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UniMotion: Unifying 3D Human Motion Synthesis and Understanding

Supplementary Material

In the following, we start with the supplementary video729

in Sec. A and discuss the details of training data in Sec. B.730

Then, we present the details of our evaluation setup in731

Sec. C, followed by implementation details in Sec. D, addi-732

tional results in Sec. E and Sec. F. Finally, we demonstrate733

our model’s advantage over LLMs and other motion-to-text734

models in Sec. G.735

A. Video with Qualitative Results736

We provide videos to further explain our method and to737

present the results with animated motions, showing a clearer738

comparison across various tasks and against other baselines.739

Supplementary results can be found in the accompanying740

ZIP file.741

B. Training Data742

UniMotion is trained on an overlapping subset of BA-743

BEL [30] and HumanML3D [11], utilizing both sequence-744

level and frame-level text as input. Fig. 7 illustrates the745

data alignment and merging process. However, since these746

two datasets are independently labeled and cover differ-747

ent subsets of AMASS [24], they do not fully overlap.748

The overlapping portion comprises only 8,829 motion se-749

quences (excluding left-right flipping), which represents ap-750

proximately 30.25% of the HumanML3D dataset (23,384751

sequences). This overlapped dataset includes motion se-752

quences, sequence-level text descriptions, and frame-level753

text descriptions.754

C. Evaluation Setup755

In this section, we outline the details of the evaluation setup756

and how we run baselines under this setup.757

For frame-level text-to-motion generation, we use BA-758

BEL frame-level text (in short-phrase format) as conditional759

input, which is also used as our test-time text input. To en-760

sure a fair comparison with other baselines and to maintain761

consistency with the training data distribution, we use their762

pre-trained models on BABEL if available. However, our763

model is trained on a subset of the HumanML3D training764

split, which overlaps with the BABEL test split. Conse-765

quently, we generate a joint test set, excluding training se-766

quences from both. Finally, the test set contains 358 se-767

quences and 998 sub-sequences of motion segments. Our768

test, train, and validation split will be made available along-769

side our code and models upon publication.770

TEACH. For TEACH [1] we use the pre-trained model sup-771

plied by the authors on their website, which was trained on772

Figure 7. We merged HumanML3D and BABEL based on their
time correspondence with AMASS. Each sequence (approxi-
mately 1-10 seconds) in HumanML3D includes 3-4 sequence-
level annotations in sentence format, as illustrated in the blue area.
In contrast, BABEL provides separate annotations for atomic ac-
tions with varying lengths, where the text labels are primarily short
phrases aligned at the frame level, as shown in the green area.

BABEL. Since TEACH can not be applied to text segments 773

with very few frames, we set the minimum size of each eval- 774

uation sequence to 8 frames. 775

PriorMDM. For PriorMDM [33], we compare Double- 776

Take with our method. To fairly compare DoubleTake with 777

our method, we use the “Babel TransEmb GeoLoss” pre- 778

trained model, as our local text input is based on the BA- 779

BEL dataset. When feeding motion crops into DoubleTake, 780

we specify the length of each motion crop. In DoubleTake’s 781

default setup, the handshake size is set to 20 and the blend- 782

ing window size to 10, resulting in a minimum motion crop 783

length of 70. If a motion crop is shorter than 70, the method 784

automatically pads it to this length. However, many motion 785

crops in our test set are shorter than 70, which would cause 786

significant discrepancies between the input and output mo- 787

tion lengths. To maintain similar input and output sizes, we 788

modify the handshake size to 2 and the blending window 789

size to 1. The results under this setup are shown in Table 1. 790
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Figure 8. The comparison between ground-truth motion-text matching in the joint embedding spaces of Guo et al.’s model (a) and
TMR++ (b). Left: The heatmap shows the paired motion-text distances, where darker shades indicate smaller distances. The vertical axis
represents motion samples, while the horizontal axis represents text samples. Right: The top-3 R-precision scores are displayed for each
row, indicating the closest 3 texts to each motion. Red denotes the top 1 match, orange the top 2, and yellow the top 3. If the texts are
identical, they are only counted as one.

STMC. For an entire motion sequence, STMC [28] allows791

specifying the body part for each individual subsequence of792

motion. To align with our setup, we set the corresponding793

body part to include all body parts for each motion crop794

when feeding the motion into STMC.795

FlowMDM. To ensure a fair comparison with our method,796

we use the human motion compositions with the pre-trained797

BABEL model for the FlowMDM [3] method. Since798

FlowMDM is designed to generate motion compositions799

seamlessly, there is no need to specify any transition length800

between atomic motions. Therefore, we directly input the801

frame-level texts and corresponding lengths, consistent with802

the input format used for our model.803

Evaluation metrics.. For the evaluation met-804

rics—Semantic Correspondence (R-precision, M2T805

score, M2M score) and Realism (FID, Diversity)—we806

use TMR++ instead of the commonly used motion and 807

text embedding model from Guo et al. [11]. This choice 808

is driven by the need to evaluate models trained across 809

different datasets and to assess performance at multiple 810

levels of generated motion (per-crop vs. per-sequence). 811

For per-crop semantic correctness, we focus on evaluat- 812

ing the alignment of atomic motion crops with their corre- 813

sponding input text, formatted as BABEL. Additionally, we 814

assess the overall realism of sequence-level motion across 815

crops, which aligns with HumanML3D’s sequence-level 816

evaluation. The evaluation model aims to establish a joint 817

latent space for motion and text, performing matching be- 818

tween them based on distance within this shared space. 819

The commonly used model from Guo et al. [11] is 820

trained solely on HumanML3D. To evaluate BABEL pre- 821

trained models, Shafir et al. [33] retrained this model 822

on BABEL data, and FlowMDM relies on these models 823
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for separate evaluations on each dataset. STMC utilizes824

TMR [27], a retrieval model that demonstrates a better825

joint latent space compared to the classic evaluation model826

used by MDM, especially in terms of text-motion distance827

for ground-truth motion-text pairs. However, TMR is also828

trained only on HumanML3D, which limits its ability to ac-829

curately evaluate both crop-level motions and BABEL text,830

as well as sequence-level realism.831

To address these limitations, we employ the latest model,832

TMR++ [4], which is trained across datasets and de-833

livers highly accurate matching results between ground-834

truth motion and text, whether in BABEL format (subse-835

quence level, short text phrases) or HumanML3D format836

(sequence-level, text descriptions in sentences).837

For a quantitative comparison, please refer to Table 3,838

which evaluates ground-truth motion and text. For qualita-839

tive analysis, see Fig. 8, which presents a heatmap of the840

matching distance across a random sample of 32 batches.841

Method Training Set Per-crop semantic correctness
R-Prec@1 " R-Prec@2 " R-Prec@3 "

Guo et al[11] HumanML3D 0.281±0.005 0.438±0.004 0.539±0.006

TMR++[4] HumanML3D+BABEL 0.520±0.013 0.659±0.008 0.735±0.008

Table 3. Ground-truth matching score comparison across eval-
uation modals. In this table, we compare the matching scores
across different evaluation models for ground-truth motion and
text, averaging over batches of 32 random samples. The results
demonstrate that TMR++ is a more reliable model within our eval-
uation setup.

D. Implementation Details842

We provide more details about the implementation of our843

model. We extend the MDM [37] framework to separate844

time steps for motion and frame-level text, and adjust the845

input to accept the temporal alignment of both the motion846

vector and text embedding vector. The model is retrained847

from scratch using the merged overlapping dataset, with hy-848

perparameters consistent with those suggested by Tevet et849

al. [37].850

For frame-level text, we use the same CLIP model as851

used in MDM to generate embeddings. We then applied852

PCA to condense the dimensionality from 256 to 51, pre-853

serving approximately 70% of the original variance. Our854

model predicts both the clean motion and the condensed855

CLIP embeddings for the frame-level texts. To output the856

texts, we use K-nearest neighbors (KNN) to match the out-857

put CLIP embeddings in a pre-computed database. This ap-858

proach effectively matches nearby CLIP embeddings to the859

corresponding closest text even with a small variance.860

For the training and sampling algorithm, please refer to861

Algorithm 1, 2, 3.862

Algorithm 1 Training
1: repeat
2: x0,y0, c ⇠ q(x0,y0, c)
3: c = ? with probability 10%
4: tx, ty ⇠ Uniform({1, 2, . . . , T})
5: ✏x, ✏y ⇠ N (0, I)
6: Let xtx =

p
↵txx0 +

p
1� ↵tx✏x

7: Let yty =
p
↵tyy0 +

p
1� ↵ty✏y

8: Take gradient step on r✓k✏✓(xtx ,yty , tx, ty, c) �
[x0,y0]k22

9: until converged

Algorithm 2 Sampling x0 conditioned on y0 (similar for
sampling y0 conditioned on x0, with or without condition-
ing on c.

1: xT
0 ⇠ N (0, I)

2: c = ? or user specify
3: for t = T, . . . , 1 do
4: ✏ ⇠ N (0, I)
5: xt�1

0 = ✏x✓ (
p
↵txxt

0 +
p
1� ↵tx✏,y0, t, 0, c)

6: end for
7: return x0

Algorithm 3 Joint sampling of x0,y0 (with or without con-
dition on c)

1: xT
0 ,y

T
0 ⇠ N (0, I)

2: c = ? or user specify
3: for t = T, . . . , 1 do
4: ✏x, ✏y ⇠ N (0, I)
5: xt�1

0 ,yt�1
0 = ✏✓(

p
↵txxt

0 +p
1� ↵tx✏x,

p
↵tyyt

0 +
p
1� ↵ty✏y, t, t, c)

6: end for
7: return x0,y0

E. More Experiment Results 863

We provide only a subset of the metrics for semantic cor- 864

respondence and motion realism in the main paper due to 865

space constraints. Here, we provide the complete evalua- 866

tion. 867

Semantic correspondence.. Tab. 4 lists all three R- 868

precision scores, demonstrating that our method outper- 869

forms all baseline methods. These results are consistent 870

with our conclusions in the experiment section of the main 871

paper. 872

Realism. Tab. 5 includes FID and Diversity scores cal- 873

culated using the evaluation model from Guo et al. [11] 874

for reference. Note that at the crop level, this model pro- 875

vides less stable evaluations because it was trained only on 876
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Figure 9. Text variation (a) and motion variation (b) are direct applications that leverage the two conditional distributions modeled by
UniMotion. Motion variation (b) is achieved by generating frame-level text descriptions from a motion sequence, and then using these
descriptions to create a new, semantically similar motion with different content. Text variation (a) is produced by reversing this process to
create diverse text annotations.

Method Training Set Input Per-crop semantic correctness
R-Prec@1 " R-Prec@2 " R-Prec@3 " M2T " M2M "

GT - - 0.520±0.013 0.659±0.008 0.735±0.008 0.663±0.000 1.000±0.000

TEACH BABEL f 0.375±0.008 0.516±0.007 0.588±0.007 0.623±0.001 0.575±0.000

DoubleTake BABEL f 0.332±0.013 0.467±0.013 0.544±0.013 0.602±0.002 0.560±0.001

STMC HML f 0.321±0.009 0.452±0.012 0.528±0.012 0.599±0.000 0.616±0.010

FlowMDM BABEL f 0.389±0.009 0.532±0.014 0.618±0.007 0.631±0.002 0.652±0.001

Ours BABEL f 0.394±0.010 0.552±0.018 0.636±0.017 0.633±0.004 0.677±0.002

Ours HML-BABEL f 0.427±0.011 0.587±0.012 0.668±0.009 0.643±0.002 0.698±0.002

Ours HML-BABEL f + s 0.450±0.018 0.593±0.008 0.679±0.006 0.644±0.001 0.706±0.002

Table 4. Per-crop semantic correctness evaluation for frame-level Text2Motion generation. Training Set specifies the dataset used for
training, including BABEL, HumanML3D(HML), or the union/intersection of HML and BABEL. Input specifies the type of text input. f:
frame-level text, s: sequence-level text. f+s demonstrates that combining multi-level conditioning signals can enhance model performance
in terms of semantic correspondence. Symbols like " indicates that higher, lower, or values closer to the ground truth (GT) are better,
respectively. The evaluation is repeated 10 times, and ± indicates the 95% confidence intervals.

HumanML3D, which contains only squence-level motions.877

Consequently, FID and Diversity scores from TMR++ of-878

fer a more reliable assessment. At the sequence level, both879

evaluation models yield consistent results. For simplicity880

and consistency, the main paper presents only FID TMR++881

and Diversity TMR++.882

F. More Applications883

Due to space limitations, we only present part of appli-884

cations in the main paper. Here, we showcase two addi-885

tional applications that are made possible exclusively by 886

our multi-task model. Similar to UniDiffuser [2], UniMo- 887

tionnaturally supports applications such as motion variation 888

and text variation. For motion variation, given a motion 889

sequence, we first perform the motion-understanding task 890

to generate frame-level text descriptions aligned with the 891

motion. We then use this frame-level text as input for text- 892

to-motion generation, resulting in a new motion that retains 893

similar semantics but with different content. For text vari- 894

ation, we reverse the process to produce fine-grained text 895
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Method Training Set Input Per-crop Realism Per-seq Realism
FID # Diversity ! FID tmr++ # Diversity tmr++ ! FID # Diversity ! FID tmr++ # Diversity tmr++ !

GT - - 0.000±0.000 8.823±0.067 0.000±0.000 1.375±0.005 0.000±0.000 9.296±0.086 0.000±0.000 1.391±0.003

TEACH BABEL f 2.557±0.016 7.879±0.119 0.155±0.001 1.340±0.003 3.577±0.025 7.605±0.066 0.304±0.001 1.344±0.003

DoubleTake BABEL f 2.820±0.127 8.248±0.102 0.195±0.002 1.332±0.005 5.619±0.268 7.350±0.074 0.353±0.002 1.337±0.004

STMC HML f 2.161±0.008 9.250±0.130 0.156±0.000 1.358±0.005 1.295±0.017 8.955±0.102 0.233±0.000 1.362±0.005

FlowMDM BABEL f 0.885±0.043 8.476±0.086 0.101±0.001 1.352±0.006 1.028±0.060 8.691±0.127 0.211±0.002 1.375±0.005

Ours BABEL f 1.206±0.079 9.007±0.141 0.087±0.002 1.366±0.009 0.791±0.091 8.899±0.159 0.180±0.004 1.374±0.002

Ours HML-BABEL f 0.506±0.024 8.979±0.095 0.071±0.001 1.372±0.005 0.401±0.030 8.956±0.123 0.150±0.001 1.378±0.003

Ours HML-BABEL f + s 0.487±0.021 9.040±0.118 0.066±0.002 1.373±0.009 0.299±0.023 8.978±0.095 0.133±0.004 1.381±0.006

Table 5. Frame-level Text2Motion generation per-crop and per-sequence realism evaluation. Crop-level realism measures the metrics
within each atomic crop, while Seq-level realism measures the fidelity of the overall motion. Symbols #, and ! indicate that lower, or
values closer to the ground truth (GT) are better, respectively.

Figure 10. Fine-grained motion understanding with LLM. ChatGPT-4o is used to break down the ground-truth global descriptions into
atomic motion and durations. However, there is no alignment between text and motion since the model doesn’t take the motion as input.

annotation variance. Figure 9 provides examples of both896

motion and text variation. For animated results, please refer897

to the attached videos.898

G. Motion-to-text Understanding Baselines899

To establish baselines for our frame-level motion under-900

standing sub-task, we initially attempted to use a large lan-901

guage model (LLM), ChatGPT, to decompose sequence-902

level inputs and assess potential outputs. However, due to903

the LLM’s lack of motion awareness, the outputs were un-904

reliable when the sequence-level information was vague or905

incomplete. Even with detailed sequence-level descriptions,906

the LLM struggled to generate accurate timestamps due to 907

the absence of motion data. Please refer to Fig. 10 for more 908

details. 909

We then considered using LLM-based motion models 910

like MotionGPT [17], which can process both motion data 911

and text prompts (to request timestamps and atomic text la- 912

bels). Despite this, MotionGPT also failed in this task. See 913

Fig. 11 for further information. 914
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Input Motion

Q: “Please break down the movement shown in [Motion_tokens] 
into atomic motion crops, then give the duration in seconds of 
each crop.”

A: “The motion lasts for approximately 2.5 seconds.”

MotionGPT
1.walking2.turn around

3.jump forward 4.transition 5.walking

motion to frame-level text

UniMotion

Input Motion

Figure 11. Motion understanding comparison with MotionGPT [17]. MotionGPT is capable of performing multiple tasks, including
motion captioning and question answering. We tasked both MotionGPT (left) and Unimotion (right) with understanding an input motion by
breaking it down into motion segments. However, due to MotionGPT’s lack of temporal awareness, it was unable to successfully complete
this task. Specifically, instead of answering with multiple motion segments, it just predicts an incorrect length for the whole sequence
(A: “The motion lasts for approximately 2.5 seconds.”). In contrast, our model is the first to understand motion both semantically and
temporally.
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