
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THE REDUNDANCY IN VISION TOKENS

In text-unrelated tasks, such as classification or segmentation, it is common to use a downsampling
strategy which reduces redundancy in visual modality and makes the model more efficient to train
(Zhang et al., 2024a). In Figure 7, which starts by comparing the original image with a downsam-
pled version. The downsampled image reduces the number of tokens from 1166 to 576, achieving a
50% increase in efficiency. However, this process results in a 15% loss of information, as indicated
by the decrease in entropy from 7.44 to 6.13. This trade-off is deemed acceptable for tasks unre-
lated to text such as classification or segmentation. For text-related tasks, such as visual question
answering (VQA), there are two different modalities, text and vision. In this figure, the prompt is
”What is written on the top of the yellow sticker on the fridge?” The output generated is ”Warning”.
Pay attention to the highlighted part in both text and image, the text with the highest information
density is highlighted with color, accounting for 88% of the total text; the region of interest (related
to the prompt) part in the image only rates 38% in the whole image, which demonstrates that the
information in images is typically more sparse than in natural language. Therefore, we proposed
the SparseVLM to prune redundancy in visual tokens progressively. With our method, visual redun-
dancy is reduced while maintaining the essential information required for accurate task performance,
effectively improving the model’s efficiency and effectiveness across different vision tasks.

A.2 COMPUTING BUDGET DETAILED ESTIMATION

Estimation of Visual Token Significance. In this stage, only the equation 4 averaging process
requires computation. Each vision token undergoes Lt � 1 additions and one division. With Lv

vision tokens in total, the number of FLOPs for this stage is (Lt � 1 + 1)⇥ Lv = Lt ⇥ Lv .

Relevant Text Selection. In this process, given that official PyTorch implementation for Softmax
and Averaging operations, the FLOPs for equation 7 can be approximately simplified to the matrix
multiplication between Hv and Hq . The result has a shape of Lv⇥Lt, where each element undergoes
D multiplications and additions. Therefore, the FLOP count can be expressed as Lt ⇥ Lv ⇥ 2D.

Sparsification Level Adaptation. The rank of a matrix is typically computed using singular value
decomposition (SVD) (Stewart, 1993). With the selected appropriate threshold, the number of above
the threshold singular values determines the rank of the matrix. The FLOPs involved in this process
can be approximated as Lt ⇥ Lv ⇥ min(Lt, Lv).

Token Aggregation. At this stage, the first part is to perform a nearest neighbor search for each
element in the matrix. With the Lr ⇥D matrix, this task can be simplified to calculate the distances
between Lr elements, resulting in a total of Lr ⇥ (Lr � 1)/2 distance calculations. Each dis-
tance computation requires sequentially executing subtraction, squaring, addition, and square root

Visual Redundancy Challenges in VLMs

Original Image

Down sampled
Image

Token Number: 1166 to 576
Efficiency:～50%

Entropy: 7.44 to 6.13
Information:～15%

Text Unrelated Tasks (e.g., Classification)

Trade‐off Acceptable
Text Related Tasks (e.g., VQA)

Q: What is written on the top of
the yellow sticker on the fridge?

written on the top
yellow sticker

fridge

38% 88%
<<

Down sampled
Image

30%

10%

2%

Prune Redundancy Progressively

Stage 1 Pruning

Stage 2 Pruning

Stage 3 Pruning

Output: Warning.

Our Method

Figure 7: Comparison of visual redundancy in different vision tasks.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

operations on D elements. Consequently, the number of FLOPs in the nearest neighbor search is
Lr ⇥ (Lr � 1)/2⇥ 4D = Lr ⇥ (Lr � 1)⇥ 2D.

The second part is density calculation. Since the operations of averaging and applying the expo-
nential function are implemented by the official PyTorch, this part can be simplified by the matrix
squaring. Therefore, the FLOPs for this part are Lr ⇥ Lr ⇥ 2D.

The third part is distance indicator calculation. The computation can be approximately simplified to
compute ⇢i ⇥ �i. Therefore, the FLOPs for this part can be approximated as Lr ⇥ Lr ⇥ 2D.

The last part is clustering. In this part, we need to select C tokens with the highest scores from a
total of Lr tokens to serve as cluster centers, and the FLOPs can be approximated as L.

In summary, the total FLOPs for this stage are given by

FLOPs = Lr ⇥ (Lr � 1)⇥ 2D| {z }
Nearest Neighbors Search

+Lr ⇥ Lr ⇥ 2D| {z }
Density Calculation

+ Lr ⇥ Lr ⇥ 2D| {z }
Distance Indicator Calculation

+ L|{z}
Select Cluster Center

= Lr ⇥ (3Lr � 1)⇥ 2D + L.

Token Reconstruction. Token reconstruction involves performing a weighted sum for each group,
excluding the cluster center. Thus, there are Lr � C elements to sum where each one has 1 ⇥ D
dimensions. Consequently, the number of FLOPs for this operation is D ⇥ (Lr � C).

A.3 EFFICIENCY DETAILS

We present a comparative efficiency analysis of SparseVLM, the baseline, and FastV (Chen et al.,
2024b) during the inference phase in Table 4. In this section, we provide additional details on the
CUDA time measurement during the inference phase. Following VoCo-LLaMA Ye et al. (2024)
setting, we primarily consider the following components that contribute to the reported CUDA time:
image encoding time (if applicable), kv cache load time (if applicable), and transformers forward
time. We exclude other computational times that are not dependent on the model itself and the
caching strategy, such as model loading time, from the CUDA time measurement. Specifically, the
attention operation is implemented by Sdpa Attention: https://pytorch.org/tutorials/
intermediate/scaled_dot_product_attention_tutorial.

A.4 DATASET

We conducted experiments on several widely used visual understanding benchmarks.

GQA. (Hudson & Manning, 2019) The GQA benchmark is composed of three parts: scene graphs,
questions, and images. The image part contains images, as well as the spatial features of images and
the features of all objects in images. The questions in GQA are designed to test the understanding
of visual scenes and the ability to reason about different aspects of an image.

MMBench. (Liu et al., 2023b) The MMBench benchmark comprehensively evaluates the model’s
overall performance across multiple dimensions. It includes three levels of ability dimensions. The
first level (L-1) consists of two main abilities, perception and reasoning. The second level (L-2)
expands based on the first level, including six sub-abilities. The third level (L-3) further refines
the second level, encompassing 20 specific ability dimensions. This hierarchical structure enables a
granular and comprehensive evaluation of the model’s various capabilities.

MME. (Fu et al., 2023) The MME benchmark is also a comprehensive benchmark meticulously
designed to thoroughly evaluate various aspects of a model’s performance. It consists of 14 subtasks
that specifically aim to evaluate both the model’s perceptual and cognitive abilities. By utilizing
manually constructed instruction-answer pairs and concise instruction design, it effectively mitigates
issues such as data leakage and unfair evaluation of model performance.

POPE. (Li et al., 2023b) The POPE benchmark is primarily used to evaluate the degree of Object
Hallucination in models. It reformulates hallucination evaluation by requiring the model to answer
a series of specific binary questions regarding the presence of objects in images. Accuracy, Recall,
Precision, and F1 Score are effectively employed as reliable evaluation metrics to precisely measure
the model’s hallucination level under three different sampling strategies.

15

https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial
https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ScienceQA. (Lu et al., 2022) The ScienceQA benchmark covers a rich diversity of domains, in-
cluding natural science, language science, and social science. Within each subject, questions are
categorized first by the topic, then by the category, and finally by the skill. This hierarchical catego-
rization results in 26 topics, 127 categories, and 379 skills, providing a comprehensive and diverse
range of scientific questions. It provides a comprehensive evaluation of a model’s capabilities in
multimodal understanding, multi-step reasoning, and interpretability.

VQA-v2. (Goyal et al., 2017) The VQA-v2 benchmark evaluates the model’s visual perception
capabilities through open-ended questions. It consists of 265,016 images, covering a wide variety of
real-world scenes and objects, providing rich visual contexts for the questions. For each question,
there are 10 ground truth answers provided by human annotators, which allows for a comprehensive
evaluation of the performance of different models in answering the questions accurately.

TextVQA. (Singh et al., 2019) The TextVQA benchmark focuses on the comprehensive integration
of diverse text information within images. It meticulously evaluates the model’s text understanding
and reasoning abilities through a series of visual question-answering tasks with rich textual infor-
mation. Models need to not only understand the visual content of the images but also be able to read
and reason about the text within the images to answer the questions accurately.

ConBench. (Zhang et al., 2024b) The ConBench benchmark predominantly focuses on the consis-
tency of the model’s answers across a wide variety of different tasks and question types. It presents
three core capabilities in a hierarchical manner, namely observation ability (sensation), complex
reasoning (reasoning), and professional knowledge (knowledge). This hierarchical design aims to
gradually challenge the performance of models on different tasks and provides fine-grained evalua-
tion indicators, so as to evaluate the performance and consistency of the model.

TGIF-QA. (Jang et al., 2017) The TGIF-QA benchmark is an extension of the image question an-
swering (ImageQA) task to the video domain, aiming to promote the development of video question
answering techniques. It contains 165,000 question answer pairs in total and requires the model to
comprehend the details of GIF videos. Specifically, it introduces three new tasks for VideoQA (rep-
etition count, repeating action, and state transition), which require spatio-temporal reasoning from
videos, and frame QA tasks that can be answered from one of the frames.

MSVD-QA. (Xu et al., 2017) The MSVD-QA benchmark is based on the existing Microsoft Re-
search Video Description (MSVD) dataset and contains 1970 video clips and approximately 50.5K
QA pairs. The questions and answers are diverse in nature, covering a wide range of topics and as-
pects related to the video content. Due to its relatively large data size and the diversity of questions,
it is widely used for video question answering tasks and video caption tasks. The tasks formed in it
are open-ended questions, consisting of five types of questions: what, who, how, when and where.

MSRVTT-QA. (Xu et al., 2017) The MSRVTT-QA benchmark consists of 10K video clips and 243k
question answer pairs. One of the main challenges addressed by the MSRVTT-QA benchmark is the
complexity of understanding and reasoning about video content. Videos contain both visual and
temporal information, and models need to be able to effectively process and integrate these aspects
to answer the questions accurately. The tasks formed in it also consist of five types of questions,
similar to the MSVD-QA benchmark.

ActivityNet-QA (Yu et al., 2019) The ActivityNet-QA benchmark contains 58,000 human-
annotated QA pairs on 5,800 videos derived from the ActivityNet dataset. The questions are de-
signed to cover a range of types, including motion, spatial relationship, and temporal relationship,
which challenge the model to understand and reason about the video content at different levels and
evaluate the performance of VideoQA models in long-term spatio-temporal reasoning.

A.5 IMPLEMENTATION DETAILS.

All of our experiments are conducted on a single Nvidia A100-80G GPU. The implementation was
carried out in Python 3.10, utilizing PyTorch 2.1.2, CUDA 11.8, and transformers 4.31.0. The
inference follows the evaluation settings established by LLaVA(Liu et al., 2024).

A.6 VISUALIZATION

Figure 8 contains more visualization examples of SparseVLM on various VQA prompts.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Yes.

Is there a backpack
in the image?

Yes.

Do the balls to the
left of the other ball
look right?

No.

Are there both
toothbrushes and
mats in this picture?

No.

Are the shorts large
and blue?

Yes.

Is there a cake in
the image?

No.

Does the sweater
look open and blue?

Red.

What color are the
pants?

Stove.

What appliance is
the refrigerator
larger than?

Woman.

Zebra.

What kind of
animal is beautiful?

Who is wearing the
dress?

Figure 8: More visualization examples of SparseVLM on different VQA prompts.

A.7 MORE DETAILED EFFICIENCY ANALYSIS

To better validate the efficiency of our method, we provide the latency-vs.-accuracy and FLOPs-vs.-
Accuracy trade-offs for SparseVLM applied to LLaVA and MGM across three benchmarks: POPE,
TextVQA, and MME, which are shown in Figure 9 and Figure 10. Besides, we also analyze Video-
LLaVA matched with SparseVLM in Figure 11 on TGIF and MSVD.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: Trade-offs for SparseVLM on LLaVA: (a) Latency vs. Accuracy, and (b) FLOPs vs.

Accuracy. Both show comparisons of random sparse, SparseVLM, and baseline.

Figure 10: Trade-offs for SparseVLM on MGM: (a) Latency vs. Accuracy, and (b) FLOPs vs.

Accuracy. Both show comparisons of random sparse, SparseVLM, and baseline.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 11: Trade-offs for SparseVLM on Video-LLaVA: (a) Latency vs. Accuracy, and (b)

Token budget vs. Accuracy. Both show comparisons of SparseVLM, FastV, and baseline.

A.8 COMPATIBILITY OF SPARSEVLM WITH FLASH ATTENTION

To ensure that SparseVLM remains compatible with Flash Attention even when pruning is applied,
we devised a method to extract the mean value of the processed attention map without explicitly
obtaining the full attention map. In decoder layers that do not require pruning, we use the original
Flash Attention directly. For layers where pruning is necessary, we implemented an additional Flash
Attention-based operation to directly obtain the mean attention scores w.r.t. the text raters, which is
lightweight and also enjoys the efficiency of Flash Attention.

Specifically, the first forward pass operates identically to the original Flash Attention, generating
the hidden states for all tokens before pruning. In the second forward pass, we introduce a specially
designed V matrix. In this matrix, for the rows corresponding to the text raters we wish to analyze,
we set the values to the reciprocal of the number of text raters. This configuration allows the inner
product between the attention map and the V matrix to return the mean value of the attention scores
for the selected text raters directly in Flash Attention.

Using this mean value, we perform a top-k selection to identify the vision tokens to retain. Tokens
that are excluded during this process are converted into masks, which are then applied to the hidden
states produced by the first Flash Attention pass to complete the pruning operation. This method
enables efficient integration of pruning with Flash Attention while preserving compatibility and
computational efficiency.

CORE PRINCIPLES AND CALCULATION OF SPARSEVLM FLASH ATTENTION

1. Attention Score Calculation

For each block B, compute the scaled dot-product attention scores:

SB =
QBKT

Bp
dk

Here, SB is the attention score matrix computed within the block.

2. Block-wise Softmax

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

To ensure numerical stability, the softmax is computed in a stable manner using the log-sum-exp
trick:

1. Subtract the maximum value for numerical stability:

S0
B = SB �max(SB , axis = 1)

2. Normalize:
PB =

exp(S0
B)P

exp(S0
B , axis = 1)

3. Designation of V Matrix

In order to return the mean value of the attention scores for the selected text raters directly in Flash
Attention, we need to design a special V matrix.

Vij =

8
<

:

1
n , if i 2 {i1, i2, . . . , ik},

0, otherwise.

Here, V is an n⇥d matrix, n is the total number of rows in the matrix, i is the row index, 1  i  n,
S = {i | R[i] � m, i 2 {1, 2, . . . , Lt}} define the text raters which we selected in Section 3.2.

4. Incremental Accumulation

Rather than storing P explicitly, the result is directly accumulated into the output using:

OB = PB · VB

The final result is obtained by concatenating all blocks:

O = Concat(O1, O2, . . . , OB)

5. Streaming Softmax

When combining multiple blocks, an incremental softmax computation ensures that normalization
is maintained across the entire sequence:

softmax(S) =
exp(S)P
exp(S)

This avoids global dependencies and enables efficient block-wise computation.

6. Top-k Selection for Vision Tokens

The top-k selection can be expressed as:

Ok = {xi 2 Ov | rank(xi, Ov)  k},

Ov = {yj 2 mean(O) | vision tokens start  j  vision tokens end}.

where O = Concat(O1, O2, . . . , OB) is the output array of the second Flash Attention, Ov is the
vision tokens part of O, rank(xi, Ov) represents the position of xi in Ov when sorted in descending
order.

The corresponding indices of the top-k elements are:

Ik = {i | xi 2 Ok}.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

7. Summary Formula for SparseVLM Flash Attention with Top-k Selection

The complete process of SparseVLM Flash Attention can be summarized as:

Ik = {i | xi 2 {yj 2 Ov |rank(yj ,mean(Concat

[

B

softmax
✓
QBKT

Bp
dk

�max(SB)

◆
· VB

!

[vision tokens start : vision tokens end]))}}.

Here, each block B is processed independently, and the results are combined using incremental
normalization.

21

	Introduction
	Related Work
	Proposed Approach: SparseVLM
	Preliminary: Attention in VLM Decoders
	Sparsification Guidance from Text to Visual Modality
	Visual Token Recycling
	Theoretical Analysis of Computational Complexity

	Experiments
	Image Understanding Tasks
	Video Understanding Tasks

	Analysis
	Effects of Relevant Text Token Selection
	Effects of Pruned Tokens Recycling
	Efficiency Analysis
	Visualization

	Conclusion
	Appendix
	The Redundancy in Vision Tokens
	Computing Budget Detailed Estimation
	Efficiency Details
	dataset
	Implementation Details.
	Visualization
	blueMore Detailed Efficiency Analysis
	blueCompatibility of SparseVLM with Flash Attention

