Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THE REDUNDANCY IN VISION TOKENS

In text-unrelated tasks, such as classification or segmentation, it is common to use a downsampling
strategy which reduces redundancy in visual modality and makes the model more efficient to train
(Zhang et al., 2024a). In Figure 7, which starts by comparing the original image with a downsam-
pled version. The downsampled image reduces the number of tokens from 1166 to 576, achieving a
50% increase in efficiency. However, this process results in a 15% loss of information, as indicated
by the decrease in entropy from 7.44 to 6.13. This trade-off is deemed acceptable for tasks unre-
lated to text such as classification or segmentation. For text-related tasks, such as visual question
answering (VQA), there are two different modalities, text and vision. In this figure, the prompt is
”What is written on the top of the yellow sticker on the fridge?”” The output generated is "Warning”.
Pay attention to the highlighted part in both text and image, the text with the highest information
density is highlighted with color, accounting for 88% of the total text; the region of interest (related
to the prompt) part in the image only rates 38% in the whole image, which demonstrates that the
information in images is typically more sparse than in natural language. Therefore, we proposed
the Sparse VLM to prune redundancy in visual tokens progressively. With our method, visual redun-
dancy is reduced while maintaining the essential information required for accurate task performance,
effectively improving the model’s efficiency and effectiveness across different vision tasks.

A.2 COMPUTING BUDGET DETAILED ESTIMATION

Estimation of Visual Token Significance. In this stage, only the equation 4 averaging process
requires computation. Each vision token undergoes L; — 1 additions and one division. With L,
vision tokens in total, the number of FLOPs for this stage is (L — 1 + 1) x L, = L; X L,,.

Relevant Text Selection. In this process, given that official PyTorch implementation for Softmax
and Averaging operations, the FLOPs for equation 7 can be approximately simplified to the matrix
multiplication between H,, and H,. The result has a shape of L, x L;, where each element undergoes
D multiplications and additions. Therefore, the FLOP count can be expressed as L; x L, X 2D.

Sparsification Level Adaptation. The rank of a matrix is typically computed using singular value
decomposition (SVD) (Stewart, 1993). With the selected appropriate threshold, the number of above
the threshold singular values determines the rank of the matrix. The FLOPs involved in this process
can be approximated as L; X L, X min(L¢, L,).

Token Aggregation. At this stage, the first part is to perform a nearest neighbor search for each
element in the matrix. With the L,. X D matrix, this task can be simplified to calculate the distances
between L, elements, resulting in a total of L, x (L, — 1)/2 distance calculations. Each dis-
tance computation requires sequentially executing subtraction, squaring, addition, and square root

Visual Redundancy Challenges in VLMs Our Method

;
1
1 =
" Q: What is written on tie top of ! J (=R 30%

- the on the ?
\ P L
'\ A \ t
Output: Warning. \:‘ B e q

oo e w written on the top i o -
E 1 I

Token Number: 1166 to 576
0 Efficiency: ~50% v,

Entropy: 7.44 to 6.13 \a i |
@ Information: ~15% -
<« -u
Trade-off Acceptable & HE 38% 88% ; 2%
L Text Unrelated Tasks (e.g., Classification) Text Related Tasks (e.g.,, VQA)) L Prune Redundancy Progressively)

Figure 7: Comparison of visual redundancy in different vision tasks.

14

Under review as a conference paper at ICLR 2025

operations on D elements. Consequently, the number of FLOPs in the nearest neighbor search is
L. x(L,—1)/2x4D =L, x (L, — 1) x 2D.

The second part is density calculation. Since the operations of averaging and applying the expo-
nential function are implemented by the official PyTorch, this part can be simplified by the matrix
squaring. Therefore, the FLOPs for this part are L, x L, x 2D.

The third part is distance indicator calculation. The computation can be approximately simplified to
compute p; X 9;. Therefore, the FLOPs for this part can be approximated as L, X L, x 2D.

The last part is clustering. In this part, we need to select C' tokens with the highest scores from a
total of L, tokens to serve as cluster centers, and the FLOPs can be approximated as L.

In summary, the total FLOPs for this stage are given by
FLOPs =L, X (L, —1)x 2D+ L, X L, x2D+ L. x L. x2D + L
Nearest Neighbors Search Density Calculation Distance Indicator Calculation Select Cluster Center

=L, x (3L, —1) x 2D + L.

Token Reconstruction. Token reconstruction involves performing a weighted sum for each group,
excluding the cluster center. Thus, there are L, — C' elements to sum where each one has 1 x D
dimensions. Consequently, the number of FLOPs for this operation is D x (L, — C).

A.3 EFFICIENCY DETAILS

We present a comparative efficiency analysis of SparseVLM, the baseline, and FastV (Chen et al.,
2024b) during the inference phase in Table 4. In this section, we provide additional details on the
CUDA time measurement during the inference phase. Following VoCo-LLaMA Ye et al. (2024)
setting, we primarily consider the following components that contribute to the reported CUDA time:
image encoding time (if applicable), kv cache load time (if applicable), and transformers forward
time. We exclude other computational times that are not dependent on the model itself and the
caching strategy, such as model loading time, from the CUDA time measurement. Specifically, the
attention operation is implemented by Sdpa Attention: https://pytorch.org/tutorials/
intermediate/scaled_dot_product_attention_tutorial.

A.4 DATASET

We conducted experiments on several widely used visual understanding benchmarks.

GQA. (Hudson & Manning, 2019) The GQA benchmark is composed of three parts: scene graphs,
questions, and images. The image part contains images, as well as the spatial features of images and
the features of all objects in images. The questions in GQA are designed to test the understanding
of visual scenes and the ability to reason about different aspects of an image.

MMBench. (Liu et al., 2023b) The MMBench benchmark comprehensively evaluates the model’s
overall performance across multiple dimensions. It includes three levels of ability dimensions. The
first level (L-1) consists of two main abilities, perception and reasoning. The second level (L-2)
expands based on the first level, including six sub-abilities. The third level (L-3) further refines
the second level, encompassing 20 specific ability dimensions. This hierarchical structure enables a
granular and comprehensive evaluation of the model’s various capabilities.

MME. (Fu et al., 2023) The MME benchmark is also a comprehensive benchmark meticulously
designed to thoroughly evaluate various aspects of a model’s performance. It consists of 14 subtasks
that specifically aim to evaluate both the model’s perceptual and cognitive abilities. By utilizing
manually constructed instruction-answer pairs and concise instruction design, it effectively mitigates
issues such as data leakage and unfair evaluation of model performance.

POPE. (Li et al., 2023b) The POPE benchmark is primarily used to evaluate the degree of Object
Hallucination in models. It reformulates hallucination evaluation by requiring the model to answer
a series of specific binary questions regarding the presence of objects in images. Accuracy, Recall,
Precision, and F1 Score are effectively employed as reliable evaluation metrics to precisely measure
the model’s hallucination level under three different sampling strategies.

15

https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial
https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial

Under review as a conference paper at ICLR 2025

ScienceQA. (Lu et al., 2022) The ScienceQA benchmark covers a rich diversity of domains, in-
cluding natural science, language science, and social science. Within each subject, questions are
categorized first by the topic, then by the category, and finally by the skill. This hierarchical catego-
rization results in 26 topics, 127 categories, and 379 skills, providing a comprehensive and diverse
range of scientific questions. It provides a comprehensive evaluation of a model’s capabilities in
multimodal understanding, multi-step reasoning, and interpretability.

VQA-v2. (Goyal et al., 2017) The VQA-v2 benchmark evaluates the model’s visual perception
capabilities through open-ended questions. It consists of 265,016 images, covering a wide variety of
real-world scenes and objects, providing rich visual contexts for the questions. For each question,
there are 10 ground truth answers provided by human annotators, which allows for a comprehensive
evaluation of the performance of different models in answering the questions accurately.

TextVQA. (Singh et al., 2019) The TextVQA benchmark focuses on the comprehensive integration
of diverse text information within images. It meticulously evaluates the model’s text understanding
and reasoning abilities through a series of visual question-answering tasks with rich textual infor-
mation. Models need to not only understand the visual content of the images but also be able to read
and reason about the text within the images to answer the questions accurately.

ConBench. (Zhang et al., 2024b) The ConBench benchmark predominantly focuses on the consis-
tency of the model’s answers across a wide variety of different tasks and question types. It presents
three core capabilities in a hierarchical manner, namely observation ability (sensation), complex
reasoning (reasoning), and professional knowledge (knowledge). This hierarchical design aims to
gradually challenge the performance of models on different tasks and provides fine-grained evalua-
tion indicators, so as to evaluate the performance and consistency of the model.

TGIF-QA. (Jang et al., 2017) The TGIF-QA benchmark is an extension of the image question an-
swering (ImageQA) task to the video domain, aiming to promote the development of video question
answering techniques. It contains 165,000 question answer pairs in total and requires the model to
comprehend the details of GIF videos. Specifically, it introduces three new tasks for VideoQA (rep-
etition count, repeating action, and state transition), which require spatio-temporal reasoning from
videos, and frame QA tasks that can be answered from one of the frames.

MSVD-QA. (Xu et al., 2017) The MSVD-QA benchmark is based on the existing Microsoft Re-
search Video Description (MSVD) dataset and contains 1970 video clips and approximately 50.5K
QA pairs. The questions and answers are diverse in nature, covering a wide range of topics and as-
pects related to the video content. Due to its relatively large data size and the diversity of questions,
it is widely used for video question answering tasks and video caption tasks. The tasks formed in it
are open-ended questions, consisting of five types of questions: what, who, how, when and where.

MSRVTT-QA. (Xuetal., 2017) The MSRVTT-QA benchmark consists of 10K video clips and 243k
question answer pairs. One of the main challenges addressed by the MSRVTT-QA benchmark is the
complexity of understanding and reasoning about video content. Videos contain both visual and
temporal information, and models need to be able to effectively process and integrate these aspects

to answer the questions accurately. The tasks formed in it also consist of five types of questions,
similar to the MSVD-QA benchmark.

ActivityNet-QA (Yu et al., 2019) The ActivityNet-QA benchmark contains 58,000 human-
annotated QA pairs on 5,800 videos derived from the ActivityNet dataset. The questions are de-
signed to cover a range of types, including motion, spatial relationship, and temporal relationship,
which challenge the model to understand and reason about the video content at different levels and
evaluate the performance of VideoQA models in long-term spatio-temporal reasoning.

A.5 IMPLEMENTATION DETAILS.
All of our experiments are conducted on a single Nvidia A100-80G GPU. The implementation was

carried out in Python 3.10, utilizing PyTorch 2.1.2, CUDA 11.8, and transformers 4.31.0. The
inference follows the evaluation settings established by LLaVA(Liu et al., 2024).

A.6 VISUALIZATION

Figure 8 contains more visualization examples of SparseVLM on various VQA prompts.

16

Under review as a conference paper at ICLR 2025

Is there a backpack
in the image?

Are the shorts large
and blue?

Are there both
toothbrushes and !
mats in this picture?

Do the balls to the |
left of the other ball |
look right? ‘

Does the sweater '
look open and blue?

Is there a cake in
the image?

Yes.

What color are the
pants?

What appliance is
the refrigerator
larger than?

Stove.

What kind of '
animal is beautiful?

Who is wearing the
dress?

Woman.

Figure 8: More visualization examples of SparseVLM on different VQA prompts.

A.7 MORE DETAILED EFFICIENCY ANALYSIS

To better validate the efficiency of our method, we provide the latency-vs.-accuracy and FLOPs-vs.-
Accuracy trade-offs for Sparse VLM applied to LLaVA and MGM across three benchmarks: POPE,
TextVQA, and MME, which are shown in Figure 9 and Figure 10. Besides, we also analyze Video-
LLaVA matched with SparseVLM in Figure 11 on TGIF and MSVD.

17

Under review as a conference paper at ICLR 2025

POPE 60 TextVQA 1900 MME
86 \baseline 1875
58 s e e =
85 e e . 1850
—_ ~e, —_ S AN
S : S =
3 * . 1825 <
> 84 . 555 L 8 ..
© ° © TR S 1800 N
S 83 =1 a RN
§ E 54 " 1775
821 . o —
*-- random sparse =-- random sparse 1750 =-- random sparse L]
81 SparseVLM 52 SparseVLM SparseVLM
. . 1725 .
————— baseline ----- baseline ----- baseline
80 50 1700
400 350 300 250 200 120 110 100 90 80
Cuda Times(s) Cuda Times(s) Cuda Times(s)
POPE 60 TextVQA 1900 MME
861 ... Daseline -
“‘*\\ 584 7T 1850 T
85 T o .
S s Se6
< < < 1800 S
3‘84 N > _l g N
e h ° Tw S h
583 354 % 1750
2 N g \
821 .. A I “w L \
random sparse \ 52 =-- random sparse \ 1700 =-- random sparse \
81 SparseVLM " SparseVLM SparseVLM "
————— baseline ----- baseline ----- baseline
80 50 = 1650 .
4 3 2 4 3 2 4 3 2 1
TFLOPs TFLOPs TFLOPs

Figure 9: Trade-offs for SparseVLM on LLaVA: (a) Latency vs. Accuracy, and (b) FLOPs vs.
Accuracy. Both show comparisons of random sparse, SparseVLM, and baseline.

POPE TextVQA 1900 MME
86 baseline 66
fresszszo 1880
&
85 'S 64
3 3 = 1860
.84 . Z62 - o
@ g3 Moa @ A ‘8' 18407 "=
<5 Nl < N 1820 T
--e-- random sparse e 584 --=-- random sparse --=-- random sparse
81 SparseVLM SparseVLM 1800 SparseVLM S
fffff baseline 564 ----- baseline ----- baseline
80 1780
400 350 300 300 250 200 120 100 80
Cuda Times(s) Cuda Times(s) Cuda Times(s)
POPE TextVQA 1900 MME
867 4. 7
sy 65.01 %= 1875
84 e T
— T 625 — 18501 =
X X)
= 82 ~ >.60.0 4 1825
) . 9 L = “u
e c S 1800 N,
380 3575 “u 0 NN
v} \] N “u N
< *| <550 1775
784 --=-- random sparse --=-- random sparse --=-- random sparse \
SparseVLM 52.5 SparseVLM - 1750 SparseVLM .
761 - baseline | | - baseline | | - baseline
50.0 1725
4 3 2) 4 3 2 4 3 2
TFLOPs TFLOPs TFLOPs

Figure 10: Trade-offs for SparseVLM on MGM: (a) Latency vs. Accuracy, and (b) FLOPs vs.
Accuracy. Both show comparisons of random sparse, SparseVLM, and baseline.

18

Under review as a conference paper at ICLR 2025

—
w

=
o

Accuracy (%)

o]

TGIF

baseline

--e-- FastV
SparseVLM Full Sparseificition Query
SparseVLM

————— baseline

0
225 200 175 150 125 100 75

CUDA Times (s)

TGIF

baseline

-~
""" FastV
SparseVLM Full Sparseificition Query
SparseVLM
————— baseline

200 400 600 800 1000

Tokens budget (per)

Accuracy (%)
A 0 o0 o o N
v o w o v o

I
o

Accuracy (%)
IO R - - N
o w o w o

N
«

MSVD

FastV
SparseVLM Full Sparseificition Query .
SparseVLM N

. "
baseline

225 200 175 150 125 100 75 50

CUDA Times (s)

MSVD

~=-- FastV

SparseVLM Full Sparseificition Query
SparseVLM

————— baseline

I
oS

400 600 800 1000
Tokens budget (per)

Figure 11: Trade-offs for SparseVLM on Video-LLaVA: (a) Latency vs. Accuracy, and (b)
Token budget vs. Accuracy. Both show comparisons of SparseVLM, FastV, and baseline.

A.8 COMPATIBILITY OF SPARSEVLM WITH FLASH ATTENTION

To ensure that SparseVLM remains compatible with Flash Attention even when pruning is applied,
we devised a method to extract the mean value of the processed attention map without explicitly
obtaining the full attention map. In decoder layers that do not require pruning, we use the original
Flash Attention directly. For layers where pruning is necessary, we implemented an additional Flash
Attention-based operation to directly obtain the mean attention scores w.r.t. the text raters, which is
lightweight and also enjoys the efficiency of Flash Attention.

Specifically, the first forward pass operates identically to the original Flash Attention, generating
the hidden states for all tokens before pruning. In the second forward pass, we introduce a specially
designed V' matrix. In this matrix, for the rows corresponding to the text raters we wish to analyze,
we set the values to the reciprocal of the number of text raters. This configuration allows the inner
product between the attention map and the V' matrix to return the mean value of the attention scores
for the selected text raters directly in Flash Attention.

Using this mean value, we perform a top-k selection to identify the vision tokens to retain. Tokens
that are excluded during this process are converted into masks, which are then applied to the hidden
states produced by the first Flash Attention pass to complete the pruning operation. This method
enables efficient integration of pruning with Flash Attention while preserving compatibility and
computational efficiency.

CORE PRINCIPLES AND CALCULATION OF SPARSEVLM FLASH ATTENTION

1. Attention Score Calculation

For each block B, compute the scaled dot-product attention scores:

_ QpKj
Vi

Here, Sp is the attention score matrix computed within the block.

SB

2. Block-wise Softmax

19

Under review as a conference paper at ICLR 2025

To ensure numerical stability, the softmax is computed in a stable manner using the log-sum-exp
trick:
1. Subtract the maximum value for numerical stability:
S = Sp — max(Sp,axis = 1)

2. Normalize:
_ exp(Sp)
© Y exp(Sh,axis = 1)

Pp

3. Designation of V' Matrix

In order to return the mean value of the attention scores for the selected text raters directly in Flash
Attention, we need to design a special V' matrix.

Loifie {iy,ia, ... ik},

Vi =
0, otherwise.

Here, V is an n X d matrix, n is the total number of rows in the matrix, 7 is the row index, 1 <7 < n,
S={i|R[i]>m,i€{1,2,..., L }} define the text raters which we selected in Section 3.2.

4. Incremental Accumulation
Rather than storing P explicitly, the result is directly accumulated into the output using:

The final result is obtained by concatenating all blocks:

O = Concat(O1,0s,...,0p)

5. Streaming Softmax

When combining multiple blocks, an incremental softmax computation ensures that normalization
is maintained across the entire sequence:

softmax(S) = _exp()

> exp(S)

This avoids global dependencies and enables efficient block-wise computation.
6. Top-k Selection for Vision Tokens
The top-k selection can be expressed as:

Oy = {x; € O, | rank(x;,0,) < k},

O, = {y; € mean(O) | vision tokens start < j < vision tokens end}.

where O = Concat(O1,Oa,...,0p) is the output array of the second Flash Attention, O,, is the
vision tokens part of O, rank(x;, O,,) represents the position of z; in O, when sorted in descending
order.

The corresponding indices of the top-k elements are:
I, = {Z | x; € Ok}.

20

Under review as a conference paper at ICLR 2025

7. Summary Formula for Sparse VLM Flash Attention with Top-k Selection

The complete process of Sparse VLM Flash Attention can be summarized as:

T
Iy ={i| z; € {y; € O, |rank(y;, mean(Concat U softmax (QBKB - max(SB)> - VB
5 Vi

[vision tokens start : vision tokens end]))}}.

Here, each block B is processed independently, and the results are combined using incremental
normalization.

21

	Introduction
	Related Work
	Proposed Approach: SparseVLM
	Preliminary: Attention in VLM Decoders
	Sparsification Guidance from Text to Visual Modality
	Visual Token Recycling
	Theoretical Analysis of Computational Complexity

	Experiments
	Image Understanding Tasks
	Video Understanding Tasks

	Analysis
	Effects of Relevant Text Token Selection
	Effects of Pruned Tokens Recycling
	Efficiency Analysis
	Visualization

	Conclusion
	Appendix
	The Redundancy in Vision Tokens
	Computing Budget Detailed Estimation
	Efficiency Details
	dataset
	Implementation Details.
	Visualization
	blueMore Detailed Efficiency Analysis
	blueCompatibility of SparseVLM with Flash Attention

