion understanding interpretability

○ Visual [7,8] ✓

○ Multimodal [9,10] ✘

Introduction: Background

Video 1: Need for multimodal processing
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• A multimodal emotion recognition framework 

○ Extract static facial expressions

○ Extract dynamic rPPG signals

○ Compute multimodal context using early and late fusion approaches

○ Classify a given video into discrete emotion classes 

• An interpretability technique 

○ Incorporates permutation feature importance (PFI) algorithm

○ Computes the contribution of rPPG and visual modalities towards emotion classification

• Extensive experiments 

○ Dataset: Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset [11]

○ Quantitative results: accuracy, precision, recall, and F1 score

○ Qualitative results: modality-wise contributions toward emotion classification

Background
Contributions
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Proposed Method

Experiments & Results
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Introduction: Contributions
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Proposed Method

Figure 1: Schematic illustration of the proposed framework
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rPPG Signals Extraction:

Input Video:
→ Region of interest (ROI) 
→ Haar cascades [12]

→ mean intensity (Eq 1) 
→ rPPG Signal 

Where,
N: total number of pixels in the ROI
W & H: width and height of the ROI
c: color channel, c ∈ {R, G, B}
īc: Mean pixel intensity
Ix, y, c: Pixel intensity at location (x, y) for color channel c in the ROI 

Feature Extraction Phase
Multimodal Fusion Phase
Emotion Classification Phase
Interpretability Phase

Introduction
Proposed Method

Experiments & Results
End-note

Proposed Method: Feature Extraction

Facial Features Extraction:

• Dlib shape predictor [13]

• For each face in every frame:
Compute 68 facial landmarks as per Eq. 2.

• Landmarks: facial characteristics

Where,
P: the predicted points on the face
D(F, Li): function for predicting points on the face
Li: set of landmark points for the ith point

F: face detected in a frame
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Proposed Method: Multimodal Fusion & Emotion Classification

Multimodal Fusion:

Early Fusion:

Where,
I: input shape
C: number of classes
īc : mean intensity within the ROI from rPPG signals
P: facial features
NNet: the early fusion network
Fearly: output of the early fusion

Late Fusion:

Where,
MrPPG(īc): output of the rPPG model 
Mfacial(P): output of the visual model 
w1 and w2 are the weights of rPPG and visual models

Emotion Classification:

rPPG Model:

• Input: rPPG signals

• Output: discrete emotion classes

• Deep Convolutional Neural Network (CNN)

• Activation function: Rectified Linear Unit (ReLU)

• Optimizer: Adam

Visual Model: 

• Input: facial features

• Output: discrete emotion classes

• ResNet-based Deep CNN 

• Activation function: ReLU

• Optimizer: Adam
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Proposed Method: Interpretability

• Permutation feature importance (PFI) [14]:

○ Permute the values of each feature 

○ Measure the resulting impact on model performance

○ Estimate the feature importance from the difference of model performance scores

• PFI of feature j: difference in the model score on permuting j

Where,

PFI(j): permutation feature importance of feature j

Eπ[f(X(i))]: expected value of the model score over all samples in the dataset 

Eπ[f(X(i)
πj

)]: expected value of the model score when the values of feature j are permuted according to some permutation π

X(i)πj: dataset X(i) with the values of feature j permuted according to π

• Find rPPG features’ importance scores, visual features’ importance scores and overall importance scores

• Compute individual modality’s contribution
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• Dataset: Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset [11]

○ 10,039 video samples

○ Ten discrete emotion labels (neutral, happy, sad, angry, excited, frustrated, fearful, surprised, distressed and other. 

• Model training

○ NVIDIA RTX 4090 GPU 

○ 50 epochs 

○ batch size: 32 

○ learning rate: 0.001. 

• Model evaluation 

○ Metrics: accuracy, precision, recall, and F1 score.

Dataset
Experimental Setup
Results

Introduction
Proposed Method

Experiments & Results
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Experiments
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Table 1: Detailed performance of the individual and fusion models

Table 2: Average contribution of each modality towards emotion recognition

Dataset
Experimental Setup
Results
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Results
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• Conclusion

○ Emotion recognition: accuracy (individual modalities) > accuracy (multimodal fusion)  

○ Late fusion underperforms compared to early fusion

○ Importance & feasibility of multimodal emotion recognition 

○ Head-start for the real-world applications with interpretable emotion understanding

• Future Scope  

○ Cross-dataset experiments on larger and more diverse datasets 

○ Incorporation of more modalities such as audio, text, and other physiological signals

○ Development of more in-depth interpretability mechanisms to explain the role of individual features  

Conclusion & Future Scope 
References
Author response to reviewers’ comments
Thank-note & Q/A
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