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1 FOURIER PRIOR EMBEDDED BLOCK

The Fourier Prior Embedded (FPE) block is designed to capture frequency information of multi-
modal features through two main processes: Fourier Spatial Interaction (FSI) and Fourier Channel
Interaction (FCI), as illustrated in Fig. 1. Specifically, for a given feature X , the fast Fourier trans-
form is first applied, resulting in real and imaginary components denoted as Real(X) and Im(X),
respectively. The Fourier Spatial Interaction (FSI) process then operates on these components inde-
pendently to maintain fidelity in frequency manipulation. This process can be formulated as:

Real(X ′
S) = ReLU(DConv(Real(X))), Im(X ′

S) = ReLU(DConv(Im(X))), (1)

where ReLU(·) is the ReLU function, and DConv(·) indicates the depth-wise convolution. Follow-
ing FSI, the spatially enhanced feature is merged with the original spatial feature through concate-
nation and convolution, denoted as XS .

Following the Fourier Spatial Interaction (FSI) process, the spatially enhanced feature XS under-
goes further refinement through FCI. FCI enhances the channel-wise details of the feature frequen-
cies using point-wise convolution, which is formulated as follows:

Real(X ′
C) = ReLU(Conv1(Real(XS))), Im(X ′

C) = ReLU(Conv1(Im(XS))), (2)

where Conv1 indicates the 1×1 convolution. Finally, a similar merging process occurs after the FPI,
yielding the output of the FPE module, which achieves global modeling for both spatial and channel
dimensions. Overall, FPE effectively extracts frequency information from the modality features of
each branch. Subsequently, these features are enhanced across modalities using SNF. The enhanced
features then serve as input for the next FPE block.

FPI Merging FCI Merging

𝑿

Real(𝑿)

Im(𝑿)

Real(𝑿)

Im(𝑿)

Figure 1: The architecture of FPE.

2 MORE TRAINING DETAILS

For the IVF task, we directly quote results on the MSRS 1 and RoadScene2 datasets from (Zhao
et al., 2023a; 2024). By training the available codes, we obtain results on the TNO3 dataset.

1https://github.com/Linfeng-Tang/MSRS
2https://github.com/hanna-xu/RoadScene
3https://figshare.com/articles/dataset/TNOImageFusionDataset/1008029
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For the MIF task, we obtain results on the Harvard medical 4 dataset by applying the trained IVF
models to the MIF task without fine-tuning.

For the BIF task, we use the released code to retrain models with the same data settings as ours,
obtaining results on the ATC 5 dataset. The training data is cropped to patches of size 256× 256.

For downstream applications, we follow (Zhao et al., 2023a; 2024) for implementing semantic seg-
mentation and object detection. For semantic segmentation, we directly utilize trained IVF models
to obtain fusion images on the MSRS dataset. Following the dataset splits in (Tang et al., 2022b),
we retrain the DeeplabV3+ segmentation model with cross-entropy loss using suggested hyperpa-
rameter settings from the released code6. For object detection, We utilize trained IVF models and
obtain fusion images on the M3FD7 dataset, where 3,360 images are used for training, 420 images
for validation, and 420 images for testing. We retrain the YoLo+ detection model using suggested
hyperparameter settings from the released code8.

3 BIOLOGICAL IMAGE FUSION

From Tab. 1, it can be observed that our proposed method outperformed the other MMIF methods in
most of the evaluation metrics. This comprehensively demonstrates the superior performance of our
proposed style-coherent fusion model (SCFNet). Fig. 2 shows that our SCFNet effectively captures
cellular structural features from PC while suppressing noise from GFP.

A
T

C

GFP PC CDD DDFM EMMA SCFNet

Figure 2: More visualizations of BIF on ATC (Koroleva et al., 2005) dataset.

Table 1: Quantitative results of BIF on ATC dataset.

BIF on ATC dataset

Methods EN↑ SD↑ SF↑ AG↑ Qbaf↑ VIF↑ SSIM↑

TarD 6.08 40.22 9.48 2.31 0.52 0.86 0.85
DeF 6.46 42.63 9.60 2.80 0.61 0.92 0.92
MURF 6.15 41.82 9.91 2.67 0.60 0.96 0.81
CDDFuse 6.70 48.38 12.56 3.73 0.63 1.05 1.00
DDFM 6.53 47.04 11.44 2.51 0.59 0.95 0.96
EMMA 6.71 49.13 12.58 3.76 0.58 0.97 1.04
SCFNet 6.82 51.34 14.01 4.04 0.64 1.01 1.15

4 MORE ANALYSES

4.1 ANALYSES OF STYLE-ALIGNMENT FUSION

We further analyze that SAF enables the selection of alignment across different modalities, including
visible or infrared domains. It is important to note that SAF uses a well-defined source distribution
to guide the diverse features into a unified domain, rather than directly defining the target domain.

4http://www.med.harvard.edu/AANLIB/home.html
5http://data.jic.bbsrc.ac.uk/gfp
6https://github.com/VainF/DeepLabV3Plus-Pytorch
7https://github.com/JinyuanLiu-CV/TarDAL
8https://github.com/ultralytics/yolov5
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Align 𝑿𝑰 with visible

Align with infrared

Align with visible Align with visible

Align with infrared

Inputs Features Aligned Features Fused Features Results

Fuse

Fuse

Without Alignment

Figure 3: The visualization results of the feature alignment strategies based on style-alignment
fusion module (SAF). It includes the alignment of features with the visible and infrared domains,
as well as the fused results. The fused features with alignment retain more scene details. The result
aligned with the visible domain exhibit superior visual performance.

Table 2: Ablation studies of the selection of alignment across different domains in SAF on Road-
Scene dataset.

SAF EN ↑ SF ↑ Qbaf↑ VIF ↑ SSIM↑

Align w/ infrared domain 7.63 19.06 0.53 0.68 1.03
Align w/ visible domain (Original) 7.55 18.32 0.56 0.72 1.21

Compared to the channel-wise fusion of features without alignment, the features fused using SAF
exhibit clearer details in the sky and vehicles. This improvement highlights the effectiveness of the
SAF approach in preserving and enhancing critical scene elements. When SAF aligns the infrared
domain, as shown in Fig. 3, the explicitly aligned infrared domain XV exhibits higher contrast
on vehicles and more prominent landmarks. The resulting fusion preserves fine details, but some
edges appear overly accentuated. When SAF aligns with the visible domain, the explicitly aligned
XI retains complete information on thermal tasks and power lines. As illustrated in the third row
of Fig. 3, the aligned fusion features preserve the complete scene details of the source modalities,
differing only in the visual effects of the reconstructed images. The fusion result with visible domain
alignment is more visually satisfactory, striking a better balance between preserving details and
maintaining natural appearance.

From the results in Tab. 2, it is evident that although aligning with the infrared domain increase
the information entropy of the fused image, the visual quality assessments including metrics such
as Qbaf, VIF, and SSIM tend to significantly decrease. Therefore, we prioritize alignment with the
domain that contains more information to avoid excessive adjustments that could deteriorate the
visual quality of the fused image.

4.2 ANALYSES OF ADAPTIVE RECONSTRUCTION LOSS

Based on the ablation study in Sec. 4.5 of the main paper that compares different training strate-
gies, we provide further visual comparisons to validate the effectiveness of our proposed adaptive
reconstruction loss function.

First, we compare the image-level supervision signals (Max(V , I)) generated by traditional loss
functions (Zhao et al., 2023a; Tang et al., 2022a) and our proposed loss function with supervision
signals (Max(R(V ),R(I))). It is evident that the learnable rescaled function R, defined in Eq.9
in the main paper, significantly enhances the utilization of multi-modality images to supervise the
model, resulting in more comprehensive information, particularly for people obscured by smoke

3
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Input Fusion Result Supervised Signal

Visible w/o LAR Max(V , I)

Infrared w/LAR (SCFNet) Max(R(V ),R(I))

Figure 4: Visualizations of ablation studies for LAR. The supervision signals in LAR, compared to
existing loss functions, guide our SCFNet in generating complete scene details with higher contrast.

Table 3: Ablation studies of β in Eq.9 and operations in Eq.11 on RoadScene dataset.

Methods EN↑ SD↑ SF↑ Qbaf↑ VIF↑

β in Eq.9
Mean(I) 7.31 53.72 17.61 0.52 0.70
Learnable 7.41 53.90 18.04 0.54 0.71

Mean(V ) (Original) 7.55 55.29 18.32 0.56 0.72

Operations in Eq.11
Mean(·) 6.67 48.5 15.13 0.53 0.66

Separation 7.42 53.14 17.99 0.54 0.71
Max(·) (Original) 7.55 55.29 18.32 0.56 0.72

and details of tress, while enhancing contrast and suppressing noise to ensure that the blurry, noisy
visible image content is effectively presented. Additionally, the visualization of “w/o LAR” further
demonstrates that fusion models trained without the LAR loss are prone to degradation, resulting in
low image contrast, making the person in smoke less noticeable. Therefore, the proposed adaptive
reconstruction loss function addresses the absence of GT and effectively guides the model to gener-
ate high-quality images with complete information, facilitating further improvements in downstream
applications such as detection.

We specifically analyze the β of the main paper Eq.9, which is set to Mean(X) to align X̂F with the
distribution of the visible image domain. The results in Tab. 3 indicate that setting β = Mean(I), de-
noted as “Mean(I)”, significantly reduces the effectiveness of fusion. This reduction in performance
is primarily attributable to alignment conflicts with our proposed SAF which is oriented toward the
visible domain. We also set β learnable and constrain it within [Mean(I),Mean(V )], denoted as
“Learnable”. Due to the negative impacts of the alignment conflict being mitigated, this results in a
less pronounced reduction in performance. However, introducing too many learnable variables for
the supervision signal leads to training instability. Consequently, fixing β at Mean(V ) enables a
more effective and stable adjustment of source images to align with the visible domain.

Additionally, in the main paper Eq.11, We follow Zhao et al. (2023a); Tang et al. (2022a) by utiliz-
ing the maximum pixel values as the supervision signal to enhance the overall clarity of the fused
image. As shown in the following Tab. 3, replacing with the mean operation, denoted as “Mean(·)”,
leads to a significant decrease in performance and loss of a substantial amount of detail. Separate
supervisions with R(I) and R(V ) as Xu et al. (2022); Zhao et al. (2020); Xu et al. (2020a), denoted
as “Separation”. It also leads to decreased performance, as the fusion model tends to blend the two
images with a smoothing effect.

5 LIMITATIONS

Similar to existing methods (Liu et al., 2023; Sun et al., 2022; Tang et al., 2022a; Zhao et al., 2024;
2023b; Yi et al., 2024), the proposed SCFNet primarily focuses on geometrically calibrated multi-

4
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modality images. However, in some cases, capturing simultaneously from the same scene can be
challenging due to differences in sensor perspectives and positions, often resulting in misalignments
in the collected multi-modality images. Effectively training our SCFNet with misaligned multi-
modality images will be the focus of our future work.

6 MORE VISUALIZATIONS

Visible Infrared Fused Image CDD

DDFM EMMA SCFNet Reference

Figure 5: Visualizations of semantic segmentation on MSRS (Tang et al., 2022b) dataset.

Visible Infrared CDD DDFM

EMMA SCFNet Reference

Figure 6: More visualizations of object detection on M3FD (Liu et al., 2022) dataset.
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Figure 7: More visualizations of MIF on Harvard Medical (website) dataset.
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Figure 8: More visualizations of IVF on TNO (Toet & Hogervorst, 2012), RoadScene (Xu et al.,
2020b), and MSRS (Tang et al., 2022b) datasets.
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