A PROOFS FOR SECTION 3

Observation 1. The model shift in the surrogate-to-target model is equivalent to the covariance shift model
(Mallinar et al., 2024). Formally, given B € R? and the covariance matrix X, € RP*P, there exists a unique
B* € R such that the risk of the surrogate-to-target problem R(B*>") with (B, B°,X;) is equivalent to the risk

of the covariance shift model R‘“'(ﬁ) with (B, Xy, L) for any X; € RP*P that is jointly diagonalizable with X,.
Proof. By Observation 2, we assume that X, and X are diagonal matrices. As X, and X are jointly diagonaliz-
able, there exists a unique diagonal matrix A € RP*? such that

T, =ATLA.

Then, consider the model shift discussed in Section 3. Take the case where B° = AB, and labels are
generated as y = x'B° + z, where x ~ N(0,X)) and z ~ N(O, o?). This is equivalent to the case where
y=(xTA)B, +z=Xx"By+zsuchthatx ~ N(0,X,) and z ~ N(0,07). Note that (i) the transformed inputs and
the labels are identical in both scenarios, and (ii) the estimators are computed in the same way. Thus, it follows
that the risks R(8°%) and R°(B) are equivalent. The other way follows from an almost identical argument. O

Observation 2. For any covariance matrix . € RP*P, there exists an orthonormal matrix U € RP*P such that
the transformation of x — UTx and B — U" B does not affect the labels y but ensures that the covariance
matrix is diagonal.

Proof. Since the covariance matrix X is PSD, its unit-norm eigenvectors are orthogonal. Consider the matrix
U whose columns are the eigenvectors of . Then, X can be expressed as ¥ = UAUT, where A is the diagonal
matrix containing the eigenvalues of X. Consider now the transformation

2=U"x = E|zz"|=EB|UTxx"U| = U'E[xxT|U = U"UAUTU = A.

In this way, the covariance matrix is diagonalized. Thus, the transformation (x, 84x) — (U x, U" B,) works as
intended since the labels are preserved. O

Definition 1. Let k, = p/n > 1 and 7, € R be the unique solution of the following equation
g1 _
K= 5 tr((z, +7.0) 1>:t). )

Define the function vy, : RP — R as
V2B = & (073 + Eeyoy-mp IIE 2B = BHIB]) . ®)
Then, the asymptotic risk estimate is defined as
Rever BB B 1= (B = B O] L0 (B' = Ba) + ¥/ (B) By [0, .65
+Bx (I = 0)"Z(I - 61)Bx — 2B+ (I - 6))"L,6:(8° — By),

where 0, := (Z, + .1)"'Z, 6, := (T, + T,I)*z}”i'p, and g, ~ N(0, I,).

®

Theorem 1. Suppose that, for some constant M, > 1, we have 1 /M, < K,,O’,2 < My and ||Z|,,, , ”Zt_ln(;p <M,.

Recall from (5) that R(B**') represents the risk of the surrogate-to-target model given B°. Then, there exists a
constant C = C(M;) such that, for any € € (0, 1/2], the following holds with R + 1 < M,:

sup  P(RBY) — R (), Bu. B)] = £) < Cpe'/C. (10)
B*»ﬂ"EBp(R)

Proof. Even though the claim readily follows from Theorem 2, we give a proof for the sake of completeness.
Define a function f; : R” — R as fi(x) = |[Z;"*(x — B,)I3. The gradient of this function is
VAl = 12E:(x — Bl < 2[[Ellop [l — Bull2-
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Using Corollary 2, there exists an event E with P(E€) < C,e /¢ where C; = C,(M,, M’_R) (with the definition
of M, in Corollary 2), such that f| (Bﬁ’) is 2M?-Lipschitz if B, B € B,,(R). Applying Theorem 3 on the target

model, there exists a constant C,; = C4(M,) such that for any € € (0, 1/2], we obtain

sup P(\f(ﬁszz) By Lf(X (S, gl))]|28) —

P MH_R Ki 0
where f(8%) = R(B**) and

Kt

bl Z%(ﬁ‘)gt}

Xy, 2 Er B g0 = &+ 1)L, [ﬂ 7

Furthermore,

Eq |FX) (208, g,))] = By, [I 01(8" = Bs) = (I - 01)Bx + 02y, (BI]
= (B° = B2) 0/ Z6:(B’ - Bx) + 7 (B') g, [6; 2,6,]
+B.TU - 0)TE( - 0B — 28, (- 0) L,0:(8" - B,
where 0, := (; + .)"'Z; and 6, := (T, + T,I)’lZ,l/zf/—%. This completes the proof.

epe T2(E+1,0) 72
Proposition 1. Let Q = (G EAnD )

n

-1
B = ((Et +7,)7'E, + + nl)‘l) B

1
1-—
Proof. We have that

Eg |f(X, (208, g,»] = By, [I 01(8" = B.) — (I - 01)Bx + 02y, (BNI]
= (B° - L) 0/ Z0,(B° - B.) + vi (B Eg [6; X.65]
+ BT - 0)Z( - 0)Bx — 2B, (I - 0)TE0,(8° - Bs),
where 6, := (, + 7.1)"',, 0, := (Z, + 7,1) ' £} f;, and
0', + 2N+ D) 2B

1-Ler (@ +n,D21)

2 .
V(B =«
In order to optimize this with respect to 8%, let’s take the derivative:

a A
%Eg, f(X/r(l’U.?(Ehﬂ 9g1))

tr (22, + )72

T s T Kthz -2ns
=20,X60:(B" - Bs) 20, X, -0,)B, + 21 — QEI(Zt + 70 p P

tr (22 + 1))
p

= 2607%,0,8 - 25,6 ATy
=20,%,0,8 OB« + -0 (& + 7 )B

2
. Q
= 207508 - 25,0,8, + 2%2,(2, + T;I)_zﬂs%

QTtZ -2 ns*
= QEZ(EI +7.0)"B" =0

= 6/X,0," —X.6,8, +

2

QT{ S
= 01(2, +7d)” ) =X,01B8«

Hence, the claimed result follows.

= 0/Z60, + —
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(14)

]

D ). The optimal surrogate 3° minimizing the asymptotic risk in (9) is



Corollary 1. Without loss of generality, suppose that ¥, is diagonal.” Let (/l,-)l.p:1 be the eigenvalues of X, in
T

non-increasing order and let {; = o for i € [p). Then, the following results hold:

1. B = (Boi ((1 -4+ {i%é’&)ilfor everyi € [pl.

P-4
2. B > (Bl if and only if 1 — & > Q = %for everyi € [p].
=146

3. B* = By if and only if the covariance matrix X, = cl for some ¢ € R.
Proof. When the definition of {; and Q is plugged in Proposition 1, the first claim is obtained. Using the

diagonalization assumption on X, let’s analyze only the i-th component of the optimal surrogate given in the
Proposition 1:

‘ 1
B;* = /li Q T? (ﬂ*)l
Ai
3k Ai+1y
— ﬂ; = 2 z(ﬂ*)i
() + i a2)
Ai+7, 1-Q \ A;+1,
(1-2)
= B =B.)————
2
’ (1= + 52
i 1
= B =B o 4

(-8 + 5156
It’s now clear that §; > 1 — Q if and only if |8}*| < [(8.)il.
Let’s now check when the ratio between them is 1. Algebraic manipulations give:
a-4
(-0 + 1554

Q
= (1-4)-0-4)=—=2

1-Q
P =4)?
= 4=1-Q & 1-{=QwhereQ = 2;1(—5)
Zizl(l - gt)
This suggests B° = B, if all ;’s are equal, which implies that all A;’s are equal. Concluding, the covariance
matrix is a multiple of the identity if and only if £ = B,. m]

Proposition 2. Consider the target model in (6), assume that X, is diagonal, and recall the definitions of ;
and Q. Then, the following results hold:

1. If the mask operation M selects all the features that satisfy 1 — g} > Q, then the surrogate-to-target model
outperforms the standard target model in the asymptotic risk in (9).

2. Let M represent the set of all possible M, where |M| = 2P. The optimal M for the asymptotic risk in (9)
within M is the one that selects all features satisfying 1 — é’iz > Q.

Proof. For the purposes of analysis, we assume, without loss of generality, that the first p; dimensions are
selected from B, in M(B4) = B* € RPs. Based on this, we no longer need to have the decreasing order for the
corresponding A;’s. From the excess test risk formula in Definition 2, we have that

2 _ B(By) + 0'%!2

RB) =E|(y- ") |- o? = T (15)

2If not, there exists an orthogonal matrix U € RP*? s.t. UL, U is diagonal. Then, we can consider the covariance matrix
as UX,UT and the ground truth parameter as UB,, which behaves the same as the original parameters, see Observation 2.
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Next, we write the excess test risk formula for the surrogate-to-target model with respect to the original ground
truth labels:

R@™) = (- 7Y |- ot =8| -p.) 2 (87 -5

Now, consider the zero-padded vector 85 = [ B ] € R?, and define (8%)’ = B, — B° € R? of which the first p;

0,-p,
dimensions are zero. In this way, we can consider the labels in the second training phase as y* = x" 8% + z,
where z ~ N(0,0?). Applying the test risk estimate in Definition 2, we obtain:

5[ -8 | =57 - ) 257 - )| - ZE TS

We further derive
B|(y-x78%) | = 2| -8 + 5B )|
- 5| -] 2 -8 ()] 5[ |
9g [(y - T,BSZ’)Z] —2B[y" - x"BY|B[xT(BY | +E [(xT(ﬂ'f)’) ]

O

=0
2 C 2
_]E[ BY) ] > A

i=ps+1

2 ) »
:B(ﬂ)+0',Q+ Z /Lﬂ,‘z- (16)

1-Q

i=ps+1

where in the above equality (a) follows from the fact that the components x; are independent as the covariance
matrix is diagonal. Thus, the risk difference between the target and surrogate-to-target models is

7 P
th) — B(ﬂ*) _B(ﬂ ) _ Z /llﬁlz

R(B) - R(B -

i=ps+1

p 232

Zi:pf+1 A B; 4 >

=~ia LM

i=ps+1
We observe that each dimension’s contribution to the excess test risk can be analyzed individually. Therefore,
if

F>1-9 (17)
excluding feature i in the feature selection reduces the overall risk R(8**). Along the same lines, the projection
M that selects all the features i that satisfy g“iz < 1 — Q minimizes the asymptotic excess test risk. O

B PRroors ForR SEcTION 4

Definition 2 (Omniscient test risk estimate). Fix p > n > 1. Given a covariance ¥ = U diag()UT, ﬂ*, and
the noise term o, set B = U' B, and define T € R as the unique non-negative solution of n = ;" | /1 ‘. Then,
the excess test risk estimate is the following:

a’Q + B(B)
RB) ~ Bypp,) |0~ x"B?| - 07 = —a (in
1< ¥ .
where §=——. Q=- (-0 BB =) 4B

i=1 i=1
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In the following proof, we suppose that the empirical distributions of 8 and A converge as p — oo having fixed
the ratio p/n = k. Then, we will prove that the omniscient risk converges to the asymptotic risk defined in (9).

Proof for the proportional asymptotic case. Using Theorem 2.3 of Han & Xu (2023), we can estimate f} as
follows:

A E‘l/zy(ﬂ*)g
B= (2+TI)—‘2( + —)
D
where
O’+T2||(Z+TI)_121/2B*||§ P
~ N(@,I,), 2= 7 is the solution to n = .
g ( P) Y(ﬂ*) 1— %tr ((Z + TI)—222) Zl /11. + T
Let
X +7l)'T!?
Xi=@+i's |, x = 2T ETYE
VP
Using this estimate, we can calculate the excess test risk as
RB)= E[(X; - DBy + X20)" Z(X) — D s + X28)|
= B (X1 - DTE(X, - DB, +E[g" X]EXyg|
= B (X1 - D'I(X; - DB, + tr (X]LX,). (18)

Then by recalling the eigendecomposition for the covariance matrix £ = UAUT, we have
= (UAU" +7UU") 'UAUT
=UA +tD)'UTUAU"

A
=Udi U'.
g5

Using the diagonalization of I, X| — I can now be computed as

-7
X, -I=Udi (—)UT.
: R
Let’s now compute

B.T(Xi - DTX(X, - DB, = By Udlag( o )UTUAUTUdlag( o )UT .

A+
As B = U7 B,, we obtain that the RHS of the previous expression equals

14 /li 232 _
Z (T—’Bl = B(B).

, 2
(A +7)

:ﬁ*TUdiag( A ) "B

Next, we write more compactly the terms tr <X2T ZXQ) and y(B,)*>. By defining the short-hand notation
Q=ler(@+1D2E?) =L 27 (1- )% we have

2 P 2 2
Ai Q
(XZ TX ) Y(Bx) Z( ) _ Y(By)n
p Ai+T p
2,2 ~Iy1/2p |12 TR _
B.) P+ E+TD'EBE P HEL G o2+ BB
=K =K =K ,
Vi 1-Q 1-Q 1-Q
where k = 5 Hence, putting it all together in (18) gives the desired result. m}
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Proposition 3 (Asymptotic analysis of 7, and Q). Let X € RP*P be diagonal and X;; = A4; =i for 1 < . If

7, and Q satisfy the equations
) 00 . 2
A i
St S
p i+ 7 I\ + 1

i

then the following results hold

= (1+0™),  forc= (;)a

asin (/@)

| (12)
Q="""_oum.
a
Proof. We start with the asymptotic analysis of 7,. Along the same lines as Simon et al. (2024), since = H is
a monotonically decreasing function, we have:
= —f e dx =
— @4, 0 X ¥+T asin(m/a)
Furthermore,
us —1/a OO x @ OO - - i
_— -1= dx—-1< =
a/sin(zr/a)Tr ﬁ XY+ 1 * ﬁ XY+ T, ; i,
Hence, combining these two facts gives
n ~1/a il ~1/a
_— -1<ng ———
asin (m/a) T asin(r/a) !
1 . - . -
— ((n+ )a/sm(ﬂ/a)) S_l_tg(ncysm(ﬂ/cv)) ’
bis b
which leads to the desired result.
Next, we move to the asymptotic analysis of Q2. We have that
= " 2 — 2
@ 00 @ -1
nQ:Z(,_l ) Sf ( _x ) dx:f(_a—)‘rt_l/a.
I\ + 1 0 \X*+T; a’sin (7/a)
Besides, since the summand is monotonically decreasing, we also have
- 2 - o —a
_ 1 00 @ 00
Mr;‘/‘*—lsf al dx—lsf Z o
@?sin (/) 0o \x@+T, R -2 41,
Hence,
M e _1<nQ< M e (19)
a?sin (7r/ @) a?sin (/@)
By the hypothesis on 7, we have that
e asin (/@) _
o= n——=—=(1-0(n")). (20)
and plugging this in (19) gives the desired result. O
Proposition 4. Set the constants Cy := M and Cy = M and assume the power-law
e a(~va - 1)l

eigenstructure A; = i-® for 1 < a. Then, the indices i for which {; < 1 — Q are i < nCy + O(1); while the
indices i for which is {lz <1-Qarei<nC,+ O(1).
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Proof. Recall from Proposition 2 that we should identify indices i which satisfy the condition 42 >1-Qto
decide if we’re better off not selecting this dimension i in the surrogate model. Furthermore, Proposition 3

-1
gives that Q = a- O(n™"). Putting these together, we have
@

F>1-Q

1
= > whered = —+0n")
a

2 272
Tt _ Tl “ ’
— = — 5 >c
(r,+i7%)?*  (ri®+1)

= (1 -2 > 210" + ¢

/ 2 /
:»(Vl—c’r,i”— ¢ ) >lc
c/
= "> <
i v
7(1 = V)

\/F 1/a
)

(=>i>‘rtl/”‘(

Ve l/a_ 1
Vo) T (e

Asc =1+ 0m™), we get ( (1 + O(n™")). Incorporating (20), we achieve that

" 1/a .
T’l/"( e ] _asin(n/a) (1+0(n‘1))=nC2+0(1)-

=-n—
Col- Ve (Vo — Dl
Similarly, by following the same procedure with the initial inequality {; > 1 — Q, we get

asin (/@)

(i>1-Q — i>nC;+0(1), where C;|= .
m(a — 1)1/e

]

In Figure 3, we compare the empirical results with theoretical predictions for the number of features that meet
asin (/@)

n(ya - Dile

ignoring the O(1) term, aligns well with the experimental data and the accuracy in estimation increases with a.

the selection criteria in the optimal mask A* (51.2 < 1 —Q). The theoretical value, calculated as n

Proposition 6 (Scaling law for masked surrogate-to-target model). Together with the eigenvalues, also assume
now power-law form for /li,Biz, that is /li,Biz = iP for B > 1. Then, in the limit of p — oo, the excess test risk
for the masked surrogate-to-target model with the optimal dimensionality has the same scaling law as the
reference (target) model:

RPN = OBy ifp<2a+1,
and

R(B) = QN2 if B> 2a+ 1.

Proof. As discussed in Section 4, in order to analyze the model’s inherent error, we need to set 0',2 =0n)
where v is the exponent characterizing the scaling law of the test risk in the noiseless setting. We will work on
this proof in two cases depending on § and 2« + 1.

Case 1: 8 < 2a + 1. In this case, it is previously stated by Cui et al. (2022); Simon et al. (2024) that the test
risk of ridgeless overparameterized linear regression can be described in the scaling sense as err = @(n?*!)
when 8 < 2a + 1. Consider the optimal mask operation M mentioned in Proposition 2 that selects all features
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Figure 3: Comparison of the empirical and theoretical number of features satisfying the feature selection
asin (/@)
x(Va — Dl
the O(1) in Proposition 4. Setting: The feature size is p = 500, and the feature covariance follows the

power-law structure A; = i~ for @ = 1.5,3.0, and 4.5.

condition in the optimal mask M* (4’,.2 < 1-Q). The theoretical value is calculated as n , ignoring

satisfying 1 — {iz > Q. Let p be the number of selected features. We can then decompose the risk estimate in
Definition 2 as follows:
= ps 22 p 202, 2
B(ﬂ*) + O'tZQ i=1 /li.{,'ﬂ,' + Zi=p&+1 /li{,' :8,‘ + O-zQ errl + err2 + O'IZQ
1-Q 1-Q B 1-Q '
where errl and err2 are the contributions to the total risk of the target model from dimensions selected and
omitted in the surrogate model, respectively. Therefore, we express the total error as:

errl + err2 + 02Q
1-Q

= err = O(n ).

Going back to Proposition 4, we know that, as p — oo, the criterion for selecting a feature i in the optimal
masked surrogate model is given by

asin (/@)
(Vo = Dl

Define now w, = nC, + O(1). The equation (16) tells us that after the optimal mask operation M, err2 is
replaced by err2’, which is calculated as follows

i>nCy+0(1), where C,=

4 p
err2’ = Z B = Z i’
i=wy+1 i=wy+1

Since x# is a monotonically decreasing function, we can bound the summation by the following two integrals:

p+1 p P
-p 2‘ B 5
xPdx < i Sf xPdx
fa:

n+1 wy,

(w, + 1)—ﬁ+1 _p—ﬂ+l B i i—,B B (wn)—ﬁ+1 _p—ﬁ+1
E -1 - wy+1 - ’8_ 1

In the limit of p — oo, we obtain,
err2’ = O(n ).

Thus, we have tightly estimated err2’. Using the fact from Proposition 3 that Q = ©(1), and our assumption

on noise variance o> = O(n?*!), we conclude that the scaling law doesn’t change for the surrogate-to-target

model as

errl + o2Q

’_ —B+1
_0 +err2 =On").

R(BSZI) —
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Case 2: 8 > 2a + 1. In this case, we show that the scaling law is determined by errl, hence changing
err2 to err2’ has no effect in the scaling sense. From Proposition 3, we have the asymptotic expression

Q
T . .. 1
T, =cn® (1 + O(n‘l)), for ¢ = ( ) . We can argue that there exists positive constants ¢; < — < ¢z,
c

asin (/@)

such that cjn® < — < c,n®. We have that
T

Wy l—ﬁ W l—ﬁ

errl = Z T lau S Z (1 + crni—@)2
Lj-a -
~ (1+T1l ) i:l( + c1n%i=®)
Wn iZ(Yfﬁ Wn l'Za/fﬁ
i@ ay2 = 2 20’
@ +cn®)>  Hcn
This implies errl = O(n~2%). At the same time,
Wy B w, 20—
i i
errl = Z 1 2 2 Z ja @)2
Lj-a
L+ i70? A0 +en)
Wn 2a—B Wn 20-B

- ; (W) + cn?? Z 2 ((wy /n)® + )%

i=1

Using w, /n = O(1) gives errl = Q(n~2*) and we can conclude that errl = ®(n~>%). From Cui et al. (2022),
we already know that err = ®@(n~>%) when 8 > 2« + 1. Using Q = ©@(1), and our assumption on the noise
variance a‘f = O(n~2?) allows us to conclude that the scaling is dominated by errl, and thus, the scaling law
remains unchanged. m}

Proposition 5 (Scaling law). Assume that both eigenvalues A; and signal coefficients /li,Bl.z follow a power-law
decay, i.e., /li,Biz =iPand A4; = i" for a, B > 1. Let the optimal surrogate parameter B** be given by
Proposition 1 and define the minimum surrogate-to-target risk attained by B* as R*(8**") = min R(8*>).

Then, in the limit of p — oo, the excess test risk of the surrogate-to-target model with an optimal surrogate
parameter scales the same as that of the standard target model. Specifically, we have

R*(B2) = OBV = R(BY), iff <2a+1,
R*(BY) = O(n~2) = R(BY), ifB>2a+1.

Proof. From asymptotic risk decomposition in (26), we can write

Eg, |f(X! (EnB’80)| = (B’ = B) 0] Z01(B° = Bs) +¥;(B) Eg [0, £.62]

+B.TI = 0)TE( ~ 0B, — 2B (1~ 61) Z61(B’ ~ B.)
> 7;(B") By, 632,621,

since we can put in the form of (a — b)> + ¢* > ¢%. At the same time, we know that

o +72||(%; + T,I)’IZ}/2 *||§ tr (2,2(2, + TZI)_2>

V2B Eg, [0, £,0:] = &,

1-Ltr (@ +nn222) p
iy O’t2 + T%”(Zz + T,I)712}/2 *”% @
- 1-Q p
Q 2 C 2 2
= m(a', +;/l,~,8i§i].
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Recall the optimal surrogate vector discussed in Proposition 1 and the corresponding minimal surrogate-to-
target risk R*(8*>). In this case, we can write

Z/lﬂv*Zg — Z/lﬁ é/’)24112 )
= (a- 4)2 %0)

Similar to the previous proposition and as discussed in Section 4, to analyze the model’s inherent error, we set
o? = O(n™7) where 1 is the exponent characterizing the scaling law of the test risk in the noiseless setting. It is
previously stated by Cui et al. (2022); Simon et al. (2024) that the test risk of ridgeless overparameterized
linear regression can be described in the scaling sense as err = @(n?*') when 8 < 2« + 1. We will proceed
by considering two cases based on the relationship between 8 and 2« + 1.

Casel: B <2a+1
Consider the interval of i’s satisfying {; > 1 — Q and {iz < 1 - Q. By Proposition 4, we have

L51-Q e i>nC,+0(1), where ¢, = 2SnE/®

m(a - )Ve

20120 e i>nC+0(1), where C,= 2500/
e 2+ 0(1) 2= T

Let w, be defined as in the previous proposition and define ¢, = nC; + O(1). Then, the interval of interest
corresponds to the set of indices i such that ¢,, < i < w,. Within this interval, we observe

(1 =) = min ((1 -QPQ% (1- V- Q))2 (1- Q)) =

A-4)7+ <1+ =k

-Q 1-Q

-1
Using the fact from Proposition 3 that Q = ez O(n™") tells us k; = ©(1) and ky = @(1). Utilizing these
a

bounds, we obtain

)4 _ N2 2 Wy 2 72 Wn
R*(BSZI) > Z/l,ﬂ,z (] gz) g,' > Z 3 {z) {i . > i_ﬁ]%
(-8 & (- 4)2 T2 =
W (@nfn) P = )

=0n ).
Recalling w,/n = (1) and ¢, /n = (1), we obtain that R*(8°*') = Q(n?*!), and thus,
,R(BsZt) > .R*(ﬂSZt) — R(B‘YZI) — Q(n*ﬁJrl).
Case2: 8>2a+1
In this case, we have

. u (1= \ (1-4)°
R(B)> Y Af = 2 MG
; (-gr+ %g})z ; (=22 + %{2)2

o2 n -8
> /li§i2 ,3 3,
i:g;—s) (1 + Z I+ ar)2
where k3 = Q—oz = O(1). From Case 2 in Proposition 6, we already know that the same summation — with

(1+%)
upper bound w, rather than ¢, — scales as O(n~2®). Yet, since ¢, and w, have the same order @(n), the result
remains. This suggests R*(8°%) = Q(n2), which eventually yields

R(ﬂsh) > R*(ﬂsh) N R(Bsb) — Q(n—20/).

Hence, this allows us to say that the scaling law doesn’t improve even with the freedom to choose any 8°. O
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Proposition 7 (Non-asymptotic analysis of 7). Suppose that £ € RP*P is diagonal and X;; = A; = i™® for

3+ —
1 < a. Assume that n < pk for k = —211 If & satisfies
4+ T
LS
=
i At £
thencn® < ¢ <c (n +1+ Z—j)a forc = (M) . Note that ¢ is defined for the sake of the analysis, and

it corresponds to L.
Tt

Proof. From Simon et al. (2024), we have:

P —a P - 00 —-a 00 —a 00 -a
1 X X X T X
n= _ lgf 1dx:f 1dx—f sdx = — fl/“—f - dx.
ity Jo x4y 0 XU+ p XU+ asin(n/a) p XU+

Using 1 +x* < (1 + x)* for x > 0,

00 —a o 1 00 1 l/ar+ —a+1
f x : dx = f —dezf ——dx = £¢ p) s
p XUtz p 1+? » (1+§m)" a-1

which implies that
S S VA ot )i
~ asin(r/a) a-1 ’
Since the summand is decreasing, we can bound the Riemann sum by an integral, thus:

—

)4 i@ p+1 X
n= Z T2 7 dx
—Q kS —Q S
P + z 1 XY+ z
00 —a 1 —a 00 —a
X X X
f 7 dx—f 7 dx—f : dx
0 X%+ 2 0 X+ 3 prl X+ 2

&

1 —a o —a
s X X
=.—§1/“—f ldx—f - dx
asin (/@) 0 XU+ pr X+ b

l l/a foo 1
> —— -1- dx
a/sm(ﬂ/oz)é: pel 1+Slcxa

n 1a |
> T _ae__ [ Ly
= ozsin(ﬂ/a/)f L Ly *

+1 £
I ST P s
"~ asin (/@) —a+1 il
_ T Vo f(p+ 1)—a+] L
asin (/a) a-1 '
Recalling that @ > 1 and assuming & < p®, we derive:
7T Ve _ —p+1Sn§ n 1
asin (/@) a-1 a sin (/@)
; @ n+l+ 2 asin (/@) ¢
— (nasm(ﬂ/a)) cis< {( a—l) _
n bis
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We conclude by proving that & < p®. For the sake of contradiction, assume that £ > p®. Then,

)4 1 P2 1 P 1
=l 1+ — =l 14+ — i=p/2+1 ] + —
& & &
pl2 1 P 1
- i=1 1 + — i=p/2+1 1+1
1
3+ —
N
p 1 >
+ 2(1—2
which contradicts our assumption that n < pk. O

Proposition 8 (Non-asymptotic analysis of Q). Suppose that X € RP*P is diagonal and Z;; = A; = i"® for
1 < a. Let 1, be defined as in Proposition 7 and Q be the solution to

a3l

a—1 1 (n+1+25 oty
p+1

Then,

a  2a-1 n

Proof. We have that

S () (@-1)
X _ mla - e
Z[Za+ ) _\[0‘ [x—a_}_é] dx_azsin(n/a)g

1
=1 &

Besides, since the summand is monotonically decreasing:

r —q 2 p+1 —a 2
nQ) = Z ! > f ol dx
i+ ro vt
0o Y@ 2 1 00
f dx—f dx — dx
0o (X ¥+ 0 \x® + Z ptl z
-1 1 —a 2 00 ~a 2
= —ﬂ(a, ) fl/a —f X dx—f X d.x
a?sin (/@) o (x@+g pel (X0 + ¢
2
> Mo D é—‘”“—l—fm L |
= a2sin (n/a) prt | 1+ éx“
>M§1/ﬂ_1_fw ;dx
~ a?sin(n/a) i1 (éxa)z

B 7T(O’— ]) la |:é'_—2x—2(y+l o
a?sin (/) “2a+1],,

_ ma—=1) e EX(p + 1)t
a?sin (/@) 2 -1

Prl—

- 1.
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Let’s now utilize the upper and lower bounds for £ from Proposition 7. Then, we have
al@—1) nasin(r/a) E(p+ )72+

Q> 1
" a? sin (/@) Py 20 -1
B I’l((l— 1) ((2_—2(1) + 1)—2(1+1 .
B a 2a -1
. 2a
>n(a/—1) (n+1+§—j)asm(7r/a/) p+1 |
- a a(p+1) 2a — 1
2a
a—1 (n+1+%)asin(n/a) p+1 1
= Q> - [
a a(p+1) nRa-1) n
a-1 1 (n+1+22 oty
> u— RS
a 2a— 1 p+1 n’
sincem<lf0ra>l. O
n

e 1/a
3+ ) *(VE-1) pei
4 + 2%2 asin (r/a) a-1

and a > 3, we can find a masked surrogate-to-target setting that improves over the risk of the standard target
model by selecting all features i such that {lz >1-Q

-2
Proposition 9. Under the assumption that n < min [( p+1) ¢ ,D (
a

Proof. From Proposition 8, we have

2a—-1
gLl 1 nt 1+ 2N 1
a 2a -1 p+1 n
It’s then enough to show that we can find a set of i’s such that
1 1 (n+ 1z
G>—+ ol + -
a 2a-1 p+1 n
From proof of Proposition 3, we know that
7 1/a
g>c <=>i>7,‘””(i) .
-V

Hence, using the bound on ‘rl, = ¢ from Proposition 7, it’s enough to find indices i such that
2a-1

. 1a p+l
1 ; 1 1 n+1l+>0— 1
. asin (/a) nele P Ve where ¢’ = — + = +-. (2D
4 Ck—l 1—\/? @ 20,_1 p+1 "

Vx
1-vx

By our assumption p+ 1 >n+ 1+ 24l we obtain that 2 > ¢’. Since (
a-1 a

[\/§1—1)]/02(1—\/C—w,/?]w'

Then, to ensure the existence of an interval of i’s satisfying the above inequality, we choose

. 1/a . 1/a
asin (/@) 1 asin (/@) 1
_ 1 1
P (P+)ﬂ(a_1)[ ,_%_1] >(n+1) - ( _%_1)

”(\/g‘l)lm_pﬂ .

asin (/@) a—-1 "

1/a
) in increasing with x when

0 <x <1, wehave

25



One can verify that the LHS expression is always positive when @ > 3. Thus, discarding the features i provided
in the interval (21) will strictly improve the test risk of the masked surrogate-to-target model over the standard
target model. O

C PROOFS FOR SECTION 5

Theorem 3 (Distributional characterization, Han & Xu (2023)). Let k; = p/m > 1 and suppose that, for
some M > 1, 1/M < kg, a'f < M and ||Zll,p » ||Z;1 HOP < M. Let 74 € R be the unique solution of the following

equation:
1
K= —tr(():.s + Tsl)_lzs). (22)
p
We define the function ys : R? — R and the random variable based on g; ~ N(0,I) as follows:

_ 1/2
02 + 2N + 7D E B4R

1-Ler (@ +7,)?x2)

V2B) = ks (07 + Biey-n, [IEY2 B = BIB]) =
(23)

X’ 2 (Zs, By, 85) = (B + TA‘I)_IZS

K5Oy

2;”2%(&)&]
By + \/]_) .

Then, for any L-Lipschitz function f : RP — R where L < L(M), there exists a constant C = C(M) such that
for any € € (0, 1/2], we have the following:

B sup F(B) ~ B (X 2 Br 8] 2 &) < Cpe ', 24)

where R < M.

Definition 3. Recall the definition of T, and vy, in Theorem 1. Let k; = p/m > 1 and define T, € R similar to 7.
We define the function y, : R? — R and the random variable X’f 2 based on g; ~ N(0, 1) as follows:

E;I/Zyxw*)gs]

Bs + N

V3B = & (073 + By HIZ2(B = BOIBY), X! (5. Bas 8) 1= (B +7D) 'L,

Let ik = (ks, k), & = (T4, %), and & = (o-%, a’,z). Then, we define the asymptotic risk estimate as
Egx [¥2(B)]

Ks,0g

R (. ) = 12} (I = + D) " Z(Z, + 7o) E) Bl + tr(ZXE, + D))

2
LB (zlfz(zs + 1, )7 + 7D S + 7)) (s + TSI)—‘Z;”) )
p

1Zsllop » ”Z;IHOP N Zillop 5 ”Z‘.;luop < M,. Consider the surrogate-to-target model defined in Section 2, and

let R(B**") represent its risk when By is given. Recall the definition of ¥, k, o and Ry in Definition 3. Then,
there exists a constant C = C(M;) such that for any € € (0, 1/2], the following holds when R+ 1 < M:

sup ]P’(|7€('3s2f) - 7_2,%,&(2,‘8*)| >e) < Cpe_pgz;/c.
B+EB,(R)

Theorem 2. Suppose that, for some constant M, > 1, we have 1/M, < Ks,of,K,,O'f < M, and

Proof. Define a function fj : R” —» R as fi(x) = I|E,1/ 2(x - ﬂ*)||%. The gradient of this function is
VAL = 12Z:(x = Boll2 < 211 Edllop [1x = Bulla-
M,~R

Using Proposition 11, there exists an event E with P(E¢) < C,eP/C where C, = C{M,, o) with the
definition of M; in Proposition 11, such that f| (_,BSZI) is 2M?-Lipschitz if B, € B »(R). Applying Theorem 3 on
the target model, there exists a constant C; = C4(M;) such that for any € € (0, 1/2], we obtain

sup B(|f(B%) - By lf X, . (E B g0)]] 2 ) < Cpe ', (25)
BreB(HLE) o
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where £(8°2") = R(B**) and

X (LB g) = E + D),

O yB)e
Ki,Of Bb + .

VP

Furthermore,
By, |/(X] 2(Z0.B', g,))] = By, [ 01(8" = Bs) = (I = 01)Bx + 02y, (BNI3]

= (B’ = B0/ 0B’ ) + i (B') Eg,[6; £,6,]

+ﬂ*T(I - 01)T2t(1 - Ol)ﬁ* - Zﬁ*T(I - 01)T2t01(ﬂs _ﬂ*), (26)
where 0, := (&, + t.])"'X, and 0, := (T, + T,I)’thl/z%. Let E(M;, @) be the event defined in Proposition
10. Let f> : R” — R be defined as f>(x) := (x — B+)"0] X,0,(x — B,). By Proposition 12, the function f; is

2M?—Lipschitz if B, € B,(R) on the event E(M,, M’z_R ). Applying Theorem 3 on the surrogate model, there

exists a constant C,,; = C,,1(M,) such that for any & € (0, 1/2], we obtain

sup P(|/208) - B.TU - @)TOT L0, - @By — Y2 (B2) Eg [®]0] L0, ®s]| > &) < C,py pe 7/,
B+€B,(R)
27

where @, := (X, + 7,])"'E, and @, := (T, + TSI)*):_L/Z%.

Let f5 : R? — R be defined as f3(x) := 7/[2(x)02T X.,6,. By Proposition 13 and Proposition 2.1 in Han & Xu
(2023), the function f; is 4M,2-Lipschitz if B, € B,(R) on the event E(M,, @). Applying Theorem 3 on the
surrogate model, there exists a constant C,,» = C,, 2(M,) such that for any & € (0, 1/2], we obtain

sup P (|f3(8") — Bpxs [y; (B By [0] £,621| > &) < Cypope /%2, (28)

B+E€B,(R)

Let f; : RP —» Ras fi(x) := =28, "I — 6;)TX,0,(x — B). By Proposition 14 and Proposition 2.1 in Han &
Xu (2023), the function f; is 2M?—Lipschitz if 8, € B »(R) on the event E(M,, #). Applying Theorem 3 on
the surrogate model, there exists a constant C_‘w,3 = C_'W,3(M,) such that for any & € (0, 1/2], we obtain

sup (|18~ 2[B. (- 1) Z.61(®, - 1. ]

B+€B,(R)

> 8) <Cy3 pe et/ Cus (29)

By the definition of these functions, we have

By [FOC (BB 80| - B - 00TE - 0B = LB + B - Fi(B) (30)
By the definition of 6}, 6, ®,, and ®,, we have
R (E.B) = Ba (L = ) E(I = 0B = BT (I~ ©) ] Z0,(I — )Ba +7(B) By [@] 6] 5,6,

+Epooxs[Y2(B°)] Eg, [0 £.0,] — 2 [ﬂJ(I -6 Z,0,(®; - I)ﬂ*] :
31

Using (30)-(31) and applying a union bound on (25), (27), (28), and (29), we obtain the advertised claim. O

Proposition 10. Suppose that, for some M; > 1, 1/M; < KS,O'% < M, and ||E4l,, , ”Z;IHOP < M,. For every
¢s > 0, there exists an event E(M,, ;) with P(E(M,, c,))°) < Cse™?/Cs where C; = C{(M,, c;) such that

1Bl < 1Bxllz + 5 and |IB° = Bull2 < [1Bull2 + cs.

Proof. By the definition of 8°, we have
BS — XT(XXT)-];,
=X"(XX") ' XB, + XT(XX")'z, (32)
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where Z ~ N(0, o2I). By triangle inequality, we obtain
8% < IXT(XXT)"' XB |l + 1XT(XXT) "2l
@ YT v VYT\-ls
< Bxll + 1IX (XX )™ Zlla, (33)

where (a) in above follows from the fact that X7 (XX )~ X is a projection matrix, and so all of its eigenvalues
are either O or 1. Focusing on the second term of the RHS, we derive

o . 7T (XX oz
IXT(XXT) 'z =2"(XX") 'z = —( ) —
: ve\ p ] P
@ 77z || XX\
<iZt ( ) : (34)
p

P
op

where (a) in the above inequality follows from Cauchy-Schwarz inequality. Using Bernstein’s inequality, there
exists an absolute constant Cy > 0 that depends on o~ such that

777 > pt
P(ﬂ—o-§>t)3exp —cmin p_,p_ )
P 4C3 2C0

On the other hand, let Z = X'Z;l/ 2, which means that the entries of Z are independent and normally distributed
with zero mean and unit variance. Then,

277\

)

XX\
=)
Using Theorem 1.1 in Rudelson & Vershynin (2009), there exist absolute constants C, C, > 0 such that we
have the following for every & > 0

277\
1)
p
op
By combining (34), (35), and (36), we obtain that

A 1 -
P8l < 1Bl + o1 = ) o+ o 257,

2
<(Cre)P™ 4P 4o 4 0

<=1, @)

op

(Zz_YZT )1
p

op op

N

2
<é (1 - i) } < (Cre)P™m ! 4 o7PC2, (36)

The advertised claim for ||8°||, follows when ¢ is selected as € < ﬁ For ||8* — B«l|2, using the definition of
B, we write as follows:

1B° = Bul = IXT(XX") ' XBy + X (XXT) "2 - Bill2
<IXTXXT) X = IRIIBs b + IXT(XXT) 'zl
(a) P
< Bulla + IXT(XXT) '], (37)

where (a) in the above inequalities follows from the fact that the eigenvalues of X™(XXT)™' X — I are either 1
or 0 as the eigenvalues of X™(XXT)~' X are either 1 or 0. The remaining part of this proof is identical to the
previous part. O

Corollary 2. Suppose that 5 € RP is given, and for some M; > 1, we have 1/M, < k,0? < M, and
IZellop » HE;IHDP < M,. For every ¢; > 0, there exists an event E(M;, ¢,) with P(E(M,, ¢,))°) < C,e P/ where
C, = C(M,,c,) such that

1B < Bl + ¢ and B = Bl < IIBll2 + c.
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Proof. The result directly follows from the proof of Proposition 10. O

Proposition 11. Suppose that, for some M, > 1, 1/M; < k,,0> < M, and IZelop » “E,_IHOP < M,. For every

¢; > 0, there exists an event E(M,, ¢,) with P(E(M,, ¢;))°) < C,e™P/¢ where C,; = C.(M,, ¢;) such that we have
the following on this event E(M;, ¢;):

1Bl < 11Bsll + ¢, and 1B = Bulla < 11Bsll + ¢

Proof. By the definition of 8%, we have the following:
B =XXX)'XB + X (XX") 'z (38)
where z ~ N(0,0I). Plugging (32) into (38), we obtain
B =X(XX")'x (XT(XXT)*IX/;* + XT(XXT)*IZ) +XT (XX 'z (39)

Note that X(XX7)™' X and X7 (XX7)~' X are projection matrices. Multiplication of two projection matrices
results in a projection matrix. Using the fact that the eigenvalues of a projection matrix are either 1 or 0 in
(39), we have

181 < 1Bsll + IXT(XXT) 2L + IXT (XX )zl (40)

By a similar reasoning used in (34),(35), and (36); there exist absolute constants Cy, Cy, Cs, ¢ > 0 such that
we have the following for every &,¢ > 0:

T TN— 1 -
P(IXT XX el < 501 = ) i+ oD 57,

2
—cmin LL’}
<(Cre) ™™ 477 e { o (41)

Similarly, for every & > 0, there exist absolute constants Cy, Cy, C,& > 0 such that we have the following for

every &, 1
o 1 ~ 1 - _
P (IR XX e < 80— 0@+ o) [

,
- ~ —¢min %,ﬂ}
< (C&)Pm 4P pe {“0 0 (42)

Note that X, z, X, and Z are independent of each other. Therefore, we can apply union bound on (41)

and (42) with selecting &,1,&, and 7 such that & < c+e’ % < &(1 - Kl/) (@t + O'ZZ)HZ,‘IHOP, g < C%, and
5 <el- Ki) JE+ D) ||Z;1||op. As a result, there exists an event E with P(E€) < C,(M,, ¢;) such that

s

1812 < 1B«ll> + ¢

Using a similar argument in (37), we derive the following on the same event E|

1B = Bull> < [1Ball> + ;.
This completes the proof.

Proposition 12. Let g : R” — R be a function such that
gB") =I5 + D) 'Z(B’ - Bl

. .. . . 22 . .
Then, on the same event E(M,, c,) in Proposition 10, the function g is (||Bx|l> + cs)m—szschztz where Ay
is the largest eigenvalue of X,.
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Proof. We take the gradient of the function g:

VB2 = 2IZ(Z; + 7)) ' Zi(Es + 7D 7' Z,(B° - Bl
3

<|IB’ = Bullo max ————
1

(A +71,)?
T 2
= 18"~ Bl mgxzai(l - A,»+tn)
B I 24
—IB ﬂ* 2(/11_'_7_,)2-

Combining Proposition 10 on the event E(M,, c;) with the above inequality provides the advertised claim. O

Proposition 13. Let g : R” — R be a function such that
‘ 1 _ s
8B = I—)IIE,”Z(E, + D) 2y (B

Then, on the same event E(M,,cy) in Proposition 10, the function g is L—Lipschitz where (/l;)l’.’:1 are the
eigenvalues of X, with a descending order and

3
L 1Bxll2 + ¢

m (A +7) _ Ly (ﬂ_)z
m ~i=1 \ Aj+71,

Proof. We take the gradient of the function g:
2 _ - s
Ve(B) = SE,E + Tl I+ ) PVY ).

Note that
V2B = ki (07 + BpalIZ)* (B - BOIR1)
ot + & + o)A

1 - Ler (@ +n072)

Then, we have
22 + 7 D)L
- Ler(@ +nn2x2)

Vy2(B°) = 2«

Plugging Vy?(B°) into Vg(B°*), we obtain that

A2 5P + oD T + T DT + D)7
m - Ltr (@ +n0)222)

4 A Il

m (4 +T)t _ Ly (2 )2'
m “i=1 \ A;+71,

VBl =

Combining Proposition 10 on the event E(M,, c;) with the above inequality provides the advertised claim. O

Proposition 14. Let g : R? — R be a function such that
.
8B =287 (I- & +D)'E) Z(Z + D) 'L(B - Bo).

2
Then, the function g is 2||B|l27; (L) —Lipschitz where A, is the largest eigenvalue of X.;.

A +74
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Proof. We take the gradient of the function g:

IVe(B)Ih = 20IEAZ, + 7D E, (I = (& + 7.1 'L,) Bullo

2
T
<2 1-
1B«ll27: mlaX( 1 +Tr)

2
A
=2||.3*||sz( 1 )

A+
and the desired result readily follows. O
Lemma 1. We have that
02 + 2N &+ T D) + T D) T E B
1- 5tr((zt + T,I)—sz)

Epx L [V/(B)] = ki

KT (B,) tT (zifz(zs + 1,0 EVAE + T D2 A + TSI)*IZW)
p 1= Ler(@ +n02x2)

Proof. The desired claim follows from the following manipulations using the definition of X* , in (13):
g p g ke,

2 2 -1y 1/2 ps12
o+ |+ D) E I
Epx: 177 (B)] = Bgxe |, |ki—— L=
1-Ltr (@ +7n,D72%)
n

o2 + T + D) B (B + T BB + (B + T EV 2y (B8 VP)IB
“ - Ltr (@ +n022)
o2 + 2N + 7D E (s + D) BB
- Ltr(@ +n2x2)
k22 (Ba) 1 (B2 + DL P + 7D AR, + 1, D)7 E)
p 1= Ler (@ +7,022)

=K[
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