A Proofs for Section 3

 Observation 1. The model shift in the surrogate-to-target model is equivalent to the covariance shift model (Mallinar et al., 2024). Formally, given $\beta_{\star} \in \mathbb{R}^{p}$ and the covariance matrix $\Sigma_{t} \in \mathbb{R}^{p \times p}$, there exists a unique $\beta^{s} \in \mathbb{R}^{p}$ such that the risk of the surrogate-to-target problem $\mathcal{R}(\beta^{s2t})$ with $(\beta_{\star}, \beta^{s}, \Sigma_{t})$ is equivalent to the risk of the covariance shift model $\mathcal{R}^{cs}(\hat{\beta})$ with $(\beta_{\star}, \Sigma_{s}, \Sigma_{t})$ for any $\Sigma_{s} \in \mathbb{R}^{p \times p}$ that is jointly diagonalizable with Σ_{t} .

Proof. By Observation 2, we assume that Σ_t and Σ_s are diagonal matrices. As Σ_t and Σ_s are jointly diagonalizable, there exists a unique diagonal matrix $A \in \mathbb{R}^{p \times p}$ such that

$$\Sigma_s = A^{\mathsf{T}} \Sigma_t A$$
.

Then, consider the model shift discussed in Section 3. Take the case where $\boldsymbol{\beta}^s = A\boldsymbol{\beta}_{\star}$ and labels are generated as $y = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}^s + z$, where $\boldsymbol{x} \sim \mathcal{N}(0, \Sigma_t)$ and $z \sim \mathcal{N}(0, \sigma_t^2)$. This is equivalent to the case where $y = (\boldsymbol{x}^{\mathsf{T}}\boldsymbol{A})\boldsymbol{\beta}_{\star} + z = \bar{\boldsymbol{x}}^{\mathsf{T}}\boldsymbol{\beta}_{\star} + z$ such that $\boldsymbol{x} \sim \mathcal{N}(0, \Sigma_s)$ and $z \sim \mathcal{N}(0, \sigma_t^2)$. Note that (i) the transformed inputs and the labels are identical in both scenarios, and (ii) the estimators are computed in the same way. Thus, it follows that the risks $\mathcal{R}(\boldsymbol{\beta}^{s2t})$ and $\mathcal{R}^{cs}(\hat{\boldsymbol{\beta}})$ are equivalent. The other way follows from an almost identical argument.

Observation 2. For any covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$, there exists an orthonormal matrix $U \in \mathbb{R}^{p \times p}$ such that the transformation of $x \to U^{\top} x$ and $\beta \to U^{\top} \beta$ does not affect the labels y but ensures that the covariance matrix is diagonal.

Proof. Since the covariance matrix Σ is PSD, its unit-norm eigenvectors are orthogonal. Consider the matrix U whose columns are the eigenvectors of Σ . Then, Σ can be expressed as $\Sigma = U\Lambda U^{\top}$, where Λ is the diagonal matrix containing the eigenvalues of Σ . Consider now the transformation

$$z = U^{\top}x \implies \mathbb{E}\left[zz^{\top}\right] = \mathbb{E}\left[U^{\top}xx^{\top}U\right] = U^{\top}\mathbb{E}\left[xx^{\top}\right]U = U^{\top}U\Lambda U^{\top}U = \Lambda.$$

In this way, the covariance matrix is diagonalized. Thus, the transformation $(x, \beta_{\star}) \to (U^{\top}x, U^{\top}\beta_{\star})$ works as intended since the labels are preserved.

Definition 1. Let $\kappa_t = p/n > 1$ and $\tau_t \in \mathbb{R}$ be the unique solution of the following equation

$$\kappa_t^{-1} = \frac{1}{p} \operatorname{tr} \left((\Sigma_t + \tau_t \mathbf{I})^{-1} \Sigma_t \right). \tag{7}$$

Define the function $\gamma_t : \mathbb{R}^p \to \mathbb{R}$ *as*

$$\gamma_t^2(\boldsymbol{\beta}^s) = \kappa_t \left(\sigma_s^2 + \mathbb{E}_{(\boldsymbol{x}, y^s) \sim \mathcal{D}_t(\boldsymbol{\beta}^s)} [||\boldsymbol{\Sigma}_t^{1/2} (\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}^s)||_2^2] \right). \tag{8}$$

Then, the asymptotic risk estimate is defined as

$$\bar{\mathcal{R}}_{\kappa_{t},\sigma_{t}}^{s2t}(\Sigma_{t},\boldsymbol{\beta}_{\star},\boldsymbol{\beta}^{s}) := (\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star})^{\top}\boldsymbol{\theta}_{1}^{\top}\Sigma_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}) + \gamma_{t}^{2}(\boldsymbol{\beta}^{s})\,\mathbb{E}_{g_{t}}[\boldsymbol{\theta}_{2}^{\top}\Sigma_{t}\boldsymbol{\theta}_{2}]
+ \boldsymbol{\beta}_{\star}^{\top}(\boldsymbol{I} - \boldsymbol{\theta}_{1})^{\top}\Sigma_{t}(\boldsymbol{I} - \boldsymbol{\theta}_{1})\boldsymbol{\beta}_{\star} - 2\boldsymbol{\beta}_{\star}^{\top}(\boldsymbol{I} - \boldsymbol{\theta}_{1})^{\top}\Sigma_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}),$$
(9)

where $\boldsymbol{\theta}_1 := (\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t$, $\boldsymbol{\theta}_2 := (\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \frac{g_t}{\sqrt{p}}$, and $\boldsymbol{g}_t \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_p)$.

Theorem 1. Suppose that, for some constant $M_t > 1$, we have $1/M_t \le \kappa_t$, $\sigma_t^2 \le M_t$ and $\|\Sigma_t\|_{op}$, $\|\Sigma_t^{-1}\|_{op} \le M_t$. Recall from (5) that $\mathcal{R}(\boldsymbol{\beta}^{s2t})$ represents the risk of the surrogate-to-target model given $\boldsymbol{\beta}^s$. Then, there exists a constant $C = C(M_t)$ such that, for any $\varepsilon \in (0, 1/2]$, the following holds with $R + 1 < M_t$:

$$\sup_{\boldsymbol{\beta}_{\star},\boldsymbol{\beta}^{s}\in\boldsymbol{B}_{p}(R)} \mathbb{P}(\left|\mathcal{R}(\boldsymbol{\beta}^{s2t}) - \bar{\mathcal{R}}_{\kappa_{t},\sigma_{t}}^{s2t}(\boldsymbol{\Sigma}_{t},\boldsymbol{\beta}_{\star},\boldsymbol{\beta}^{s})\right| \geq \varepsilon) \leq Cpe^{-p\varepsilon^{4}/C}.$$
(10)

Proof. Even though the claim readily follows from Theorem 2, we give a proof for the sake of completeness.

Define a function $f_1: \mathbb{R}^p \to \mathbb{R}$ as $f_1(x) = \|\Sigma_t^{1/2}(x - \beta_{\star})\|_2^2$. The gradient of this function is

$$\|\nabla f_1(x)\|_2 = \|2\Sigma_t(x - \beta_{\star})\|_2 \le 2\|\Sigma_t\|_{\text{op}}\|x - \beta_{\star}\|_2.$$

Using Corollary 2, there exists an event E with $\mathbb{P}(E^c) \leq C_t e^{-p/C_t}$ where $C_t = C_t(M_t, \frac{M_t - R}{2})$ (with the definition of M_t in Corollary 2), such that $f_1(\boldsymbol{\beta}^{s2t})$ is $2M_t^2$ -Lipschitz if $\boldsymbol{\beta}_{\star}, \boldsymbol{\beta}^s \in \boldsymbol{B}_p(R)$. Applying Theorem 3 on the target model, there exists a constant $\bar{C}_s = \bar{C}_s(M_t)$ such that for any $\varepsilon \in (0, 1/2]$, we obtain

$$\sup_{\boldsymbol{\beta}^{s} \in \boldsymbol{B}(\frac{M_{t}+R}{2})} \mathbb{P}\left(\left|f(\boldsymbol{\beta}^{s2t}) - \mathbb{E}_{\boldsymbol{g}_{t}}[f(X_{\kappa_{t},\sigma_{t}^{2}}^{t}(\boldsymbol{\Sigma}_{t},\boldsymbol{\beta}^{s},\boldsymbol{g}_{t}))]\right| \geq \varepsilon\right) \leq C p e^{-p\varepsilon^{4}/C},\tag{13}$$

where $f(\boldsymbol{\beta}^{s2t}) = \mathcal{R}(\boldsymbol{\beta}^{s2t})$ and

$$X_{\kappa_t,\sigma_t^2}^t(\boldsymbol{\Sigma}_t,\boldsymbol{\beta}^s,\boldsymbol{g}_t) = (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t \left[\boldsymbol{\beta}^s + \frac{\boldsymbol{\Sigma}_t^{-1/2} \gamma_t(\boldsymbol{\beta}^s) \boldsymbol{g}_t}{\sqrt{p}} \right].$$

Furthermore,

$$\mathbb{E}_{g_{t}}\left[f(X_{\kappa_{t},\sigma_{t}^{2}}^{s}(\Sigma_{t},\boldsymbol{\beta}^{s},g_{t}))\right] = \mathbb{E}_{g_{t}}\left[\|\Sigma_{t}^{1/2}\left(\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star})-(\boldsymbol{I}-\boldsymbol{\theta}_{1})\boldsymbol{\beta}_{\star}+\boldsymbol{\theta}_{2}\gamma_{t}(\boldsymbol{\beta}^{s})\right)\|_{2}^{2}\right]$$

$$= (\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star})^{\mathsf{T}}\boldsymbol{\theta}_{1}^{\mathsf{T}}\Sigma_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star})+\gamma_{t}^{2}(\boldsymbol{\beta}^{s})\,\mathbb{E}_{g_{t}}[\boldsymbol{\theta}_{2}^{\mathsf{T}}\Sigma_{t}\boldsymbol{\theta}_{2}]$$

$$+\boldsymbol{\beta}_{\star}^{\mathsf{T}}(\boldsymbol{I}-\boldsymbol{\theta}_{1})^{\mathsf{T}}\Sigma_{t}(\boldsymbol{I}-\boldsymbol{\theta}_{1})\boldsymbol{\beta}_{\star}-2\boldsymbol{\beta}_{\star}^{\mathsf{T}}(\boldsymbol{I}-\boldsymbol{\theta}_{1})^{\mathsf{T}}\Sigma_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star}),\tag{14}$$

where $\theta_1 := (\Sigma_t + \tau_t I)^{-1} \Sigma_t$ and $\theta_2 := (\Sigma_t + \tau_t I)^{-1} \Sigma_t^{1/2} \frac{g_t}{\sqrt{p}}$. This completes the proof.

Proposition 1. Let $\Omega = \frac{\operatorname{tr}(\Sigma_t^2(\Sigma_t + \tau_t I)^{-2})}{n}$. The optimal surrogate $\boldsymbol{\beta}^s$ minimizing the asymptotic risk in (9) is

$$\boldsymbol{\beta}^{s*} = \left((\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t + \frac{\Omega \boldsymbol{\tau}_t^2}{1 - \Omega} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \right)^{-1} \boldsymbol{\beta}_{\star}.$$

Proof. We have that

$$\mathbb{E}_{g_t} \left[f(X_{\kappa_t, \sigma_t^2}^t(\Sigma_t, \boldsymbol{\beta}^s, \boldsymbol{g}_t)) \right] = \mathbb{E}_{g_t} \left[\| \Sigma_t^{1/2} \left(\theta_1(\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star}) - (\boldsymbol{I} - \boldsymbol{\theta}_1) \boldsymbol{\beta}_{\star} + \theta_2 \gamma_t(\boldsymbol{\beta}^s) \right) \|_2^2 \right]$$

$$= (\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star})^{\mathsf{T}} \boldsymbol{\theta}_1^{\mathsf{T}} \Sigma_t \boldsymbol{\theta}_1(\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star}) + \gamma_t^2(\boldsymbol{\beta}^s) \, \mathbb{E}_{g_t} [\boldsymbol{\theta}_2^{\mathsf{T}} \Sigma_t \boldsymbol{\theta}_2]$$

$$+ \boldsymbol{\beta}_{\star}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{\theta}_1)^{\mathsf{T}} \Sigma_t (\boldsymbol{I} - \boldsymbol{\theta}_1) \boldsymbol{\beta}_{\star} - 2 \boldsymbol{\beta}_{\star}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{\theta}_1)^{\mathsf{T}} \Sigma_t \boldsymbol{\theta}_1(\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star}),$$

where $\theta_1 := (\Sigma_t + \tau_t I)^{-1} \Sigma_t$, $\theta_2 := (\Sigma_t + \tau_t I)^{-1} \Sigma_t^{1/2} \frac{g_t}{\sqrt{p}}$, and

$$\gamma_s^2(\boldsymbol{\beta}^s) := \kappa_t \frac{\sigma_t^2 + \tau_t^2 ||(\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\beta}^s||_2^2}{1 - \frac{1}{n} \operatorname{tr} ((\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_t^2)}.$$

In order to optimize this with respect to β^s , let's take the derivative:

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{\beta}^{s}} \, \mathbb{E}_{g_{t}} \left[f(\boldsymbol{X}_{\kappa_{t}, \sigma_{t}^{2}}^{t}(\boldsymbol{\Sigma}_{t}, \boldsymbol{\beta}^{s}, \boldsymbol{g}_{t})) \right] \\ &= 2\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} (\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}) - 2\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} (\boldsymbol{I} - \boldsymbol{\theta}_{1}) \boldsymbol{\beta}_{\star} + 2 \frac{\kappa_{t} \tau_{t}^{2}}{1 - \Omega} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\beta}^{s} \frac{\operatorname{tr} \left(\boldsymbol{\Sigma}_{t}^{2} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2}\right)}{p} \\ &= 2\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}^{s} - 2\boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}_{\star} + 2 \frac{\kappa_{t} \tau_{t}^{2}}{1 - \Omega} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\beta}^{s} \frac{\operatorname{tr} \left(\boldsymbol{\Sigma}_{t}^{2} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2}\right)}{p} \\ &= 2\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}^{s} - 2\boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}_{\star} + 2 \frac{\kappa_{t} \tau_{t}^{2}}{1 - \Omega} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\beta}^{s} \frac{n\Omega}{p} \\ &\implies \boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}^{s*} - \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}_{\star} + \frac{\Omega \tau_{t}^{2}}{1 - \Omega} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\beta}^{s*} = 0 \\ &\implies (\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} + \frac{\Omega \tau_{t}^{2}}{1 - \Omega} \boldsymbol{\theta}_{1} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-1}) \boldsymbol{\beta}^{s*} = \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\beta}_{\star} \end{split}$$

Hence, the claimed result follows

Corollary 1. Without loss of generality, suppose that Σ_t is diagonal.² Let $(\lambda_i)_{i=1}^p$ be the eigenvalues of Σ_t in non-increasing order and let $\zeta_i = \frac{\tau_t}{\lambda_i + \tau_t}$ for $i \in [p]$. Then, the following results hold:

1.
$$\beta_i^{s*} = (\beta_*)_i \left((1 - \zeta_i) + \zeta_i \frac{\Omega}{1 - \Omega} \frac{\zeta_i}{1 - \zeta_i} \right)^{-1}$$
 for every $i \in [p]$.

2.
$$|\beta_i^{s*}| > |(\beta_*)_i|$$
 if and only if $1 - \zeta_i > \Omega = \frac{\sum_{j=1}^p (1 - \zeta_j)^2}{\sum_{j=1}^p (1 - \zeta_j)}$ for every $i \in [p]$.

3.
$$\beta^{s*} = \beta_{\star}$$
 if and only if the covariance matrix $\Sigma_t = cI$ for some $c \in \mathbb{R}$.

Proof. When the definition of ζ_i and Ω is plugged in Proposition 1, the first claim is obtained. Using the diagonalization assumption on Σ_t , let's analyze only the *i*-th component of the optimal surrogate given in the Proposition 1:

$$\beta_{i}^{s*} = \frac{1}{\frac{\lambda_{i}}{\lambda_{i}+\tau_{i}} + \frac{\Omega}{1-\Omega} \frac{\tau_{i}^{2}}{\lambda_{i}(\lambda_{i}+\tau_{i})}} (\beta_{*})_{i}$$

$$\iff \beta_{i}^{s*} = \frac{\frac{\lambda_{i}}{\lambda_{i}+\tau_{i}}}{\left(\frac{\lambda_{i}}{\lambda_{i}+\tau_{i}}\right)^{2} + \frac{\Omega}{1-\Omega} \left(\frac{\tau_{i}}{\lambda_{i}+\tau_{i}}\right)^{2}} (\beta_{*})_{i}$$

$$\iff \beta_{i}^{s*} = (\beta_{*})_{i} \frac{(1-\zeta_{i})}{(1-\zeta_{i})^{2} + \frac{\Omega}{1-\Omega} \zeta_{i}^{2}}$$

$$\iff \beta_{i}^{s*} = (\beta_{*})_{i} \frac{1}{(1-\zeta_{i}) + \frac{\Omega}{1-\Omega} \frac{\zeta_{i}}{1-\Omega} \zeta_{i}}.$$

It's now clear that $\zeta_i > 1 - \Omega$ if and only if $|\beta_i^{s*}| < |(\beta_*)_i|$.

Let's now check when the ratio between them is 1. Algebraic manipulations give:

$$\frac{(1-\zeta_i)}{(1-\zeta_i)^2 + \frac{\Omega}{1-\Omega}\zeta_i^2} = 1$$

$$\iff (1-\zeta_i) - (1-\zeta_i)^2 = \frac{\Omega}{1-\Omega}\zeta_i^2$$

$$\iff \zeta_i = 1-\Omega \iff 1-\zeta_i = \Omega \text{ where } \Omega = \frac{\sum_{i=1}^p (1-\zeta_i)^2}{\sum_{i=1}^p (1-\zeta_i)^2}.$$

This suggests $\beta^{s*} = \beta_{\star}$ if all ζ_i 's are equal, which implies that all λ_i 's are equal. Concluding, the covariance matrix is a multiple of the identity if and only if $\beta^{s*} = \beta_{\star}$.

Proposition 2. Consider the target model in (6), assume that Σ_t is diagonal, and recall the definitions of ζ_i and Ω . Then, the following results hold:

- 1. If the mask operation \mathcal{M} selects all the features that satisfy $1 \zeta_i^2 > \Omega$, then the surrogate-to-target model outperforms the standard target model in the asymptotic risk in (9).
- 2. Let M represent the set of all possible M, where $|M| = 2^p$. The optimal M^* for the asymptotic risk in (9) within M is the one that selects all features satisfying $1 \zeta_i^2 > \Omega$.

Proof. For the purposes of analysis, we assume, without loss of generality, that the first p_s dimensions are selected from β_{\star} in $\mathcal{M}(\beta_{\star}) = \beta^s \in \mathbb{R}^{p_s}$. Based on this, we no longer need to have the decreasing order for the corresponding λ_i 's. From the excess test risk formula in Definition 2, we have that

$$\mathcal{R}(\boldsymbol{\beta}^t) = \mathbb{E}\left[\left(y - \boldsymbol{x}^{\top} \boldsymbol{\beta}^t\right)^2\right] - \sigma_t^2 = \frac{\mathcal{B}(\boldsymbol{\beta}_{\star}) + \sigma_t^2 \Omega}{1 - \Omega}.$$
 (15)

²If not, there exists an orthogonal matrix $U \in \mathbb{R}^{p \times p}$ s.t. $U\Sigma_t U^{\top}$ is diagonal. Then, we can consider the covariance matrix as $U\Sigma_t U^{\top}$ and the ground truth parameter as $U\beta_*$, which behaves the same as the original parameters, see Observation 2.

Next, we write the excess test risk formula for the surrogate-to-target model with respect to the original ground truth labels:

$$\mathcal{R}(\boldsymbol{\beta}^{s2t}) = \mathbb{E}\left[\left(\boldsymbol{y} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)^{2}\right] - \sigma_{t}^{2} = \mathbb{E}\left[\left(\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}_{\star}\right)^{\top}\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}_{\star}\right)\right].$$

Now, consider the zero-padded vector $\vec{\beta}^s = \begin{bmatrix} \beta^s \\ \mathbf{0}_{p-p_s} \end{bmatrix} \in \mathbb{R}^p$, and define $(\bar{\beta}^s)' = \beta_\star - \bar{\beta}^s \in \mathbb{R}^p$ of which the first p_s

dimensions are zero. In this way, we can consider the labels in the second training phase as $y^s = \mathbf{x}^T \bar{\boldsymbol{\beta}}^s + z$, where $z \sim \mathcal{N}(0, \sigma_t^2)$. Applying the test risk estimate in Definition 2, we obtain:

$$\mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}^{s2t}\right)^{2}\right] = \mathbb{E}\left[\left(\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}^{s}\right)^{\mathsf{T}}\boldsymbol{\Sigma}\left(\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}^{s}\right)\right] = \frac{\mathcal{B}(\boldsymbol{\bar{\beta}}^{s}) + \sigma_{t}^{2}\boldsymbol{\Omega}}{1 - \boldsymbol{\Omega}}.$$

We further derive

$$\mathbb{E}\left[\left(y - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)^{2}\right] = \mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t} + \boldsymbol{x}^{\top}(\bar{\boldsymbol{\beta}}^{s})'\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)^{2}\right] - 2\mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)\left(\boldsymbol{x}^{\top}(\bar{\boldsymbol{\beta}}^{s})'\right)\right] + \mathbb{E}\left[\left(\boldsymbol{x}^{\top}(\bar{\boldsymbol{\beta}}^{s})'\right)^{2}\right]$$

$$\stackrel{(a)}{=} \mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)^{2}\right] - 2\mathbb{E}\left[y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right] \underbrace{\mathbb{E}\left[\boldsymbol{x}^{\top}(\bar{\boldsymbol{\beta}}^{s})'\right]}_{=0} + \mathbb{E}\left[\left(\boldsymbol{x}^{\top}(\bar{\boldsymbol{\beta}}^{s})'\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)^{2}\right] + \mathbb{E}\left[\left(\boldsymbol{x}^{\top}(\bar{\boldsymbol{\beta}}^{s})'\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(y^{s} - \boldsymbol{x}^{\top}\boldsymbol{\beta}^{s2t}\right)^{2}\right] + \sum_{i=p_{s}+1}^{p} \lambda_{i}\beta_{i}^{2}$$

$$= \frac{\mathcal{B}(\bar{\boldsymbol{\beta}}^{s}) + \sigma_{t}^{2}\Omega}{1 - \Omega} + \sum_{i=p_{s}+1}^{p} \lambda_{i}\beta_{i}^{2}.$$
(16)

where in the above equality (a) follows from the fact that the components x_i are independent as the covariance matrix is diagonal. Thus, the risk difference between the target and surrogate-to-target models is

$$\begin{split} \mathcal{R}(\boldsymbol{\beta}^t) - \mathcal{R}(\boldsymbol{\beta}^{s2t}) &= \frac{\mathcal{B}(\boldsymbol{\beta}_{\star}) - \mathcal{B}(\bar{\boldsymbol{\beta}}^s)}{1 - \Omega} - \sum_{i=p_s+1}^p \lambda_i \beta_i^2 \\ &= \frac{\sum_{i=p_s+1}^p \lambda_i \zeta_i^2 \beta_i^2}{1 - \Omega} - \sum_{i=p_s+1}^p \lambda_i \beta_i^2. \end{split}$$

We observe that each dimension's contribution to the excess test risk can be analyzed individually. Therefore, if

$$\zeta_i^2 > 1 - \Omega, \tag{17}$$

excluding feature i in the feature selection reduces the overall risk $\mathcal{R}(\boldsymbol{\beta}^{s2t})$. Along the same lines, the projection \mathcal{M} that selects all the features i that satisfy $\zeta_i^2 < 1 - \Omega$ minimizes the asymptotic excess test risk.

B Proofs for Section 4

Definition 2 (Omniscient test risk estimate). Fix $p > n \ge 1$. Given a covariance $\Sigma = U \operatorname{diag}(\lambda)U^{\top}$, β_{\star} , and the noise term σ , set $\bar{\beta} = U^{\top}\beta_{\star}$ and define $\tau \in \mathbb{R}$ as the unique non-negative solution of $n = \sum_{i=1}^{p} \frac{\lambda_{i}}{\lambda_{i} + \tau}$. Then, the excess test risk estimate is the following:

$$\mathcal{R}(\hat{\boldsymbol{\beta}}) \approx \mathbb{E}_{\hat{\boldsymbol{\beta}} \sim D(\boldsymbol{\beta}_{\star})} \left[(y - \boldsymbol{x}^{\top} \hat{\boldsymbol{\beta}})^{2} \right] - \sigma^{2} = \frac{\sigma^{2} \Omega + \mathcal{B}(\boldsymbol{\beta})}{1 - \Omega},$$

$$where \quad \zeta_{i} = \frac{\tau}{\lambda_{i} + \tau}, \quad \Omega = \frac{1}{n} \sum_{i=1}^{p} (1 - \zeta_{i})^{2}, \quad \mathcal{B}(\bar{\boldsymbol{\beta}}) = \sum_{i=1}^{p} \lambda_{i} \zeta_{i}^{2} \bar{\boldsymbol{\beta}}_{i}^{2}.$$

$$(11)$$

In the following proof, we suppose that the empirical distributions of $\bar{\beta}$ and λ converge as $p \to \infty$ having fixed the ratio $p/n = \kappa$. Then, we will prove that the omniscient risk converges to the asymptotic risk defined in (9).

Proof for the proportional asymptotic case. Using Theorem 2.3 of Han & Xu (2023), we can estimate $\hat{\beta}$ as follows:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{\Sigma} + \tau \boldsymbol{I})^{-1} \boldsymbol{\Sigma} \left(\boldsymbol{\beta}_{\star} + \frac{\boldsymbol{\Sigma}^{-1/2} \gamma(\boldsymbol{\beta}_{\star}) \boldsymbol{g}}{\sqrt{p}} \right),$$

where

$$\boldsymbol{g} \sim \mathcal{N}(0, \boldsymbol{I}_p), \quad \gamma(\boldsymbol{\beta_{\star}})^2 = \kappa \frac{\sigma + \tau^2 ||(\boldsymbol{\Sigma} + \tau \boldsymbol{I})^{-1} \boldsymbol{\Sigma}^{1/2} \boldsymbol{\beta_{\star}}||_2^2}{1 - \frac{1}{n} \mathrm{tr} \left((\boldsymbol{\Sigma} + \tau \boldsymbol{I})^{-2} \boldsymbol{\Sigma}^2 \right)}, \quad \tau \text{ is the solution to } n = \sum_{i=1}^p \frac{\lambda_i}{\lambda_i + \tau}.$$

Let

$$X_1 = (\Sigma + \tau I)^{-1} \Sigma$$
 , $X_2 = \frac{(\Sigma + \tau I)^{-1} \Sigma^{1/2} \gamma(\beta_{\star})}{\sqrt{p}}$.

Using this estimate, we can calculate the excess test risk as

$$\mathcal{R}(\hat{\boldsymbol{\beta}}) = \mathbb{E}\left[((X_1 - I)\boldsymbol{\beta}_{\star} + X_2 \boldsymbol{g})^{\top} \boldsymbol{\Sigma} ((X_1 - I)\boldsymbol{\beta}_{\star} + X_2 \boldsymbol{g}) \right]$$

$$= \boldsymbol{\beta}_{\star}^{\top} (X_1 - I)^{\top} \boldsymbol{\Sigma} (X_1 - I)\boldsymbol{\beta}_{\star} + \mathbb{E}\left[\boldsymbol{g}^{\top} X_2^{\top} \boldsymbol{\Sigma} X_2 \boldsymbol{g} \right]$$

$$= \boldsymbol{\beta}_{\star}^{\top} (X_1 - I)^{\top} \boldsymbol{\Sigma} (X_1 - I)\boldsymbol{\beta}_{\star} + \operatorname{tr}\left(X_1^{\top} \boldsymbol{\Sigma} X_2 \right). \tag{18}$$

Then by recalling the eigendecomposition for the covariance matrix $\Sigma = U\Lambda U^{T}$, we have

$$X_1 = (U\Lambda U^{\top} + \tau U U^{\top})^{-1} U\Lambda U^{\top}$$
$$= U(\Lambda + \tau I)^{-1} U^{\top} U\Lambda U^{\top}$$
$$= U \operatorname{diag}\left(\frac{\lambda}{\lambda + \tau}\right) U^{\top}.$$

Using the diagonalization of I, $X_1 - I$ can now be computed as

$$X_1 - I = U \operatorname{diag}\left(\frac{-\tau}{\lambda + \tau}\right) U^{\mathsf{T}}.$$

Let's now compute

$$\begin{split} \boldsymbol{\beta_{\star}}^{\top} (\boldsymbol{X}_1 - \boldsymbol{I})^{\top} \boldsymbol{\Sigma} (\boldsymbol{X}_1 - \boldsymbol{I}) \boldsymbol{\beta_{\star}} &= \boldsymbol{\beta_{\star}}^{\top} \boldsymbol{U} \operatorname{diag} \left(\frac{-\tau}{\lambda + \tau} \right) \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \boldsymbol{U} \operatorname{diag} \left(\frac{-\tau}{\lambda + \tau} \right) \boldsymbol{U}^{\top} \boldsymbol{\beta_{\star}} \\ &= \boldsymbol{\beta_{\star}}^{\top} \boldsymbol{U} \operatorname{diag} \left(\frac{\lambda \tau^2}{(\lambda + \tau)^2} \right) \boldsymbol{U}^{\top} \boldsymbol{\beta_{\star}}. \end{split}$$

As $\bar{\beta} = U^{T} \beta_{\star}$, we obtain that the RHS of the previous expression equals

$$\sum_{i=1}^{p} \frac{\lambda_i \tau^2 \bar{\beta}_i^2}{(\lambda_i + \tau)^2} = \mathcal{B}(\bar{\beta}).$$

Next, we write more compactly the terms $\operatorname{tr}\left(X_2^{\mathsf{T}}\Sigma X_2\right)$ and $\gamma(\boldsymbol{\beta}_{\star})^2$. By defining the short-hand notation $\Omega = \frac{1}{n}\operatorname{tr}\left((\Sigma + \tau I)^{-2}\Sigma^2\right) = \frac{1}{n}\sum_{i=1}^{p}(1-\zeta_i)^2$, we have

$$\operatorname{tr}\left(\boldsymbol{X}_{2}^{\top}\boldsymbol{\Sigma}\boldsymbol{X}_{2}\right) = \frac{\gamma(\boldsymbol{\beta}_{\star})^{2}}{p} \sum_{i=1}^{p} \left(\frac{\lambda_{i}}{\lambda_{i}+\tau}\right)^{2} = \frac{\gamma(\boldsymbol{\beta}_{\star})^{2}n\Omega}{p}$$
$$\gamma(\boldsymbol{\beta}_{\star})^{2} = \kappa \frac{\sigma^{2} + \tau^{2} \|(\boldsymbol{\Sigma} + \tau \boldsymbol{I})^{-1}\boldsymbol{\Sigma}^{1/2}\boldsymbol{\beta}_{\star}\|_{2}^{2}}{1 - \Omega} = \kappa \frac{\sigma^{2} + \sum_{i=1}^{p} \frac{\lambda_{i}\tau^{2}\bar{\boldsymbol{\beta}}_{i}^{2}}{(\lambda_{i}+\tau)^{2}}}{1 - \Omega} = \kappa \frac{\sigma^{2} + \mathcal{B}(\bar{\boldsymbol{\beta}})}{1 - \Omega},$$

where $\kappa = \frac{p}{n}$. Hence, putting it all together in (18) gives the desired result.

Proposition 3 (Asymptotic analysis of τ_t and Ω). Let $\Sigma \in \mathbb{R}^{p \times p}$ be diagonal and $\Sigma_{i,i} = \lambda_i = i^{-\alpha}$ for $1 < \alpha$. If τ_t and Ω satisfy the equations

$$\sum_{i=1}^{\infty} \frac{\lambda_i}{\lambda_i + \tau_t} = n, \qquad n\Omega = \sum_{i=1}^{\infty} \left(\frac{i^{-\alpha}}{i^{-\alpha} + \tau_t} \right)^2,$$

then the following results hold

$$\tau_t = cn^{-\alpha} \left(1 + O(n^{-1}) \right), \qquad \text{for } c = \left(\frac{\pi}{\alpha \sin(\pi/\alpha)} \right)^{\alpha},$$

$$\Omega = \frac{\alpha - 1}{\alpha} - O(n^{-1}).$$
(12)

Proof. We start with the asymptotic analysis of τ_t . Along the same lines as Simon et al. (2024), since $\frac{i^{-\alpha}}{i^{-\alpha}+\tau_t}$ is a monotonically decreasing function, we have:

$$n = \sum_{i=1}^{\infty} \frac{i^{-\alpha}}{i^{-\alpha} + \tau_t} \le \int_0^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \tau_t} dx = \frac{\pi}{\alpha \sin(\pi/\alpha)} \tau_t^{-1/\alpha}.$$

Furthermore,

$$\frac{\pi}{\alpha\sin\left(\pi/\alpha\right)}\tau_t^{-1/\alpha}-1=\int_0^\infty\frac{x^{-\alpha}}{x^{-\alpha}+\tau_t}\,dx-1\leq \int_1^\infty\frac{x^{-\alpha}}{x^{-\alpha}+\tau_t}\,dx\leq \sum_{i=1}^\infty\frac{i^{-\alpha}}{i^{-\alpha}+\tau_t}=n.$$

Hence, combining these two facts gives

$$\frac{\pi}{\alpha \sin{(\pi/\alpha)}} \tau_t^{-1/\alpha} - 1 \le n \le \frac{\pi}{\alpha \sin{(\pi/\alpha)}} \tau_t^{-1/\alpha}$$

$$\iff \left(\frac{(n+1)\alpha \sin{(\pi/\alpha)}}{\pi}\right)^{-\alpha} \le \tau_t \le \left(\frac{n\alpha \sin{(\pi/\alpha)}}{\pi}\right)^{-\alpha},$$

which leads to the desired result.

Next, we move to the asymptotic analysis of Ω . We have that

$$n\Omega = \sum_{i=1}^{\infty} \left(\frac{i^{-\alpha}}{i^{-\alpha} + \tau_t}\right)^2 \le \int_0^{\infty} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \tau_t}\right)^2 dx = \frac{\pi(\alpha - 1)}{\alpha^2 \sin(\pi/\alpha)} \tau_t^{-1/\alpha}.$$

Besides, since the summand is monotonically decreasing, we also have

$$\frac{\pi(\alpha-1)}{\alpha^2\sin\left(\pi/\alpha\right)}\tau_t^{-1/\alpha}-1\leq \int_0^\infty \left(\frac{x^{-\alpha}}{x^{-\alpha}+\tau_t}\right)^2\,dx-1\leq \int_1^\infty \left(\frac{x^{-\alpha}}{x^{-\alpha}+\tau_t}\right)^2\,dx\leq \sum_{i=1}^\infty \left(\frac{i^{-\alpha}}{i^{-\alpha}+\tau_t}\right)^2=n\Omega.$$

Hence,

$$\frac{\pi(\alpha - 1)}{\alpha^2 \sin(\pi/\alpha)} \tau_t^{-1/\alpha} - 1 \le n\Omega \le \frac{\pi(\alpha - 1)}{\alpha^2 \sin(\pi/\alpha)} \tau_t^{-1/\alpha}.$$
 (19)

By the hypothesis on τ_t , we have that

$$\tau_t^{-1/\alpha} = n \frac{\alpha \sin(\pi/\alpha)}{\pi} \left(1 - O(n^{-1}) \right), \tag{20}$$

and plugging this in (19) gives the desired result.

Proposition 4. Set the constants $C_1 := \frac{\alpha \sin(\pi/\alpha)}{\pi(\alpha-1)^{1/\alpha}}$ and $C_2 := \frac{\alpha \sin(\pi/\alpha)}{\pi(\sqrt{\alpha}-1)^{1/\alpha}}$ and assume the power-law eigenstructure $\lambda_i = i^{-\alpha}$ for $1 < \alpha$. Then, the indices i for which $\zeta_i < 1 - \Omega$ are $i < nC_1 + O(1)$; while the indices i for which is $\zeta_i^2 < 1 - \Omega$ are $i < nC_2 + O(1)$.

Proof. Recall from Proposition 2 that we should identify indices i which satisfy the condition $\zeta_i^2 > 1 - \Omega$ to decide if we're better off not selecting this dimension i in the surrogate model. Furthermore, Proposition 3 gives that $\Omega = \frac{\alpha - 1}{\alpha} - O(n^{-1})$. Putting these together, we have

$$\begin{aligned} & \zeta_i^2 > 1 - \Omega \\ & \iff \zeta_i^2 > c' \quad \text{where } c' = \frac{1}{\alpha} + O(n^{-1}) \\ & \iff \frac{\tau_t^2}{(\tau_t + i^{-\alpha})^2} = \frac{\tau_t^2 i^{2\alpha}}{(\tau_t i^\alpha + 1)^2} > c' \\ & \iff (1 - c') \tau_t^2 i^{2\alpha} > 2c' \tau_t i^\alpha + c' \\ & \iff \left(\sqrt{1 - c'} \tau_t i^\alpha - \frac{c'}{\sqrt{1 - c'}}\right)^2 > \frac{c'}{1 - c'} \\ & \iff i^\alpha > \frac{\sqrt{c'}}{\tau_t (1 - \sqrt{c'})} \\ & \iff i > \tau_t^{-1/\alpha} \left(\frac{\sqrt{c'}}{1 - \sqrt{c'}}\right)^{1/\alpha} \end{aligned}$$

As $c' = \frac{1}{\alpha} + O(n^{-1})$, we get $\left(\frac{\sqrt{c'}}{1 - \sqrt{c'}}\right)^{1/\alpha} = \frac{1}{(\sqrt{\alpha} - 1)^{1/\alpha}} (1 + O(n^{-1}))$. Incorporating (20), we achieve that

$$\tau_t^{-1/\alpha} \left(\frac{\sqrt{c'}}{1 - \sqrt{c'}} \right)^{1/\alpha} = n \frac{\alpha \sin(\pi/\alpha)}{\pi (\sqrt{\alpha} - 1)^{1/\alpha}} \left(1 + O(n^{-1}) \right) = nC_2 + O(1).$$

Similarly, by following the same procedure with the initial inequality $\zeta_i > 1 - \Omega$, we get

$$\zeta_i > 1 - \Omega \iff i > nC_1 + O(1), \text{ where } C_1 = \frac{\alpha \sin(\pi/\alpha)}{\pi(\alpha - 1)^{1/\alpha}}$$

In Figure 3, we compare the empirical results with theoretical predictions for the number of features that meet the selection criteria in the optimal mask \mathcal{M}^* ($\zeta_i^2 < 1 - \Omega$). The theoretical value, calculated as $n \frac{\alpha \sin(\pi/\alpha)}{\pi(\sqrt{\alpha}-1)^{1/\alpha}}$ ignoring the O(1) term, aligns well with the experimental data and the accuracy in estimation increases with α .

Proposition 6 (Scaling law for masked surrogate-to-target model). Together with the eigenvalues, also assume now power-law form for $\lambda_i \beta_i^2$, that is $\lambda_i \beta_i^2 = i^{-\beta}$ for $\beta > 1$. Then, in the limit of $p \to \infty$, the excess test risk for the masked surrogate-to-target model with the optimal dimensionality has the same scaling law as the reference (target) model:

$$\mathcal{R}(\boldsymbol{\beta}^{s2t}) = \Theta(n^{-(\beta-1)}) \quad if \, \beta < 2\alpha + 1,$$

and

$$\mathcal{R}(\boldsymbol{\beta}^{s2t}) = \Theta(n^{-2\alpha}) \quad if \, \beta > 2\alpha + 1.$$

Proof. As discussed in Section 4, in order to analyze the model's inherent error, we need to set $\sigma_t^2 = O(n^{-\gamma})$ where γ is the exponent characterizing the scaling law of the test risk in the noiseless setting. We will work on this proof in two cases depending on β and $2\alpha + 1$.

Case 1: $\beta < 2\alpha + 1$. In this case, it is previously stated by Cui et al. (2022); Simon et al. (2024) that the test risk of ridgeless overparameterized linear regression can be described in the scaling sense as $\mathbf{err} = \Theta(n^{-\beta+1})$ when $\beta < 2\alpha + 1$. Consider the optimal mask operation \mathcal{M} mentioned in Proposition 2 that selects all features

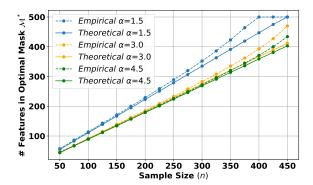


Figure 3: Comparison of the empirical and theoretical number of features satisfying the feature selection condition in the optimal mask \mathcal{M}^* ($\zeta_i^2 < 1 - \Omega$). The theoretical value is calculated as $n \frac{\alpha \sin{(\pi/\alpha)}}{\pi (\sqrt{\alpha} - 1)^{1/\alpha}}$, ignoring the O(1) in Proposition 4. **Setting:** The feature size is p = 500, and the feature covariance follows the power-law structure $\lambda_i = i^{-\alpha}$ for $\alpha = 1.5, 3.0$, and 4.5.

satisfying $1 - \zeta_i^2 > \Omega$. Let p_s be the number of selected features. We can then decompose the risk estimate in Definition 2 as follows:

$$\frac{\mathcal{B}(\bar{\boldsymbol{\beta}_{\star}}) + \sigma_{i}^{2}\Omega}{1 - \Omega} = \frac{\sum_{i=1}^{p_{s}} \lambda_{i} \zeta_{i}^{2} \beta_{i}^{2} + \sum_{i=p_{s}+1}^{p} \lambda_{i} \zeta_{i}^{2} \beta_{i}^{2} + \sigma_{t}^{2}\Omega}{1 - \Omega} = \frac{\mathbf{err1} + \mathbf{err2} + \sigma_{t}^{2}\Omega}{1 - \Omega},$$

where **err1** and **err2** are the contributions to the total risk of the target model from dimensions selected and omitted in the surrogate model, respectively. Therefore, we express the total error as:

$$\frac{\mathbf{err1} + \mathbf{err2} + \sigma_t^2 \Omega}{1 - \Omega} = \mathbf{err} = \Theta(n^{-\beta+1}).$$

Going back to Proposition 4, we know that, as $p \to \infty$, the criterion for selecting a feature i in the optimal masked surrogate model is given by

$$i > nC_2 + O(1)$$
, where $C_2 = \frac{\alpha \sin(\pi/\alpha)}{\pi(\sqrt{\alpha} - 1)^{1/\alpha}}$.

Define now $\omega_n = nC_2 + O(1)$. The equation (16) tells us that after the optimal mask operation \mathcal{M} , err2 is replaced by err2', which is calculated as follows

$$\mathbf{err2'} = \sum_{i=\omega_n+1}^p \lambda_i \beta_i^2 = \sum_{i=\omega_n+1}^p i^{-\beta}.$$

Since $x^{-\beta}$ is a monotonically decreasing function, we can bound the summation by the following two integrals:

$$\int_{\omega_{n+1}}^{p+1} x^{-\beta} dx \le \sum_{\omega_{n+1}}^{p} i^{-\beta} \le \int_{\omega_{n}}^{p} x^{-\beta} dx$$
$$\frac{(\omega_{n}+1)^{-\beta+1} - p^{-\beta+1}}{\beta-1} \le \sum_{\omega_{n+1}}^{p} i^{-\beta} \le \frac{(\omega_{n})^{-\beta+1} - p^{-\beta+1}}{\beta-1}.$$

In the limit of $p \to \infty$, we obtain,

$$\mathbf{err2'} = \Theta(n^{-\beta+1}).$$

Thus, we have tightly estimated **err2**'. Using the fact from Proposition 3 that $\Omega = \Theta(1)$, and our assumption on noise variance $\sigma_t^2 = O(n^{-\beta+1})$, we conclude that the scaling law doesn't change for the surrogate-to-target model as

$$\mathcal{R}(\boldsymbol{\beta}^{s2t}) = \frac{\mathbf{err1} + \sigma_t^2 \Omega}{1 - \Omega} + \mathbf{err2'} = \Theta(n^{-\beta + 1}).$$

Case 2: $\beta > 2\alpha + 1$. In this case, we show that the scaling law is determined by **err1**, hence changing **err2** to **err2'** has no effect in the scaling sense. From Proposition 3, we have the asymptotic expression $\tau_t = cn^{-\alpha} \left(1 + O(n^{-1})\right)$, for $c = \left(\frac{\pi}{\alpha \sin{(\pi/\alpha)}}\right)^{\alpha}$. We can argue that there exists positive constants $c_1 < \frac{1}{c} < c_2$, such that $c_1 n^{\alpha} \le \frac{1}{\tau} \le c_2 n^{\alpha}$. We have that

$$\begin{aligned} \mathbf{err1} &= \sum_{i=1}^{\omega_n} \frac{i^{-\beta}}{(1 + \frac{1}{\tau_t} i^{-\alpha})^2} \leq \sum_{i=1}^{\omega_n} \frac{i^{-\beta}}{(1 + c_1 n^{\alpha} i^{-\alpha})^2} \\ &= \sum_{i=1}^{\omega_n} \frac{i^{2\alpha - \beta}}{(i^{\alpha} + c_1 n^{\alpha})^2} \leq \sum_{i=1}^{\omega_n} \frac{i^{2\alpha - \beta}}{c_1^2 n^{2\alpha}}. \end{aligned}$$

This implies **err1** = $O(n^{-2\alpha})$. At the same time,

$$\mathbf{err1} = \sum_{i=1}^{\omega_n} \frac{i^{-\beta}}{(1 + \frac{1}{\tau_i} i^{-\alpha})^2} \ge \sum_{i=1}^{\omega_n} \frac{i^{2\alpha - \beta}}{(i^{\alpha} + c_2 n^{\alpha})^2} \\ \ge \sum_{i=1}^{\omega_n} \frac{i^{2\alpha - \beta}}{((\omega_n)^{\alpha} + c_2 n^{\alpha})^2} = \sum_{i=1}^{\omega_n} \frac{i^{2\alpha - \beta}}{n^{2\alpha} ((\omega_n/n)^{\alpha} + c_2)^2}.$$

Using $\omega_n/n = \Theta(1)$ gives **err1** = $\Omega(n^{-2\alpha})$ and we can conclude that **err1** = $\Theta(n^{-2\alpha})$. From Cui et al. (2022), we already know that **err** = $\Theta(n^{-2\alpha})$ when $\beta > 2\alpha + 1$. Using $\Omega = \Theta(1)$, and our assumption on the noise variance $\sigma_t^2 = O(n^{-2\alpha})$ allows us to conclude that the scaling is dominated by **err1**, and thus, the scaling law remains unchanged.

Proposition 5 (Scaling law). Assume that both eigenvalues λ_i and signal coefficients $\lambda_i \beta_i^2$ follow a power-law decay, i.e., $\lambda_i \beta_i^2 = i^{-\beta}$ and $\lambda_i = i^{-\alpha}$ for α , $\beta > 1$. Let the optimal surrogate parameter $\boldsymbol{\beta}^{s*}$ be given by Proposition 1 and define the minimum surrogate-to-target risk attained by $\boldsymbol{\beta}^{s*}$ as $\mathcal{R}^*(\boldsymbol{\beta}^{s2t}) = \min \mathcal{R}(\boldsymbol{\beta}^{s2t})$. Then, in the limit of $p \to \infty$, the excess test risk of the surrogate-to-target model with an optimal surrogate parameter scales the same as that of the standard target model. Specifically, we have

$$\begin{aligned} \mathcal{R}^*(\boldsymbol{\beta}^{s2t}) &= \Theta(n^{-(\beta-1)}) = \mathcal{R}(\boldsymbol{\beta}^t), & if \, \beta < 2\alpha + 1, \\ \mathcal{R}^*(\boldsymbol{\beta}^{s2t}) &= \Theta(n^{-2\alpha}) = \mathcal{R}(\boldsymbol{\beta}^t), & if \, \beta > 2\alpha + 1. \end{aligned}$$

Proof. From asymptotic risk decomposition in (26), we can write

$$\mathbb{E}_{g_t} \left[f(X_{\kappa_t, \sigma_t^2}^t(\Sigma_t, \boldsymbol{\beta}^s, \boldsymbol{g}_t)) \right] = (\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star})^{\top} \boldsymbol{\theta}_1^{\top} \Sigma_t \boldsymbol{\theta}_1 (\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star}) + \gamma_t^2 (\boldsymbol{\beta}^s) \, \mathbb{E}_{g_t} [\boldsymbol{\theta}_2^{\top} \Sigma_t \boldsymbol{\theta}_2]$$

$$+ \boldsymbol{\beta}_{\star}^{\top} (\boldsymbol{I} - \boldsymbol{\theta}_1)^{\top} \Sigma_t (\boldsymbol{I} - \boldsymbol{\theta}_1) \boldsymbol{\beta}_{\star} - 2 \boldsymbol{\beta}_{\star}^{\top} (\boldsymbol{I} - \boldsymbol{\theta}_1)^{\top} \Sigma_t \boldsymbol{\theta}_1 (\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star})$$

$$\geq \gamma_t^2 (\boldsymbol{\beta}^s) \, \mathbb{E}_{g_t} [\boldsymbol{\theta}_2^{\top} \Sigma_t \boldsymbol{\theta}_2],$$

since we can put in the form of $(a - b)^2 + c^2 \ge c^2$. At the same time, we know that

$$\begin{split} \gamma_t^2(\boldsymbol{\beta}^s) \, \mathbb{E}_{\boldsymbol{g}_t}[\boldsymbol{\theta}_2^\mathsf{T} \boldsymbol{\Sigma}_t \boldsymbol{\theta}_2] &= \kappa_t \frac{\sigma_t^2 + \tau_t^2 ||(\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\beta}_{\star}||_2^2}{1 - \frac{1}{n} \mathsf{tr} \left((\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_t^2 \right)} \frac{\mathsf{tr} \left(\boldsymbol{\Sigma}_t^2 (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-2} \right)}{p} \\ &= \kappa_t \frac{\sigma_t^2 + \tau_t^2 ||(\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\beta}_{\star}||_2^2}{1 - \Omega} \frac{n\Omega}{p} \\ &= \frac{\Omega}{1 - \Omega} \left(\sigma_t^2 + \sum_{i=1}^p \lambda_i \beta_i^2 \zeta_i^2 \right). \end{split}$$

Recall the optimal surrogate vector discussed in Proposition 1 and the corresponding minimal surrogate-to-target risk $\mathcal{R}^*(\boldsymbol{\beta}^{s2t})$. In this case, we can write

$$\sum_{i=1}^{p} \lambda_{i} \beta_{i}^{s*2} \zeta_{i}^{2} = \sum_{i=1}^{p} \lambda_{i} \beta_{i}^{2} \frac{(1-\zeta_{i})^{2} \zeta_{i}^{2}}{\left((1-\zeta_{i})^{2} + \frac{\Omega}{1-\Omega} \zeta_{i}^{2}\right)^{2}}.$$

Similar to the previous proposition and as discussed in Section 4, to analyze the model's inherent error, we set $\sigma_t^2 = O(n^{-\gamma})$ where γ is the exponent characterizing the scaling law of the test risk in the noiseless setting. It is previously stated by Cui et al. (2022); Simon et al. (2024) that the test risk of ridgeless overparameterized linear regression can be described in the scaling sense as $\mathbf{err} = \Theta(n^{-\beta+1})$ when $\beta < 2\alpha + 1$. We will proceed by considering two cases based on the relationship between β and $2\alpha + 1$.

Case 1: β < 2α + 1

Consider the interval of i's satisfying $\zeta_i > 1 - \Omega$ and $\zeta_i^2 < 1 - \Omega$. By Proposition 4, we have

$$\zeta_i > 1 - \Omega \iff i > nC_1 + O(1), \text{ where } C_1 = \frac{\alpha \sin(\pi/\alpha)}{\pi(\alpha - 1)^{1/\alpha}}.$$

 $\zeta_i^2 > 1 - \Omega \iff i > nC_2 + O(1), \text{ where } C_2 = \frac{\alpha \sin(\pi/\alpha)}{\pi(\sqrt{\alpha} - 1)^{1/\alpha}}.$

Let ω_n be defined as in the previous proposition and define $\phi_n = nC_1 + O(1)$. Then, the interval of interest corresponds to the set of indices i such that $\phi_n < i < \omega_n$. Within this interval, we observe

$$(1 - \zeta_i)^2 \zeta_i^2 \ge \min\left((1 - \Omega)^2 \Omega^2, \left(1 - \sqrt{(1 - \Omega)} \right)^2 (1 - \Omega) \right) = k_1$$
$$(1 - \zeta_i)^2 + \frac{\Omega}{1 - \Omega} \zeta_i^2 \le 1 + \frac{\Omega}{1 - \Omega} = k_2$$

Using the fact from Proposition 3 that $\Omega = \frac{\alpha - 1}{\alpha} - O(n^{-1})$ tells us $k_1 = \Theta(1)$ and $k_2 = \Theta(1)$. Utilizing these bounds, we obtain

$$\mathcal{R}^{*}(\boldsymbol{\beta}^{s2t}) \geq \sum_{i=1}^{p} \lambda_{i} \beta_{i}^{2} \frac{(1-\zeta_{i})^{2} \zeta_{i}^{2}}{\left((1-\zeta_{i})^{2} + \frac{\Omega}{1-\Omega} \zeta_{i}^{2}\right)^{2}} \geq \sum_{i=\phi_{n}}^{\omega_{n}} i^{-\beta} \frac{(1-\zeta_{i})^{2} \zeta_{i}^{2}}{\left((1-\zeta_{i})^{2} + \frac{\Omega}{1-\Omega} \zeta_{i}^{2}\right)^{2}} \geq \sum_{i=\phi_{n}}^{\omega_{n}} i^{-\beta} \frac{k_{1}}{k_{2}}$$

$$= n^{-\beta+1} \frac{k_{1}}{k_{2}} \left((\omega_{n}/n)^{-\beta+1} - (\phi_{n}/n)^{-\beta+1}\right)$$

$$= \Theta(n^{-\beta+1}).$$

Recalling $\omega_n/n = \Theta(1)$ and $\phi_n/n = \Theta(1)$, we obtain that $\mathcal{R}^*(\boldsymbol{\beta}^{s2t}) = \Omega(n^{-\beta+1})$, and thus,

$$\mathcal{R}(\boldsymbol{\beta}^{s2t}) \geq \mathcal{R}^*(\boldsymbol{\beta}^{s2t}) \implies \mathcal{R}(\boldsymbol{\beta}^{s2t}) = \Omega(n^{-\beta+1}).$$

Case 2: $\beta > 2\alpha + 1$

In this case, we have

$$\mathcal{R}^{*}(\boldsymbol{\beta}^{s2t}) \geq \sum_{i=1}^{p} \lambda_{i} \beta_{i}^{2} \frac{(1-\zeta_{i})^{2} \zeta_{i}^{2}}{\left((1-\zeta_{i})^{2} + \frac{\Omega}{1-\Omega} \zeta_{i}^{2}\right)^{2}} = \sum_{i=1}^{p} \lambda_{i} \beta_{i}^{2} \zeta_{i}^{2} \frac{(1-\zeta_{i})^{2}}{\left((1-\zeta_{i})^{2} + \frac{\Omega}{1-\Omega} \zeta_{i}^{2}\right)^{2}} \\
\geq \sum_{i:\zeta_{i}<1-\Omega} \lambda_{i} \zeta_{i}^{2} \beta_{i}^{2} \frac{\Omega^{2}}{\left(1 + \frac{\Omega}{1-\Omega}\right)^{2}} = \sum_{i=1}^{\phi_{n}} \frac{i^{-\beta}}{(1 + \frac{1}{\tau_{i}} i^{-\alpha})^{2}} k_{3},$$

where $k_3 = \frac{\Omega^2}{\left(1 + \frac{\Omega}{1 - \Omega}\right)^2} = \Theta(1)$. From Case 2 in Proposition 6, we already know that the same summation – with

upper bound ω_n rather than ϕ_n – scales as $\Theta(n^{-2\alpha})$. Yet, since ϕ_n and ω_n have the same order $\Theta(n)$, the result remains. This suggests $\mathcal{R}^*(\boldsymbol{\beta}^{s2t}) = \Omega(n^{-2\alpha})$, which eventually yields

$$\mathcal{R}(\boldsymbol{\beta}^{s2t}) \geq \mathcal{R}^*(\boldsymbol{\beta}^{s2t}) \implies \mathcal{R}(\boldsymbol{\beta}^{s2t}) = \Omega(n^{-2\alpha}).$$

Hence, this allows us to say that the scaling law doesn't improve even with the freedom to choose any β^s . \Box

Proposition 7 (Non-asymptotic analysis of τ). Suppose that $\Sigma \in \mathbb{R}^{p \times p}$ is diagonal and $\Sigma_{i,i} = \lambda_i = i^{-\alpha}$ for

1124
1125
1126
$$1 < \alpha. \text{ Assume that } n < pk \text{ for } k = \frac{3 + \frac{1}{2^{\alpha}}}{4 + \frac{1}{2^{\alpha - 2}}}. \text{ If } \xi \text{ satisfies}$$

$$\sum_{i=1}^{p} \frac{\lambda_i}{\lambda_i + \frac{1}{\xi}} = n,$$

then $cn^{\alpha} \leq \xi \leq c \left(n+1+\frac{p+1}{\alpha-1}\right)^{\alpha}$ for $c=\left(\frac{\alpha \sin\left(\pi/\alpha\right)}{\pi}\right)^{\alpha}$. Note that ξ is defined for the sake of the analysis, and it corresponds to $\frac{1}{\tau_{c}}$.

Proof. From Simon et al. (2024), we have:

$$n = \sum_{i=1}^{p} \frac{i^{-\alpha}}{i^{-\alpha} + \frac{1}{\xi}} \le \int_{0}^{p} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx = \int_{0}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx - \int_{p}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx = \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - \int_{p}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx.$$

Using $1 + x^{\alpha} \le (1 + x)^{\alpha}$ for $x \ge 0$,

$$\int_p^\infty \frac{x^{-\alpha}}{x^{-\alpha}+\frac{1}{\xi}}\,dx = \int_p^\infty \frac{1}{1+\frac{x^\alpha}{\xi}}\,dx \geq \int_p^\infty \frac{1}{(1+\frac{x}{\xi^{1/\alpha}})^\alpha}\,dx = \frac{\xi(\xi^{1/\alpha}+p)^{-\alpha+1}}{\alpha-1},$$

which implies that

$$n \le \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - \frac{\xi(\xi^{1/\alpha} + p)^{-\alpha + 1}}{\alpha - 1}.$$

Since the summand is decreasing, we can bound the Riemann sum by an integral, thus:

$$n = \sum_{i=1}^{p} \frac{i^{-\alpha}}{i^{-\alpha} + \frac{1}{\xi}} \ge \int_{1}^{p+1} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx$$

$$= \int_{0}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx - \int_{0}^{1} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx - \int_{p+1}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx$$

$$= \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - \int_{0}^{1} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx - \int_{p+1}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}} dx$$

$$\ge \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - 1 - \int_{p+1}^{\infty} \frac{1}{1 + \frac{1}{\xi} x^{\alpha}} dx$$

$$\ge \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - 1 - \left[\frac{\xi x^{-\alpha+1}}{-\alpha + 1} \right]_{p+1}^{\infty}$$

$$= \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - \frac{\xi (p+1)^{-\alpha+1}}{\alpha - 1} - 1.$$

Recalling that $\alpha > 1$ and assuming $\xi < p^{\alpha}$, we derive:

$$\frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha} - 1 - \frac{p+1}{\alpha - 1} \le n \le \frac{\pi}{\alpha \sin(\pi/\alpha)} \xi^{1/\alpha}$$

$$\iff \left(\frac{n\alpha \sin(\pi/\alpha)}{\pi}\right)^{\alpha} \le \xi \le \left(\frac{\left(n + 1 + \frac{p+1}{\alpha - 1}\right)\alpha \sin(\pi/\alpha)}{\pi}\right)^{\alpha}.$$

We conclude by proving that $\xi < p^{\alpha}$. For the sake of contradiction, assume that $\xi \ge p^{\alpha}$. Then,

$$n = \sum_{i=1}^{p} \frac{1}{1 + \frac{i^{\alpha}}{\xi}} = \sum_{i=1}^{p/2} \frac{1}{1 + \frac{i^{\alpha}}{\xi}} + \sum_{i=p/2+1}^{p} \frac{1}{1 + \frac{i^{\alpha}}{\xi}}$$

$$\geq \sum_{i=1}^{p/2} \frac{1}{1 + \frac{1}{2^{\alpha}}} + \sum_{i=p/2+1}^{p} \frac{1}{1 + 1}$$

$$= p \left(\frac{3 + \frac{1}{2^{\alpha}}}{4 + \frac{1}{2^{\alpha - 2}}} \right),$$

which contradicts our assumption that n < pk.

Proposition 8 (Non-asymptotic analysis of Ω). Suppose that $\Sigma \in \mathbb{R}^{p \times p}$ is diagonal and $\Sigma_{i,i} = \lambda_i = i^{-\alpha}$ for $1 < \alpha$. Let τ_t be defined as in Proposition 7 and Ω be the solution to

$$n\Omega = \sum_{i=1}^{p} \left(\frac{\lambda_i}{\lambda_i + \frac{1}{\xi}} \right)^2.$$

Then,

$$\Omega > \frac{\alpha - 1}{\alpha} - \frac{1}{2\alpha - 1} \left(\frac{n + 1 + \frac{p+1}{\alpha - 1}}{p+1} \right)^{2\alpha - 1} - \frac{1}{n}.$$

Proof. We have that

$$\sum_{i=1}^{p} \left(\frac{i^{-\alpha}}{i^{-\alpha} + \frac{1}{\varepsilon}} \right)^2 \le \int_0^\infty \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\varepsilon}} \right)^2 dx = \frac{\pi(\alpha - 1)}{\alpha^2 \sin(\pi/\alpha)} \xi^{1/\alpha}$$

Besides, since the summand is monotonically decreasing:

$$\begin{split} n\Omega &= \sum_{i=1}^{p} \left(\frac{i^{-\alpha}}{i^{-\alpha} + \frac{1}{\xi}}\right)^{2} \geq \int_{1}^{p+1} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}}\right)^{2} dx \\ &= \int_{0}^{\infty} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}}\right)^{2} dx - \int_{0}^{1} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}}\right)^{2} dx - \int_{p+1}^{\infty} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}}\right)^{2} dx \\ &= \frac{\pi(\alpha - 1)}{\alpha^{2} \sin(\pi/\alpha)} \xi^{1/\alpha} - \int_{0}^{1} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}}\right)^{2} dx - \int_{p+1}^{\infty} \left(\frac{x^{-\alpha}}{x^{-\alpha} + \frac{1}{\xi}}\right)^{2} dx \\ &\geq \frac{\pi(\alpha - 1)}{\alpha^{2} \sin(\pi/\alpha)} \xi^{1/\alpha} - 1 - \int_{p+1}^{\infty} \left(\frac{1}{1 + \frac{1}{\xi} x^{\alpha}}\right)^{2} dx \\ &\geq \frac{\pi(\alpha - 1)}{\alpha^{2} \sin(\pi/\alpha)} \xi^{1/\alpha} - 1 - \left[\frac{\xi^{2} x^{-2\alpha + 1}}{2\alpha + 1}\right]_{p+1}^{\infty} \\ &= \frac{\pi(\alpha - 1)}{\alpha^{2} \sin(\pi/\alpha)} \xi^{1/\alpha} - \frac{\xi^{2} (p + 1)^{-2\alpha + 1}}{2\alpha - 1} - 1. \end{split}$$

Let's now utilize the upper and lower bounds for ξ from Proposition 7. Then, we have

$$n\Omega \ge \frac{\pi(\alpha - 1)}{\alpha^2 \sin(\pi/\alpha)} \frac{n\alpha \sin(\pi/\alpha)}{\pi} - \frac{\xi^2(p+1)^{-2\alpha+1}}{2\alpha - 1} - 1$$

$$= \frac{n(\alpha - 1)}{\alpha} - \frac{\xi^2(p+1)^{-2\alpha+1}}{2\alpha - 1} - 1$$

$$\ge \frac{n(\alpha - 1)}{\alpha} - \left(\frac{\left(n + 1 + \frac{p+1}{\alpha - 1}\right)\alpha \sin(\pi/\alpha)}{\pi(p+1)}\right)^{2\alpha} \frac{p+1}{2\alpha - 1} - 1$$

$$\implies \Omega > \frac{\alpha - 1}{\alpha} - \left(\frac{\left(n + 1 + \frac{p+1}{\alpha - 1}\right)\alpha \sin(\pi/\alpha)}{\pi(p+1)}\right)^{2\alpha} \frac{p+1}{n(2\alpha - 1)} - \frac{1}{n}$$

$$> \frac{\alpha - 1}{\alpha} - \frac{1}{2\alpha - 1}\left(\frac{n+1 + \frac{p+1}{\alpha - 1}}{p+1}\right)^{2\alpha - 1} - \frac{1}{n},$$

since $\frac{\alpha \sin{(\pi/\alpha)}}{\pi}$ < 1 for α > 1.

Proposition 9. Under the assumption that $n < \min\left((p+1)\frac{\alpha-2}{\alpha}, p\left(\frac{3+\frac{1}{2^{\alpha}}}{4+\frac{1}{2^{\alpha-2}}}\right), p\frac{\pi\left(\sqrt{\frac{\alpha}{2}}-1\right)^{1/\alpha}}{\alpha\sin\left(\pi/\alpha\right)} - \frac{p+1}{\alpha-1}\right) - 1$

and $\alpha > 3$, we can find a masked surrogate-to-target setting that improves over the risk of the standard target model by selecting all features i such that $\zeta_i^2 > 1 - \Omega$.

Proof. From Proposition 8, we have

$$\Omega > \frac{\alpha-1}{\alpha} - \frac{1}{2\alpha-1} \left(\frac{n+1+\frac{p+1}{\alpha-1}}{p+1} \right)^{2\alpha-1} - \frac{1}{n}.$$

It's then enough to show that we can find a set of i's such that

$$\zeta_i^2 > \frac{1}{\alpha} + \frac{1}{2\alpha - 1} \left(\frac{n + 1 + \frac{p+1}{\alpha - 1}}{p+1} \right)^{2\alpha - 1} + \frac{1}{n}.$$

From proof of Proposition 3, we know that

$$\zeta_i^2 > c' \iff i > \tau_t^{-1/\alpha} \left(\frac{\sqrt{c'}}{1 - \sqrt{c'}} \right)^{1/\alpha}.$$

Hence, using the bound on $\frac{1}{\tau_t} = \xi$ from Proposition 7, it's enough to find indices *i* such that

$$i > \frac{\alpha \sin(\pi/\alpha)}{\pi} \left(n + 1 + \frac{p+1}{\alpha - 1} \right) \left(\frac{\sqrt{c'}}{1 - \sqrt{c'}} \right)^{1/\alpha} \quad \text{where } c' = \frac{1}{\alpha} + \frac{1}{2\alpha - 1} \left(\frac{n+1 + \frac{p+1}{\alpha - 1}}{p+1} \right)^{2\alpha - 1} + \frac{1}{n}.$$
 (21)

By our assumption $p+1>n+1+\frac{p+1}{\alpha-1}$, we obtain that $\frac{2}{\alpha}>c'$. Since $\left(\frac{\sqrt{x}}{1-\sqrt{x}}\right)^{1/\alpha}$ in increasing with x when $0 \le x \le 1$, we have

$$\left(\frac{1}{\sqrt{\frac{\alpha}{2}}-1}\right)^{1/\alpha} \ge \left(\frac{\sqrt{c'}}{1-\sqrt{c'}}\right)^{1/\alpha}.$$

Then, to ensure the existence of an interval of i's satisfying the above inequality, we choose

$$p - (p+1)\frac{\alpha \sin(\pi/\alpha)}{\pi(\alpha - 1)} \left(\frac{1}{\sqrt{\frac{\alpha}{2}} - 1}\right)^{1/\alpha} \ge (n+1)\frac{\alpha \sin(\pi/\alpha)}{\pi} \left(\frac{1}{\sqrt{\frac{\alpha}{2}} - 1}\right)^{1/\alpha}$$

$$\iff p \frac{\pi \left(\sqrt{\frac{\alpha}{2}} - 1\right)^{1/\alpha}}{\alpha \sin(\pi/\alpha)} - \frac{p+1}{\alpha - 1} \ge n+1$$

One can verify that the LHS expression is always positive when $\alpha > 3$. Thus, discarding the features *i* provided in the interval (21) will strictly improve the test risk of the masked surrogate-to-target model over the standard target model.

C Proofs for Section 5

Theorem 3 (Distributional characterization, Han & Xu (2023)). Let $\kappa_s = p/m > 1$ and suppose that, for some M > 1, $1/M \le \kappa_s$, $\sigma_s^2 \le M$ and $\|\Sigma_s\|_{op}$, $\|\Sigma_s^{-1}\|_{op} \le M$. Let $\tau_s \in \mathbb{R}$ be the unique solution of the following equation:

$$\kappa_s^{-1} = \frac{1}{p} \operatorname{tr} \left((\mathbf{\Sigma}_s + \tau_s \mathbf{I})^{-1} \mathbf{\Sigma}_s \right). \tag{22}$$

We define the function $\gamma_s : \mathbb{R}^p \to \mathbb{R}$ and the random variable based on $\mathbf{g}_s \sim \mathcal{N}(0, \mathbf{I})$ as follows:

$$\gamma_s^2(\boldsymbol{\beta_{\star}}) := \kappa_s \left(\sigma_s^2 + \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}_s} [\|\boldsymbol{\Sigma}_s^{1/2}(\boldsymbol{\beta}^s - \boldsymbol{\beta_{\star}})\|_2^2] \right) = \kappa_s \frac{\sigma_s^2 + \tau_s^2 \|(\boldsymbol{\Sigma}_s + \tau_s \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_s^{1/2} \boldsymbol{\beta_{\star}}\|_2^2}{1 - \frac{1}{m} \operatorname{tr}((\boldsymbol{\Sigma}_s + \tau_s \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_s^2)}$$

$$X_{\kappa_s, \sigma_s^2}^s(\boldsymbol{\Sigma}_s, \boldsymbol{\beta_{\star}}, \boldsymbol{g}_s) := (\boldsymbol{\Sigma}_s + \tau_s \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_s \left[\boldsymbol{\beta_{\star}} + \frac{\boldsymbol{\Sigma}_s^{-1/2} \boldsymbol{\gamma}_s(\boldsymbol{\beta_{\star}}) \boldsymbol{g}_s}{\sqrt{p}} \right].$$
(23)

Then, for any L-Lipschitz function $f: \mathbb{R}^p \to \mathbb{R}$ where L < L(M), there exists a constant C = C(M) such that for any $\varepsilon \in (0, 1/2]$, we have the following:

$$\mathbb{P}(\sup_{\boldsymbol{\beta_{\star}} \in \boldsymbol{B}(R)} \left| f(\boldsymbol{\beta}^{s}) - \mathbb{E}_{\boldsymbol{g}_{s}} [f(X_{\kappa_{s}, \sigma_{s}^{2}}^{w}(\boldsymbol{\Sigma}_{s}, \boldsymbol{\beta_{\star}}, \boldsymbol{g}_{s}))] \right| \ge \varepsilon) \le C p e^{-p\varepsilon^{4}/C}, \tag{24}$$

where R < M.

Definition 3. Recall the definition of τ_t and γ_t in Theorem 1. Let $\kappa_s = p/m > 1$ and define $\tau_s \in \mathbb{R}$ similar to τ_t . We define the function $\gamma_s : \mathbb{R}^p \to \mathbb{R}$ and the random variable $X^s_{\kappa_s, \sigma^2}$ based on $g_s \sim \mathcal{N}(0, I)$ as follows:

$$\gamma_s^2(\boldsymbol{\beta_{\star}}) = \kappa_s \left(\sigma_s^2 + \mathbb{E}_{(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) \sim \mathcal{D}_s} [\|\boldsymbol{\Sigma}_s^{1/2}(\boldsymbol{\beta}^s - \boldsymbol{\beta_{\star}})\|_2^2] \right), \quad X_{\kappa_s, \sigma_s^2}(\boldsymbol{\Sigma}_s, \boldsymbol{\beta_{\star}}, \boldsymbol{g}_s) := (\boldsymbol{\Sigma}_s + \tau_s \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_s \left[\boldsymbol{\beta_{\star}} + \frac{\boldsymbol{\Sigma}_s^{-1/2} \gamma_s(\boldsymbol{\beta_{\star}}) \boldsymbol{g}_s}{\sqrt{n}} \right].$$

Let $\dot{\kappa} = (\kappa_s, \kappa_t)$, $\dot{\Sigma} = (\Sigma_s, \Sigma_t)$, and $\dot{\sigma} = (\sigma_s^2, \sigma_t^2)$. Then, we define the asymptotic risk estimate as

$$\begin{split} \bar{\mathcal{R}}_{k,\dot{\sigma}}(\dot{\boldsymbol{\Sigma}},\boldsymbol{\beta}_{\star}) &= \|\boldsymbol{\Sigma}_{t}^{1/2} \left(\boldsymbol{I} - (\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{s} + \boldsymbol{\tau}_{s}\boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{s} \right) \boldsymbol{\beta}_{\star} \|_{2}^{2} + \frac{\mathbb{E}_{\boldsymbol{\beta}^{s} \sim \boldsymbol{X}_{s,s}^{s},\sigma_{s}^{2}} [\boldsymbol{\gamma}_{t}^{2}(\boldsymbol{\beta}^{s})]}{p} \operatorname{tr} \left(\boldsymbol{\Sigma}_{t}^{2} (\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-2}\right) \\ &+ \frac{\boldsymbol{\gamma}_{s}^{2}(\boldsymbol{\beta}_{\star})}{p} \operatorname{tr} \left(\boldsymbol{\Sigma}_{s}^{1/2} (\boldsymbol{\Sigma}_{s} + \boldsymbol{\tau}_{s}\boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{s} + \boldsymbol{\tau}_{s}\boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{s}^{1/2}\right). \end{split}$$

Theorem 2. Suppose that, for some constant $M_t > 1$, we have $1/M_t \le \kappa_s, \sigma_s^2, \kappa_t, \sigma_t^2 \le M_t$ and $\|\Sigma_s\|_{op}, \|\Sigma_s^{-1}\|_{op}, \|\Sigma_s^{-1}\|_{op}, \|\Sigma_s^{-1}\|_{op} \le M_t$. Consider the surrogate-to-target model defined in Section 2, and let $\mathcal{R}(\boldsymbol{\beta}^{s2t})$ represent its risk when $\boldsymbol{\beta}_{\star}$ is given. Recall the definition of $\dot{\Sigma}$, $\dot{\kappa}$, $\dot{\sigma}$ and $\bar{\mathcal{R}}_{\dot{\kappa},\dot{\sigma}}$ in Definition 3. Then, there exists a constant $C = C(M_t)$ such that for any $\varepsilon \in (0, 1/2]$, the following holds when R + 1 < M:

$$\sup_{\boldsymbol{\beta}_{\star} \in \boldsymbol{B}_{p}(R)} \mathbb{P}(\left| \mathcal{R}(\boldsymbol{\beta}^{s2t}) - \bar{\mathcal{R}}_{k,\dot{\sigma}}(\dot{\boldsymbol{\Sigma}}, \boldsymbol{\beta}_{\star}) \right| \geq \varepsilon) \leq C p e^{-p\varepsilon^{4}/C}.$$

Proof. Define a function $f_1: \mathbb{R}^p \to \mathbb{R}$ as $f_1(\mathbf{x}) = ||\mathbf{\Sigma}_t^{1/2}(\mathbf{x} - \boldsymbol{\beta_{\star}})||_2^2$. The gradient of this function is $||\nabla f_1(\mathbf{x})||_2 = ||2\mathbf{\Sigma}_t(\mathbf{x} - \boldsymbol{\beta_{\star}})||_2 \le 2 ||\mathbf{\Sigma}_t||_{\text{op}} ||\mathbf{x} - \boldsymbol{\beta_{\star}}||_2$.

Using Proposition 11, there exists an event E with $\mathbb{P}(E^c) \leq C_t e^{-p/C_t}$ where $C_t = C_t(M_t, \frac{M_t - R}{2})$ with the definition of M_t in Proposition 11, such that $f_1(\boldsymbol{\beta}^{s2t})$ is $2M_t^2$ -Lipschitz if $\boldsymbol{\beta_{\star}} \in \boldsymbol{B}_p(R)$. Applying Theorem 3 on the target model, there exists a constant $\bar{C}_s = \bar{C}_s(M_t)$ such that for any $\varepsilon \in (0, 1/2]$, we obtain

$$\sup_{\boldsymbol{\beta}^{s} \in \boldsymbol{\mathcal{B}}(\frac{M_{t}+R}{\epsilon})} \mathbb{P}\left(\left| f(\boldsymbol{\beta}^{s2t}) - \mathbb{E}_{\boldsymbol{g}_{t}}[f(X_{\kappa_{t},\sigma_{t}^{2}}^{t}(\boldsymbol{\Sigma}_{t},\boldsymbol{\beta}^{s},\boldsymbol{g}_{t}))] \right| \geq \varepsilon\right) \leq C p e^{-p\varepsilon^{4}/C},\tag{25}$$

where $f(\boldsymbol{\beta}^{s2t}) = \mathcal{R}(\boldsymbol{\beta}^{s2t})$ and

$$X_{\kappa_t,\sigma_t^2}^t(\boldsymbol{\Sigma}_t,\boldsymbol{\beta}^s,\boldsymbol{g}_t) = (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t \left[\boldsymbol{\beta}^s + \frac{\boldsymbol{\Sigma}_t^{-1/2} \gamma_t(\boldsymbol{\beta}^s) \boldsymbol{g}_t}{\sqrt{p}} \right].$$

Furthermore,

$$\mathbb{E}_{g_{t}}\left[f(X_{\kappa_{t},\sigma_{t}^{2}}^{s}(\Sigma_{t},\boldsymbol{\beta}^{s},g_{t}))\right] = \mathbb{E}_{g_{t}}\left[\|\Sigma_{t}^{1/2}\left(\theta_{1}(\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star})-(\boldsymbol{I}-\boldsymbol{\theta}_{1})\boldsymbol{\beta}_{\star}+\boldsymbol{\theta}_{2}\gamma_{t}(\boldsymbol{\beta}^{s})\right)\|_{2}^{2}\right]$$

$$= (\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star})^{\mathsf{T}}\boldsymbol{\theta}_{1}^{\mathsf{T}}\Sigma_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star})+\gamma_{t}^{2}(\boldsymbol{\beta}^{s})\,\mathbb{E}_{g_{t}}[\boldsymbol{\theta}_{2}^{\mathsf{T}}\Sigma_{t}\boldsymbol{\theta}_{2}]$$

$$+\boldsymbol{\beta}_{\star}^{\mathsf{T}}(\boldsymbol{I}-\boldsymbol{\theta}_{1})^{\mathsf{T}}\Sigma_{t}(\boldsymbol{I}-\boldsymbol{\theta}_{1})\boldsymbol{\beta}_{\star}-2\boldsymbol{\beta}_{\star}^{\mathsf{T}}(\boldsymbol{I}-\boldsymbol{\theta}_{1})^{\mathsf{T}}\Sigma_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\beta}^{s}-\boldsymbol{\beta}_{\star}), \tag{26}$$

where $\theta_1 := (\Sigma_t + \tau_t I)^{-1} \Sigma_t$ and $\theta_2 := (\Sigma_t + \tau_t I)^{-1} \Sigma_t^{1/2} \frac{g_t}{\sqrt{p}}$. Let $E(M_t, \frac{M_t - R}{2})$ be the event defined in Proposition 10. Let $f_2 : \mathbb{R}^p \to \mathbb{R}$ be defined as $f_2(x) := (x - \beta_\star)^\top \theta_1^\top \Sigma_t \theta_1(x - \beta_\star)$. By Proposition 12, the function f_2 is $2M_t^2$ -Lipschitz if $\beta_\star \in B_p(R)$ on the event $E(M_t, \frac{M_t - R}{2})$. Applying Theorem 3 on the surrogate model, there exists a constant $\bar{C}_{w,1} = \bar{C}_{w,1}(M_t)$ such that for any $\varepsilon \in (0, 1/2]$, we obtain

$$\sup_{\boldsymbol{\beta_{\star}} \in \boldsymbol{B}_{p}(R)} \mathbb{P}\left(\left|f_{2}(\boldsymbol{\beta}^{s}) - \boldsymbol{\beta_{\star}}^{\top} (\boldsymbol{I} - \boldsymbol{\Phi}_{1})^{\top} \boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} (\boldsymbol{I} - \boldsymbol{\Phi}_{1}) \boldsymbol{\beta_{\star}} - \gamma_{s}^{2} (\boldsymbol{\beta_{\star}}) \mathbb{E}_{\boldsymbol{g}_{s}} [\boldsymbol{\Phi}_{2}^{\top} \boldsymbol{\theta}_{1}^{\top} \boldsymbol{\Sigma}_{t} \boldsymbol{\theta}_{1} \boldsymbol{\Phi}_{2}]\right| > \varepsilon\right) \leq \bar{C}_{w,1} p e^{-p\varepsilon^{4}/\bar{C}_{w,1}},$$
(27)

where $\mathbf{\Phi}_1 := (\mathbf{\Sigma}_s + \tau_s \mathbf{I})^{-1} \mathbf{\Sigma}_s$ and $\mathbf{\Phi}_2 := (\mathbf{\Sigma}_s + \tau_s \mathbf{I})^{-1} \mathbf{\Sigma}_s^{1/2} \frac{\mathbf{g}_s}{\sqrt{p}}$

Let $f_3: \mathbb{R}^p \to \mathbb{R}$ be defined as $f_3(x) := \gamma_t^2(x)\theta_2^\top \Sigma_t \theta_2$. By Proposition 13 and Proposition 2.1 in Han & Xu (2023), the function f_3 is $4M_t^2$ -Lipschitz if $\boldsymbol{\beta}_{\star} \in \boldsymbol{B}_p(R)$ on the event $E(M_t, \frac{M_t - R}{2})$. Applying Theorem 3 on the surrogate model, there exists a constant $\bar{C}_{w,2} = \bar{C}_{w,2}(M_t)$ such that for any $\varepsilon \in (0, 1/2]$, we obtain

$$\sup_{\boldsymbol{\beta}_{\star} \in \boldsymbol{B}_{p}(R)} \mathbb{P}\left(\left|f_{3}(\boldsymbol{\beta}^{s}) - \mathbb{E}_{\boldsymbol{\beta}^{s} \sim X^{s}}[\gamma_{t}^{2}(\boldsymbol{\beta}^{s})] \mathbb{E}_{g_{t}}[\boldsymbol{\theta}_{2}^{\top}\boldsymbol{\Sigma}_{t}\boldsymbol{\theta}_{2}]\right| > \varepsilon\right) \leq \bar{C}_{w,2} p e^{-p\varepsilon^{4}/\bar{C}_{w,2}}. \tag{28}$$

Let $f_4: \mathbb{R}^p \to \mathbb{R}$ as $f_4(x) := -2\beta_{\star}^{\top}(I - \theta_1)^{\top}\Sigma_t\theta_1(x - \beta_{\star})$. By Proposition 14 and Proposition 2.1 in Han & Xu (2023), the function f_4 is $2M_t^2$ -Lipschitz if $\beta_{\star} \in B_p(R)$ on the event $E(M_t, \frac{M_t - R}{2})$. Applying Theorem 3 on the surrogate model, there exists a constant $\bar{C}_{w,3} = \bar{C}_{w,3}(M_t)$ such that for any $\varepsilon \in (0, 1/2]$, we obtain

$$\sup_{\boldsymbol{\beta}_{\star} \in \boldsymbol{B}_{p}(R)} \mathbb{P}\left(\left|f_{4}(\boldsymbol{\beta}^{s}) - 2\left[\boldsymbol{\beta}_{\star}^{\top}(\boldsymbol{I} - \boldsymbol{\theta}_{1})^{\top}\boldsymbol{\Sigma}_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\Phi}_{1} - \boldsymbol{I})\boldsymbol{\beta}_{\star}\right]\right| > \varepsilon\right) \leq \bar{C}_{w,3}pe^{-p\varepsilon^{4}/\bar{C}_{w,3}}.$$
(29)

By the definition of these functions, we have

$$\mathbb{E}_{\mathbf{g}_t} \left[f(X_{\kappa_t, \sigma_t^2}^s(\mathbf{\Sigma}_t, \boldsymbol{\beta}^s, \mathbf{g}_t)) \right] - \boldsymbol{\beta_{\star}}^{\top} (\boldsymbol{I} - \boldsymbol{\theta}_1)^{\top} \mathbf{\Sigma}_t (\boldsymbol{I} - \boldsymbol{\theta}_1) \boldsymbol{\beta_{\star}} = f_2(\boldsymbol{\beta}^s) + f_3(\boldsymbol{\beta}^s) - f_4(\boldsymbol{\beta}^s)$$
(30)

By the definition of θ_1 , θ_2 , Φ_1 , and Φ_2 , we have

$$\bar{\mathcal{R}}_{\dot{\kappa},\dot{\sigma}}(\dot{\Sigma},\boldsymbol{\beta}_{\star}) - \boldsymbol{\beta}_{\star}^{\top}(\boldsymbol{I} - \boldsymbol{\theta}_{1})^{\top}\boldsymbol{\Sigma}_{t}(\boldsymbol{I} - \boldsymbol{\theta}_{1})\boldsymbol{\beta}_{\star} = \boldsymbol{\beta}_{\star}^{\top}(\boldsymbol{I} - \boldsymbol{\Phi}_{1})^{\top}\boldsymbol{\theta}_{1}^{\top}\boldsymbol{\Sigma}_{t}\boldsymbol{\theta}_{1}(\boldsymbol{I} - \boldsymbol{\Phi}_{1})\boldsymbol{\beta}_{\star} + \boldsymbol{\gamma}_{s}^{2}(\boldsymbol{\beta}_{\star}) \mathbb{E}_{g_{s}}[\boldsymbol{\Phi}_{2}^{\top}\boldsymbol{\Sigma}_{t}\boldsymbol{\theta}_{1}\boldsymbol{\Phi}_{2}] \\
+ \mathbb{E}_{\boldsymbol{\beta}^{s} \sim X^{s}}[\boldsymbol{\gamma}_{t}^{2}(\boldsymbol{\beta}^{s})] \mathbb{E}_{g_{t}}[\boldsymbol{\theta}_{2}^{\top}\boldsymbol{\Sigma}_{t}\boldsymbol{\theta}_{2}] - 2\left[\boldsymbol{\beta}_{\star}^{\top}(\boldsymbol{I} - \boldsymbol{\theta}_{1})^{\top}\boldsymbol{\Sigma}_{t}\boldsymbol{\theta}_{1}(\boldsymbol{\Phi}_{1} - \boldsymbol{I})\boldsymbol{\beta}_{\star}\right]. \tag{31}$$

Using (30)-(31) and applying a union bound on (25), (27), (28), and (29), we obtain the advertised claim. \Box

Proposition 10. Suppose that, for some $M_t > 1$, $1/M_t \le \kappa_s$, $\sigma_s^2 \le M_t$ and $\|\Sigma_s\|_{op}$, $\|\Sigma_s^{-1}\|_{op} \le M_t$. For every $c_s > 0$, there exists an event $E(M_t, c_s)$ with $\mathbb{P}((E(M_t, c_s))^c) \le C_s \mathrm{e}^{-p/C_s}$ where $C_s = C_s(M_t, c_s)$ such that

$$\|\boldsymbol{\beta}^{s}\|_{2} \leq \|\boldsymbol{\beta}_{\star}\|_{2} + c_{s}$$
 and $\|\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}\|_{2} \leq \|\boldsymbol{\beta}_{\star}\|_{2} + c_{s}$.

Proof. By the definition of β^s , we have

$$\boldsymbol{\beta}^{s} = \tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1} \tilde{y}$$

$$= \tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1} \tilde{X} \boldsymbol{\beta}_{\star} + \tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1} \tilde{z}, \tag{32}$$

where $\tilde{z} \sim \mathcal{N}(\mathbf{0}, \sigma_s^2 \mathbf{I})$. By triangle inequality, we obtain

$$\|\boldsymbol{\beta}^{s}\|_{2} \leq \|\tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{X}}\boldsymbol{\beta}_{\star}\|_{2} + \|\tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{z}}\|_{2}$$

$$\stackrel{(a)}{\leq} \|\boldsymbol{\beta}_{\star}\|_{2} + \|\tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{z}}\|_{2}, \tag{33}$$

where (a) in above follows from the fact that $\tilde{X}^{T}(\tilde{X}\tilde{X}^{T})^{-1}\tilde{X}$ is a projection matrix, and so all of its eigenvalues are either 0 or 1. Focusing on the second term of the RHS, we derive

$$\|\tilde{X}^{\mathsf{T}}(\tilde{X}\tilde{X}^{\mathsf{T}})^{-1}\tilde{z}\|_{2}^{2} = \tilde{z}^{\mathsf{T}}(\tilde{X}\tilde{X}^{\mathsf{T}})^{-1}\tilde{z} = \frac{\tilde{z}^{\mathsf{T}}}{\sqrt{p}} \left(\frac{\tilde{X}\tilde{X}^{\mathsf{T}}}{p}\right)^{-1} \frac{\tilde{z}}{\sqrt{p}}$$

$$\stackrel{(a)}{\leq} \frac{\tilde{z}^{\mathsf{T}}\tilde{z}}{p} \left\| \left(\frac{\tilde{X}\tilde{X}^{\mathsf{T}}}{p}\right)^{-1} \right\|_{00}, \tag{34}$$

where (a) in the above inequality follows from Cauchy-Schwarz inequality. Using Bernstein's inequality, there exists an absolute constant $C_0 > 0$ that depends on σ_s^2 such that

$$\mathbb{P}\left(\frac{\tilde{\mathbf{z}}^{\top}\tilde{\mathbf{z}}}{p} - \sigma_s^2 > t\right) \le \exp\left\{-c\min\left\{\frac{pt^2}{4C_0^2}, \frac{pt}{2C_0}\right\}\right\}.$$

On the other hand, let $\tilde{\mathbf{Z}} = \tilde{X} \Sigma_s^{-1/2}$, which means that the entries of $\tilde{\mathbf{Z}}$ are independent and normally distributed with zero mean and unit variance. Then,

$$\left\| \left(\frac{\tilde{X}\tilde{X}^{\top}}{p} \right)^{-1} \right\|_{\text{op}} = \left\| \left(\frac{\tilde{Z}\Sigma_{s}\tilde{Z}^{\top}}{p} \right)^{-1} \right\|_{\text{op}} \le \left\| \Sigma_{s}^{-1} \right\|_{\text{op}} \left\| \left(\frac{\tilde{Z}\tilde{Z}^{\top}}{p} \right)^{-1} \right\|_{\text{op}}. \tag{35}$$

Using Theorem 1.1 in Rudelson & Vershynin (2009), there exist absolute constants C_1 , $C_2 > 0$ such that we have the following for every $\varepsilon > 0$

$$\mathbb{P}\left(\left\|\left(\frac{\tilde{\mathbf{Z}}\tilde{\mathbf{Z}}^{\top}}{p}\right)^{-1}\right\|_{\text{op}} \le \varepsilon^{2}\left(1 - \frac{1}{\kappa_{s}}\right)^{2}\right) \le (C_{1}\varepsilon)^{p-m+1} + e^{-pC_{2}}.$$
(36)

By combining (34), (35), and (36), we obtain that

$$\mathbb{P}\left(\|\boldsymbol{\beta}^{s}\|_{2} \leq \|\boldsymbol{\beta}_{\star}\|_{2} + \varepsilon(1 - \frac{1}{\kappa_{s}})\sqrt{(t + \sigma_{s}^{2})\|\boldsymbol{\Sigma}_{s}^{-1}\|_{\text{op}}}\right) \\
\leq (C_{1}\varepsilon)^{p-m+1} + e^{-pC_{2}} + e^{-c\min\left\{\frac{pr^{2}}{4c_{0}^{2}}, \frac{pr}{2C_{0}}\right\}}$$

The advertised claim for $\|\boldsymbol{\beta}^s\|_2$ follows when ε is selected as $\varepsilon < \frac{1}{C_1 e}$. For $\|\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star}\|_2$, using the definition of $\boldsymbol{\beta}^s$, we write as follows:

$$\|\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}\|_{2} = \|\tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1}\tilde{X}\boldsymbol{\beta}_{\star} + \tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1}\tilde{z} - \boldsymbol{\beta}_{\star}\|_{2}$$

$$\leq \|\tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1}\tilde{X} - \boldsymbol{I}\|_{2} \|\boldsymbol{\beta}_{\star}\|_{2} + \|\tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1}\tilde{z}\|_{2}$$

$$\stackrel{(a)}{\leq} \|\boldsymbol{\beta}_{\star}\|_{2} + \|\tilde{X}^{\top} (\tilde{X}\tilde{X}^{\top})^{-1}\tilde{z}\|_{2},$$

$$(37)$$

where (a) in the above inequalities follows from the fact that the eigenvalues of $\tilde{X}^{\top}(\tilde{X}\tilde{X}^{\top})^{-1}\tilde{X} - I$ are either 1 or 0 as the eigenvalues of $\tilde{X}^{\top}(\tilde{X}\tilde{X}^{\top})^{-1}\tilde{X}$ are either 1 or 0. The remaining part of this proof is identical to the previous part.

Corollary 2. Suppose that $\boldsymbol{\beta}^s \in \mathbb{R}^p$ is given, and for some $M_t > 1$, we have $1/M_t \leq \kappa_t, \sigma_t^2 \leq M_t$ and $\|\boldsymbol{\Sigma}_t\|_{op}, \|\boldsymbol{\Sigma}_t^{-1}\|_{op} \leq M_t$. For every $c_t > 0$, there exists an event $E(M_t, c_t)$ with $\mathbb{P}((E(M_t, c_t))^c) \leq C_t \mathrm{e}^{-p/C_t}$ where $C_t = C_t(M_t, c_t)$ such that

$$\|\boldsymbol{\beta}^{s2t}\|_{2} \leq \|\boldsymbol{\beta}^{s}\|_{2} + c_{t} \quad and \quad \|\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}^{s}\|_{2} \leq \|\boldsymbol{\beta}^{s}\|_{2} + c_{t}.$$

Proof. The result directly follows from the proof of Proposition 10.

Proposition 11. Suppose that, for some $M_t > 1$, $1/M_t \le \kappa_t$, $\sigma_t^2 \le M_t$ and $\|\Sigma_t\|_{op}$, $\|\Sigma_t^{-1}\|_{op} \le M_t$. For every $c_t > 0$, there exists an event $E(M_t, c_t)$ with $\mathbb{P}((E(M_t, c_t))^c) \le C_t \mathrm{e}^{-p/C_t}$ where $C_t = C_t(M_t, c_t)$ such that we have the following on this event $E(M_t, c_t)$:

 $\|\boldsymbol{\beta}^{s2t}\|_{2} \leq \|\boldsymbol{\beta}_{\star}\|_{2} + c_{t}$ and $\|\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}_{\star}\|_{2} \leq \|\boldsymbol{\beta}_{\star}\|_{2} + c_{t}$

Proof. By the definition of β^{s2t} , we have the following:

$$\boldsymbol{\beta}^{s2t} = \boldsymbol{X}(\boldsymbol{X}\boldsymbol{X}^{\top})^{-1}\boldsymbol{X}\boldsymbol{\beta}^{s} + \boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{X}^{\top})^{-1}\boldsymbol{z}$$
(38)

where $z \sim \mathcal{N}(\mathbf{0}, \sigma_t^2 \mathbf{I})$. Plugging (32) into (38), we obtain

$$\boldsymbol{\beta}^{s2t} = \boldsymbol{X}(\boldsymbol{X}\boldsymbol{X}^{\top})^{-1}\boldsymbol{X}\left(\tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{X}}\boldsymbol{\beta}_{\star} + \tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{z}}\right) + \boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{X}^{\top})^{-1}\boldsymbol{z}$$
(39)

Note that $X(XX^{\top})^{-1}X$ and $\tilde{X}^{\top}(\tilde{X}\tilde{X}^{\top})^{-1}\tilde{X}$ are projection matrices. Multiplication of two projection matrices results in a projection matrix. Using the fact that the eigenvalues of a projection matrix are either 1 or 0 in (39), we have

$$\|\boldsymbol{\beta}^{s2t}\|_{2} \le \|\boldsymbol{\beta}_{\star}\|_{2} + \|\tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{z}}\|_{2} + \|\boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{X}^{\top})^{-1}\boldsymbol{z}\|_{2}$$

$$\tag{40}$$

By a similar reasoning used in (34),(35), and (36); there exist absolute constants C_0 , C_1 , C_2 , c > 0 such that we have the following for every ε , t > 0:

$$\mathbb{P}\left(\|X^{\top}(XX^{\top})^{-1}z\|_{2} \leq \varepsilon(1 - \frac{1}{\kappa_{t}})\sqrt{(t + \sigma_{t}^{2})\|\Sigma_{t}^{-1}\|_{\text{op}}}\right) \\
\leq (C_{1}\varepsilon)^{p-n+1} + e^{-pC_{2}} + e^{-c\min\left\{\frac{p^{2}}{4c_{0}^{2}}, \frac{pt}{2C_{0}}\right\}} \tag{41}$$

Similarly, for every $\tilde{\varepsilon} > 0$, there exist absolute constants $\tilde{C}_0, \tilde{C}_1, \tilde{C}_2, \tilde{c} > 0$ such that we have the following for every $\tilde{\varepsilon}, \tilde{t}$:

$$\mathbb{P}\left(\|\tilde{\boldsymbol{X}}^{\top}(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top})^{-1}\tilde{\boldsymbol{z}}\|_{2} \leq \tilde{\boldsymbol{\varepsilon}}(1-\frac{1}{\kappa_{s}})\sqrt{(\tilde{\boldsymbol{t}}+\sigma_{s}^{2})\left\|\boldsymbol{\Sigma}_{s}^{-1}\right\|_{\text{op}}}\right) \\
\leq (\tilde{C}_{1}\tilde{\boldsymbol{\varepsilon}})^{p-m+1} + e^{-p\tilde{C}_{2}} + e^{-\tilde{\boldsymbol{c}}\min\left\{\frac{p^{2}}{4\tilde{C}_{0}^{2}}, \frac{p\tilde{\boldsymbol{t}}}{2\tilde{C}_{0}}\right\}} \tag{42}$$

Note that X, z, \tilde{X} , and \tilde{z} are independent of each other. Therefore, we can apply union bound on (41) and (42) with selecting $\varepsilon, t, \tilde{\varepsilon}$, and \tilde{t} such that $\varepsilon < \frac{1}{C_1 e}, \frac{c_t}{2} < \varepsilon (1 - \frac{1}{\kappa_t}) \sqrt{(t + \sigma_t^2) \|\Sigma_t^{-1}\|_{op}}$, $\tilde{\varepsilon} < \frac{1}{\tilde{C}_1}$, and $\frac{c_t}{2} < \varepsilon (1 - \frac{1}{\kappa_s}) \sqrt{(\tilde{t} + \sigma_s^2) \|\Sigma_s^{-1}\|_{op}}$. As a result, there exists an event E with $\mathbb{P}(E^c) \leq C_t(M_t, c_t)$ such that

$$\|\boldsymbol{\beta}^{s2t}\|_2 \leq \|\boldsymbol{\beta}_{\star}\|_2 + c_t.$$

Using a similar argument in (37), we derive the following on the same event E_1

$$||\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}_{\star}||_{2} \le ||\boldsymbol{\beta}_{\star}||_{2} + c_{t}.$$

This completes the proof.

Proposition 12. Let $g: \mathbb{R}^p \to \mathbb{R}$ be a function such that

$$g(\boldsymbol{\beta}^s) := \|\boldsymbol{\Sigma}_t^{1/2} (\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t (\boldsymbol{\beta}^s - \boldsymbol{\beta}_{\star})\|_2^2$$

Then, on the same event $E(M_t, c_s)$ in Proposition 10, the function g is $(||\boldsymbol{\beta}_{\star}||_2 + c_s) \frac{2\lambda_1^3}{(\lambda_1 + \tau_t)^2} - Lipschitz$ where λ_1 is the largest eigenvalue of Σ_t .

Proof. We take the gradient of the function g:

$$\begin{split} \|\nabla g(\boldsymbol{\beta}^{s})\|_{2} &= 2\|\boldsymbol{\Sigma}_{t}(\boldsymbol{\Sigma}_{t} + \tau_{t}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{t}(\boldsymbol{\Sigma}_{t} + \tau_{t}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{t}(\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star})\|_{2} \\ &\leq \|\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}\|_{2} \max_{i} \frac{2\lambda_{i}^{3}}{(\lambda_{i} + \tau_{t})^{2}} \\ &= \|\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}\|_{2} \max_{i} 2\lambda_{i} \left(1 - \frac{\tau_{t}}{\lambda_{i} + \tau_{t}}\right)^{2} \\ &= \|\boldsymbol{\beta}^{s} - \boldsymbol{\beta}_{\star}\|_{2} \frac{2\lambda_{1}^{3}}{(\lambda_{1} + \tau_{t})^{2}}. \end{split}$$

Combining Proposition 10 on the event $E(M_t, c_s)$ with the above inequality provides the advertised claim.

Proposition 13. Let $g: \mathbb{R}^p \to \mathbb{R}$ be a function such that

$$g(\boldsymbol{\beta}^s) := \frac{1}{p} \|\boldsymbol{\Sigma}_t^{1/2} (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \gamma_t (\boldsymbol{\beta}^s) \|_F^2$$

Then, on the same event $E(M_t, c_s)$ in Proposition 10, the function g is L-Lipschitz where $(\lambda_i)_{i=1}^p$ are the eigenvalues of Σ_t with a descending order and

$$L = \frac{4\tau_t^2}{m} \frac{\lambda_1^3}{(\lambda_1 + \tau_t)^4} \frac{\|\boldsymbol{\beta}_{\star}\|_2 + c_s}{1 - \frac{1}{m} \sum_{i=1}^{p} \left(\frac{\lambda_i}{\lambda_i + \tau_t}\right)^2}.$$

Proof. We take the gradient of the function *g*:

$$\nabla g(\boldsymbol{\beta}^s) = \frac{2}{p} \boldsymbol{\Sigma}_t^{1/2} (\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t (\boldsymbol{\Sigma}_t + \boldsymbol{\tau}_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \nabla \gamma_t^2 (\boldsymbol{\beta}^s).$$

Note that

$$\begin{split} \boldsymbol{\gamma}_t^2(\boldsymbol{\beta}^s) &= \kappa_t \left(\boldsymbol{\sigma}_t^2 + \mathbb{E}_{\boldsymbol{\beta}^{s2t}} [\|\boldsymbol{\Sigma}_t^{1/2}(\boldsymbol{\beta}^{s2t} - \boldsymbol{\beta}^s)\|_2^2] \right) \\ &= \kappa_t \frac{\boldsymbol{\sigma}_t^2 + \tau_t^2 \|(\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\beta}^s\|_2^2}{1 - \frac{1}{m} \text{tr} \left((\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_t^2 \right)}. \end{split}$$

Then, we have

$$\nabla \gamma_t^2(\boldsymbol{\beta}^s) = 2\kappa_t \frac{\tau_t^2 \boldsymbol{\Sigma}_t^{1/2} (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\beta}^s}{1 - \frac{1}{m} \text{tr} \left((\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_t^2 \right)}.$$

Plugging $\nabla \gamma_t^2(\boldsymbol{\beta}^s)$ into $\nabla g(\boldsymbol{\beta}^s)$, we obtain that

$$\begin{split} \|\nabla g(\boldsymbol{\beta}^{s})\|_{2} &= \frac{4\tau_{t}^{2}}{m} \frac{\boldsymbol{\Sigma}_{t}^{1/2} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t}^{1/2} \boldsymbol{\beta}^{s}}{1 - \frac{1}{m} \operatorname{tr} \left((\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t}^{2} \right)} \\ &\leq \frac{4\tau_{t}^{2}}{m} \frac{\lambda_{1}^{3}}{(\lambda_{1} + \tau_{t})^{4}} \frac{\|\boldsymbol{\beta}^{s}\|_{2}}{1 - \frac{1}{m} \sum_{i=1}^{p} \left(\frac{\lambda_{i}}{\lambda_{i} + \tau_{i}}\right)^{2}}. \end{split}$$

Combining Proposition 10 on the event $E(M_t, c_s)$ with the above inequality provides the advertised claim. \Box

Proposition 14. Let $g: \mathbb{R}^p \to \mathbb{R}$ be a function such that

$$g(\boldsymbol{\beta}^s) := 2\boldsymbol{\beta_{\star}}^{\top} \left(\boldsymbol{I} - (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t \right)^{\top} \boldsymbol{\Sigma}_t (\boldsymbol{\Sigma}_t + \tau_t \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_t (\boldsymbol{\beta}^s - \boldsymbol{\beta_{\star}}).$$

Then, the function g is $2\|\boldsymbol{\beta}_{\star}\|_{2}\tau_{t}\left(\frac{\lambda_{1}}{\lambda_{1}+\tau_{s}}\right)^{2}$ -Lipschitz where λ_{1} is the largest eigenvalue of $\boldsymbol{\Sigma}_{t}$.

Proof. We take the gradient of the function g:

$$\begin{split} \|\nabla g(\boldsymbol{\beta}^{s})\|_{2} &= 2\|\boldsymbol{\Sigma}_{t}(\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{t}\left(\boldsymbol{I} - (\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{t}\right)\boldsymbol{\beta}_{\star}\|_{2} \\ &\leq 2\|\boldsymbol{\beta}_{\star}\|_{2}\boldsymbol{\tau}_{t}\max_{i}\left(1 - \frac{\boldsymbol{\tau}_{t}}{\lambda_{i} + \boldsymbol{\tau}_{t}}\right)^{2} \\ &= 2\|\boldsymbol{\beta}_{\star}\|_{2}\boldsymbol{\tau}_{t}\left(\frac{\lambda_{1}}{\lambda_{1} + \boldsymbol{\tau}_{t}}\right)^{2}, \end{split}$$

and the desired result readily follows.

Lemma 1. We have that

$$\mathbb{E}_{\boldsymbol{\beta}^{s} \sim \boldsymbol{X}^{s}_{\kappa_{s},\sigma_{s}^{2}}}[\boldsymbol{\gamma}_{t}^{2}(\boldsymbol{\beta}^{s})] = \kappa_{t} \frac{\sigma_{t}^{2} + \tau_{t}^{2} \|(\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{t}^{1/2}((\boldsymbol{\Sigma}_{s} + \boldsymbol{\tau}_{s}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{s}\boldsymbol{\beta}_{\star}\|_{2}^{2}}{1 - \frac{1}{n}\operatorname{tr}\left((\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-2}\boldsymbol{\Sigma}_{t}^{2}\right)} \\ + \frac{\kappa_{t}\tau_{t}^{2}\boldsymbol{\gamma}_{s}^{2}(\boldsymbol{\beta}_{\star})}{p} \frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{s}^{1/2}(\boldsymbol{\Sigma}_{s} + \boldsymbol{\tau}_{s}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{t}^{1/2}(\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-2}\boldsymbol{\Sigma}_{t}^{1/2}(\boldsymbol{\Sigma}_{s} + \boldsymbol{\tau}_{s}\boldsymbol{I})^{-1}\boldsymbol{\Sigma}_{s}^{1/2}\right)}{1 - \frac{1}{n}\operatorname{tr}\left((\boldsymbol{\Sigma}_{t} + \boldsymbol{\tau}_{t}\boldsymbol{I})^{-2}\boldsymbol{\Sigma}_{t}^{2}\right)}.$$

Proof. The desired claim follows from the following manipulations using the definition of X_{κ,σ^2}^s in (13):

$$\mathbb{E}_{\boldsymbol{\beta}^{s} \sim X_{\kappa_{s}, \sigma_{s}^{2}}^{s}}[\gamma_{t}^{2}(\boldsymbol{\beta}^{s})] = \mathbb{E}_{\boldsymbol{\beta}^{s} \sim X_{\kappa_{s}, \sigma_{s}^{2}}^{s}} \left[\kappa_{t} \frac{\sigma_{t}^{2} + \tau_{t}^{2} || (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t}^{1/2} \boldsymbol{\beta}^{s} ||_{2}^{2}}{1 - \frac{1}{n} \operatorname{tr} \left((\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t}^{2} \right)} \right]$$

$$= \mathbb{E}_{\boldsymbol{g}_{s}} \left[\kappa_{t} \frac{\sigma_{t}^{2} + \tau_{t}^{2} || (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t}^{1/2} \left((\boldsymbol{\Sigma}_{s} + \tau_{s} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{s} \boldsymbol{\beta}_{\star} + (\boldsymbol{\Sigma}_{s} + \tau_{s} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{s}^{1/2} \boldsymbol{\gamma}_{s} (\boldsymbol{\beta}_{\star}) \boldsymbol{g}_{s} / \sqrt{p} \right) ||_{2}^{2}}{1 - \frac{1}{n} \operatorname{tr} \left((\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t}^{2} \right)} \right]$$

$$= \kappa_{t} \frac{\sigma_{t}^{2} + \tau_{t}^{2} || (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t}^{1/2} ((\boldsymbol{\Sigma}_{s} + \tau_{s} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{s} \boldsymbol{\beta}_{\star} ||_{2}^{2}}{1 - \frac{1}{n} \operatorname{tr} \left((\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t}^{2} \right)} + \frac{\kappa_{t} \tau_{t}^{2} \gamma_{s}^{2} (\boldsymbol{\beta}_{\star})}{p} \frac{\operatorname{tr} \left(\boldsymbol{\Sigma}_{s}^{1/2} (\boldsymbol{\Sigma}_{s} + \tau_{s} \boldsymbol{I})^{-1} \boldsymbol{\Sigma}_{t}^{1/2} (\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t}^{2} \right)}{1 - \frac{1}{n} \operatorname{tr} \left((\boldsymbol{\Sigma}_{t} + \tau_{t} \boldsymbol{I})^{-2} \boldsymbol{\Sigma}_{t}^{2} \right)}.$$