
Under review as a conference paper at ICLR 2021

CONTENTS

1 Introduction 1

1.1 Related Work . 2

1.2 Notation and Definition . 2

2 Why Controlling the Spectrum? 3

3 Preconditioning Layer 3

3.1 Preliminary: Polynomial Preconditioner . 4

3.2 Preconditioning Layer in Deep Nets . 4

3.3 Finding Preconditioning Polynomials . 5

3.4 Fixed Preconditioning and Adaptive preconditioning 6

4 Experimental Results 7

5 Conclusion 8

A More related works 14

B Preconditioning: Introduction 15

B.1 Polynomial preconditioner . 16

B.2 Preconditioning a rectangular matrix: linear regression 16

C Details of Algorithms 17

C.1 Polynomial fitting algorithm . 17

C.2 Detailed Description of FPC and APC . 18

C.3 Implementation of PC layer . 18

C.4 Computation time . 20

D Global Convergence: Proofs and Other Results 20

D.1 Basics: Neural Tangent Kernel and Convergence Lemma 20

D.2 Convergence of Continuous Dynamics . 21

D.3 Convergence of Discrete Time GD: Theorem and Discussion 22

D.3.1 Proof of Theorem 1 . 24

D.3.2 Proof of Claims on Lipschitz Continuity 25

E Supplementary Material for Section 3 27

E.1 Spectral normalization and estimated spectral norm 27

E.2 Proofs of Technical Results . 28

E.2.1 Proof of Claim 3.1 . 28

E.2.2 Proof of Claim 3.2 . 28

13

Under review as a conference paper at ICLR 2021

F Experiments: More Details and More Results 28

F.1 Results on CIFAR-10 and STL-10 with CNN . 28

F.2 Results on CIFAR-10 and STL-10 with ResNet 29

F.3 Robustness of APC-GAN . 31

F.4 FPC results with different degrees . 31

F.5 Generated Samples . 31

A MORE RELATED WORKS

We briefly review related works in the following categories: normalization and regularization ap-
proaches; preconditioning in machine learning; related works on GAN training. Related works on
the theoretical analysis of gradient descent for neural nets are briefly discussed in Appendix D.

Normalization and regularization. Bounding the weight matrices during training or at initializa-
tion has been studied for a long time. These approaches consider mainly three questions: what time
range (controlling initial point or all iterates); what modification (built-in layer or regularization);
and what goal (upper bound on Frobenious norm, orthogonal matrix, or control spectrum). We com-
pare a few popular methods in Table 3. To our knowledge, our method is the first one that applies
a built-in layer to control the spectrum over all training iterations. In Table 4, we show empirical
results of BN, GP, WN, orthogonal regularization, SN, SVD with D-Optimal Regularizer and our
PC methods (FPC and APC) on standard CNN for CIFAR-10 and STL-10.

Lin et al. (2020) analyzed why SN works well for GAN, and proposed a variant of SN called bidi-
rectionalSN (BSN). The improvement of BSN over SN is similar to the improvement of Xavier
initialization over LeCun initialization: BSN considers both the input dimension and the output di-
mension and scales the weight tensor by two versions of the reshaped matrices. This technique is
somewhat orthogonal to our PC technique, and these two techniques can potentially be combined
together. We leave the exploration of the combination to future work.

Preconditioning in machine learning. In a broad sense, any method that aims to reduce the con-
dition number of a matrix can be viewed as preconditioning. Researchers sometimes call a method
✓ ✓ � ⌘M(✓)rL(✓) a “preconditioned” gradient descent, such as Li et al. (2015). In this sense,
adaptive gradient methods such as AdaGrad (Duchi et al., 2011) are also viewed as “preconditioned”
gradient descent. These methods are universal to any optimization problem and do not utilize the
structure of neural nets. In contrast, we apply preconditioning to weight matrices, which rely on the
fact that the neural net consists of multiple weight matrices.

Odena et al. (2018) encourage the generator to be well-conditioned. They compute the condition
number of the input-output Jacobian, which is based on an earlier understanding of the training
(small condition number of input-output Jacobian). In contrast, our result is based on a more recent
understanding of the training (small condition number of NTK).

Improving GANs by resolving target issues. Identifying the training issues of GANs is often the
first step to understanding. We briefly review three types of issues identified for GAN training.

First: undesirable property of the loss function. Early work on GANs (Goodfellow et al., 2014)
studied a loss related to the J-S (Jenson Shannon) distance. Arjovsky & Bottou (2017) pointed out
that the J-S distance is ill-defined for two distributions with disjoint support, and proposed to use a
loss function based on the Wasserstein distance, which is referred to as WGAN.

Second: cyclic behavior (non-convergence). This issue has been well recognized (Mescheder et al.,
2018; Balduzzi et al., 2018; Gidel et al., 2019; Berard et al., 2019). This is a generic issue for min-
max optimization: a first-order algorithm may cycle around a stable point, converge very slowly or
even diverge. This convergence issue can be alleviated by some advanced optimization algorithms
such as optimism (Daskalakis et al., 2018), averaging (Yazıcı et al., 2019) and extrapolation (Gidel
et al., 2018).

Third: mode collapse. Mode collapse is long known to be a challenge for GANs (Goodfellow et al.,
2014). It means that some “modes” of the true data distribution are not generated, thus the diversity

14

Under review as a conference paper at ICLR 2021

Method Range Modification Goal Quantity

Orthogonal-ini Initial – orthogonal weights weight
BatchNorm (BN) All built-in layer bounded norm postactivation

WeightNorm (WN) All built-in layer bounded Frobenious norm weight
Weight clipping All projection bounded weight norm weight

Gradient penalty (GP) All regularization bounded grad norm gradient
Orthogonal-reg All Regularization orthogonal weights weight

SpectralNorm (SN) All Built-in layer bounded spectral norm weight
SVD All Regularize control spectrum weight –
PC All Built-in layer Control spectrum weight –

Table 3: Comparison of Orthogonal initialization (Xiao et al., 2018), batch normalization (Ioffe & Szegedy,
2015), weight normalization (Salimans & Kingma, 2016), weight clipping (Arjovsky & Bottou, 2017), gradient
penalty (Gulrajani et al., 2017), orthogonal normalization (Brock et al., 2016), spectral normalization (Miyato
et al., 2018), SVD (Jiang et al., 2019), and our PC layer. The first three methods are originally designed for
general-purpose use; the other methods are commonly used in GANs. Note that all methods can be used in
both supervised learning and GANs. Their practical performance on common applications may differ. Some
notes: BN is originally designed for postactivation (output of each activation layer), but it can also be used for
preactivation (input of each activation layer). SVD is actually a mixture of a regularization and a built-in layer:
for USV

T SVD regularizes U, V , and either regularizes S or uses a built-in layer to adjust S. For simplicity,
we call it “regularize.”

of the generated images is not high. The cause of mode collapse is not well understood and there are
a few hypotheses, such as improper loss functions (Arjovsky & Bottou, 2017; Arora et al., 2017),
weak discriminators (Metz et al., 2017; Salimans et al., 2016; Arora et al., 2017; Li et al., 2018),
and inherent property of the loss function (Lin et al., 2018). A few empirical solutions have been
proposed, including unrolled GAN (Metz et al., 2017), minibatch discrimination (Salimans et al.,
2016) and PacGAN (Lin et al., 2018).

Other GAN Variants. Many different GANs have been proposed over the last few years. These
include WGAN (Arjovsky et al., 2017; Arjovsky & Bottou, 2017; Gulrajani et al., 2017), other vari-
ants of WGAN (Wu et al., 2019; Kolouri et al., 2018; Adler & Lunz, 2018; Deshpande et al., 2018),
least-squares GAN (Mao et al., 2017), f -GAN (Nowozin et al., 2016), and many more (Mroueh
& Sercu, 2017; Berthelot et al., 2017; Mroueh et al., 2017; Cully et al., 2017; Li et al., 2017b;a;
Salimans et al., 2016; Nowozin et al., 2016; Poole et al., 2016; Metz et al., 2017; Radford et al.,
2016; Bengio & LeCun, 2007). As mentioned in the main text, our approach falls into the category
of “normalization and regularization.” It is hence relatively orthogonal to these approaches.

B PRECONDITIONING: INTRODUCTION

Consider a linear system of equations

Qw = b,

where Q 2 Rn⇥n is real symmetric, and b 2 Rn⇥1. Conjugate gradient (CG) is one of the most
popular methods to solve the system of equations. It has iteration complexity O(

p
(Q) log 1/✏),

where (Q) is the condition number of Q. For ill-conditioned problems (i.e., large (Q)), the
convergence can be slow. Thus, in practice, preconditioned CG is commonly used instead of the
original CG.

Suppose there is a certain way to find a preconditioner M that reduces the condition number, i.e.,
(MQ) < (Q). Define Q̃ = MQ and b̃ = Mb, then we can solve an alternative problem

Q̃w = b̃,

for which CG (and other gradient methods) converges faster. One simple example is Jacobi pre-
conditioning (closely related to whitening in machine learning) where M is a diagonal matrix with
Mii = 1/

p
Qi,i.

15

Under review as a conference paper at ICLR 2021

B.1 POLYNOMIAL PRECONDITIONER

We review the polynomial preconditioners proposed by Johnson et al. (1983). However, we do not
directly utilize the polynomials proposed by Johnson et al. (1983) since our setting differs. But we
do borrow two lessons, which we will explain at the end of this subsection.

Consider a linear system of equations
Qw = b,

where Q 2 Rn⇥n is real symmetric, and b 2 Rn⇥1. To find a polynomial preconditioner p(Q) such
that g(Q) = p(Q)Q is well-conditioned, we only need to find a polynomial p such that g(x) =
p(x)x maps [�1,�m] to [1� ✏, 1]. This can be formulated as an approximation theory problem: find
a polynomial g(x) that approximates a function f where f(0) = 0, f([�1,�m]) = 1.

Define

Pk = {p(x) | p(x) =
kX

j=0

cjx
j}, P̂k = {g(x) | g(x) =

kX

j=1

cjx
j},

P̂
+
k

= {g(x) 2 P̂k | g(x) > 0, 8x 2 [�L, �U]}.
Here, Pk is the set of all polynomials with degree no more than k, P̂k contains all elements of Pk

that vanish at 0, and P̂
+
k

contains all elements of P̂k that are positive in [�L, �U].

Johnson et al. (1983) consider two polynomial preconditioners: minimax and least-squares polyno-
mials. Minimax polynomials are the solution to the following problem:

min
p2Pk

max
�2[�L,�U]

|1� �p(�)|. (6)

Note that there should be an extra constraint that �p(�) 2 P̂k+1, but as we see shortly the solu-
tion automatically satisfies this constraint. Denote q(�) = �p(�), then the above problem can be
rewritten into

min
q2P̂k+1

max
�2[�L,�U]

|1� q(�)|. (7)

There is a closed-form solution to the above problem: q⇤(�) = 1 � Tk+1(µ(���L))
Tk+1(µ(���L))

, where µ(�) =

�1 + 2 ���L

�U��L
maps [�L, �U] to [�1, 1], and Tk(x) is the Chebyshev polynomial of the first kind

satisfying Tk(cos(z)) = cos(kz). The first four Chebyshev polynomials are T0(x) = 1, T1(x) =
x, T2(x) = 2x2 � 1, T3(x) = 4x3 � 3x. This polynomial q⇤ happens to lie in P̂

+
k

, thus it is the
desired solution.

Johnson et al. (1983) also consider least-squares polynomials, which are the solutions to the problem

min
q2P̂k+1

Z

�L,�U

|1� q(�)|w(�)d�. (8)

There is a closed-form solution to the above problem since it is a quadratic problem in the coeffi-
cients of q. A major theoretical challenge for Johnson et al. (1983) is to find whether the solution is
in the set P̂+

k+1, i.e., whether it stays positive in [�L, �U]. Johnson et al. (1983) provided a sufficient
condition for the optimal solution to be in P̂

+
k+1. In particular, for the Jacobian weight function

w(�) = (�U � �)↵(�� �L)� where ↵ � � � �1/2, the optimal solution is in P̂
+
k+1.

As we will explain in the next subsection, we cannot directly borrow the polynomials used by John-
son et al. (1983). Nevertheless, we borrow two lessons for our design. First, the polynomial pre-
conditioner can be designed by solving an optimization problem (either minimax or least squares).
Second, they found that least-squares polynomials perform better than minimax polynomials for it-
erative algorithms. For this reason, we adopt the least-squares polynomials instead of the minimax
polynomials.

B.2 PRECONDITIONING A RECTANGULAR MATRIX: LINEAR REGRESSION

Our problem: how to precondition a rectangular matrix. This differs from the problem considered by
Johnson et al. (1983). In this subsection, we explain why we cannot directly apply the polynomials
designed by Johnson et al. (1983).

16

Under review as a conference paper at ICLR 2021

Preconditioning rectangular matrices is often not explicitly discussed in polynomial preconditioning
literature. This is partially because for linear models, it is easy to transform a rectangular matrix to
a square symmetric matrix. We will discuss this point below.

Consider a linear regression problem
min
w2Rd

F (w) = kAw � yk2, (9)

where A 2 Rn⇥d, y 2 Rn⇥1. Suppose we want to apply preconditioning to speed up a gradient-
based method. There are two different methods: (i) preconditioning A

T
A; (ii) preconditioning A.

Method 1: Precondition A
T
A. We write the optimality condition of the problem is

A
T
Aw = A

T
y. (10)

Thus solving the original problem (Eq. (9)) is equivalent to solving (Eq. (10)). We design a
polynomial preconditioner p(Q) for the matrix Q = A

T
A 2 Rd⇥d, and obtain a new linear

system p(AT
A)AT

Aw = p(AT
A)AT

y. The preconditioned GD proceeds as follows: wnew =
w � ↵p(AT

A)[AT
Aw �A

T
y].

Note that in practice, we rarely form the matrix A
T
A directly since it is time consuming. Instead, we

multiply each matrix with a vector sequentially. For instance, when p(AT
A) = A

T
A, we implement

A
T
A[AT

Aw�AT
y] as AT (A(AT (Aw�y))), where each bracket is a matrix-vector product. From

a neural-net perspective, the computation of the gradient consists of: a forward pass that computes
e = Aw � y; an extra preconditioner ê = A(AT (e)); a backward pass AT

ê.

Method 2: Precondition A. Now we consider the second choice: precondition A directly. We use
a preconditioner M 2 Rn⇥n and solve a new problem

min
w2Rd

F (w) = kMAw �Myk2. (11)

The optimality condition of the new problem is

A
T
M

T
MAw = A

T
M

T
My. (12)

Although Eq. (12) seems different from Eq. (10), it is easy to show that they are equivalent when
M = p(AA

T) is a polynomial function of AA
T . In fact, in this case Eq. (12) is equivalent to

M
T
MA

T
Aw = M

T
MA

T
y.

Therefore, applying preconditioner M to A in the original problem is equivalent to applying pre-
conditioner MT

M to A
T
A in the optimality condition.

The preconditioned GD proceeds as follows: wnew = w� ↵(AT
M

T
MAw�A

T
M

T
My). Again,

the real implementation consists of a series of matrix-vector products. It can be decomposed into two
steps: a forward pass of computing ê = M(Aw � y), and a backward pass of computing A

T
M

T
ê.

Comparison of both methods. For linear regression problems, preconditioning A
T
A is slightly

better than preconditioning A since the former covers the latter as a special case. More specifically,
suppose we use p1, p2 to denote the precoditioning polynomial for method 1 and 2 respectively. For
method 1, the preconditioned matrix is Z1 = p1(AT

A)AT
A while for method 2, the preconditioned

matrix is Z2 = p2(AT
A)2AT

A. Note that {p2(AT
A)2AT

A | deg(p2)  k} is a proper subset of
{p1(AT

A)AT
A | deg(p1)  2k}. This means that method 1 can cover method 2 but not the other

way. For this reason, there is little motivation for most linear system researchers to study direct
preconditioning of A.

Nevertheless, a major advantage of directly preconditioning A is that it can be applied to general
parameterized models such as neural nets. The method of preconditioning A

T
A relies on the special

property of linear regression that AT
A appears in the optimality condition, which does not hold in

more general problems.

C DETAILS OF ALGORITHMS

C.1 POLYNOMIAL FITTING ALGORITHM

The whole procedure of identifying polynomial g is summarized in Alg. 1.

17

Under review as a conference paper at ICLR 2021

Algorithm 1 POLY-FITTING

1: Input: a target function f(x) : R! R. Default choice: f(x) = PLb(x).
2: Hyper-parameters: segment [�L, �U], degree k, ↵ appearing in w(�) = �

↵.
3: Solve the convex problem (5) to obtain c

⇤.
4: Output: a polynomial g(�) =

P
k+1
t=0 c

⇤
i
�
t
.

Algorithm 2 Fixed Preconditioning (FPC) for Neural Net

1: Input: a deep net D(✓), with ✓ = (W1, . . . ,WL) the collection of trainable weights. For GAN
training, we use the discriminator net D.

2: Dependent algorithm: polynomial generating method POLY-FITTING; spectral-norm estima-
tor SN(W).

3: Step 1: generate a polynomial g by POLY-FITTING. This g is a (2k + 1)-th order polynomial
of the form g(x) = xh(x2), where h is k-th order polynomial.

4: Step 2: Build a preconditioned neural net DPC(✓) = D(g(SN(W1)), . . . , g(SN(WN))).
5: Output: DPC(✓).

C.2 DETAILED DESCRIPTION OF FPC AND APC

As stated in the main paper, g(x) are fitted to different piecewise linear functions (Fig. 3) via Alg. 1.
Here we provide the formulations of g0(x), g1(x), g2(x), g3(x), g4(x) corresponding to the cutoff
b = 1, 0.8, 0.6, 0.4, 0.3.

g0(x) = x,

g1(x) = 1.507x� 0.507x3
,

g2(x) = 2.083x� 1.643x3 + 0.560x5
,

g3(x) = 2.909x� 4.649x3 + 4.023x5 � 1.283x7
,

g4(x) = 3.625x� 9.261x3 + 14.097x5 � 10.351x7 + 2.890x9

(13)

For g0(x) = x, we recover SN; thus SN is a special case of PC. We can even allow continuous
transformation from SN to PC: using g(x;↵) = (1 + ↵)x � ↵x

3 in PC layer, then for ↵ = 0 we
have SN and for ↵ 6= 0 we have other PC. In our implementation of APC, we do not use continuous
change of g, though this can be a potential future research direction.

The detailed procedure of FPC is summarized in Algorithm 2; it just describes how we obtain a new
neural net with a fixed PC layer added to each layer. The detailed procedure of APC is summarized
in Algorithm 3; it describes how to implement APC during training.

In our implementation of APC, the values of ⌧0, ⌧1, ⌧2, ⌧3, ⌧4 are 0, 5, 10, 20, 30 respectively. That is
to say, if the condition number ̃(W)  5, no preconditioner will be applied; if 5 < ̃(W)  10, g1
will be applied on the weight W ; if 10 < ̃(W)  20, g2 will be applied on the weight W ; if 20 <

̃(W)  30, g3 will be applied on the weight W ; if ̃(W) > 30, g4 will be applied on the weight
W . We do not heavily tune these values ⌧i’s; it seems that the performance of APC is relatively
robust to different values. In our implementation, we use the average of the condition numbers of
the last 5 iterations (to replace Line 9); for simplicity, we do not add this small modification into the
table. This may improve the performance a bit, though we did not perform a through ablation study.

C.3 IMPLEMENTATION OF PC LAYER

We discuss a few computational tricks for implementing the PC layer. These tricks can greatly
reduce the computation time.

Suppose we decided to use a polynomial g(x) = xp(x2) to implement a PC-layer.

For a convolutional layer, W is a tensor, and we will follow Miyato et al. (2018) to reshape the tensor
into a matrix flat(W), and apply an SN layer to obtain A = SN(flat(W)). For the fully connected
layer, W is a matrix, and we can define A = SN(W).

18

Under review as a conference paper at ICLR 2021

Algorithm 3 Adaptive Preconditioned (APC) Neural Net

1: Preparation: A neural net D(✓), where ✓ = (W1, . . . ,WL) is the collection of all weights. An
algorithm A that updates ✓ and other parameters (e.g. generator parameter), such as SGD and
Adam.

2: Dependent functions: spectral norm estimator SN(W); preconditioners g1, g2, . . . , gm with
increasing preconditioning power, i.e., g1(x)  g2(x)  . . . gm(x), 8x 2 [0, 1].

3: Hyper-parameters: Tadj 2 Z+, ⌧1 < · · · < ⌧m 2 R+.

4: for t = 1, 2, . . . do
5: Set the function g

l(W) = SN(W);
6: if mod (t, Tadj) == 0 then
7: for l = 1, 2, . . . , L do
8: Compute the condition number ̃(Wl).
9: If ̃(Wl) 2 [⌧j , ⌧j+1], set the function g

l(W) = gj(SN(W)).
10: end for
11: end if
12: Update parameter ✓ in the precondtioned neural net D(g1(SN(W1)), . . . , gL(SN(WL)), and

other parameters by one iteration of the algorithm A.
13: end for

The first trick is to choose one of the two equivalent expressions depending on whether A is wide
or tall. More specifically, note that g(A) = p(AA

T)A = Ap(AT
A). We call p(AA

T)A the AA
T -

form and we call Ap(AT
A) the A

T
A-form. Although the two forms give the same value, their

implementation time can vary a lot: suppose A 2 Rn⇥m where n � m, then evaluating A
T
A

takes O(m2
n) operations while evaluating AA

T takes O(nm2) operations. In an extreme case
where A 2 R1000⇥1, AT

A takes 2000 multiplications and 999 additions, while AA
T takes 10002

multiplications. Therefore, if A is tall (n � m), we pick the A
T
A-form; otherwise we pick the

AA
T -form. We checked a 100 ⇥ 1000 random matrix in PyTorch, and found that AA

T takes time
0.0018 sec while A

T
A takes time 0.0078, a 4-times gap.

The second trick, which is quite straightforward, is to store the product B = A
T
A or B = AA

T ,
and re-use the product. We will examine the implementation of p(B) = p(AT

A) next.

The third trick is to use Horner’s method to evaluate the polynomial. The basic idea of Horner’s
method is that a polynomial can be decomposed into the following form:

kX

i=0

aix
i = a0 + x(a1 + x(a2 + . . . x(ak�1 + akx) . . .)).

For instance, a0 + a1x+ a2x
2 + a3x

3 = a0 + x(a1 + x(a2 + a3x))). Suppose p(x) =
P

k

i=0 cix
i
.

A naı̈ve implementation of

p(B) =
kX

i=0

ciB
i

requires
P

k

i=1(i � 1) = k(k�1)
2 matrix multiplications and k additions. Using Horner’s method,

we only need k matrix multiplications. For a degree 4 polynomial p (corresponding to degree-9
polynomial g(x) = xp(x2)), Horner’s method can reduce 6 matrix multiplications to 4 matrix mul-
tiplications. It will save more time for higher degree polynomials; e.g., for a degree-15 polynomial
(k = 7), Horner’s method can reduce 21 matrix multiplications to 7 matrix multiplications. There-
fore, we have strong power to mimic most target functions with relatively small cost of computation
(see C.4 for discussion of computation time). We have not explored too many target functions, and
future users of PC-layers can design their own target functions and use higher-degree polynomials.

We summarize the three tricks for computing p(A) = p(AA
T)A as follows:

• Use A
T
A-form Ap(AT

A) if A is tall, and the AA
T -form p(AA

T)A if A is wide.
• Store B = AA

T or B = A
T
A, and compute p(B)A or Ap(B), respectively.

• Use Horner’s method to evaluate p(B).

19

Under review as a conference paper at ICLR 2021

(a) (b)
Figure 4: (a) Computational time (in seconds) for 1000 training iterations of the CIFAR-10 image generator
(CNN). (b) Computational time (in minutes) for SN-GAN and APC-GAN for 100k iterations and for different
experiments.

Example: Suppose we have determined a polynomial g(x) = c0x+ c1x
3 + c2x

5 + c3x
7
, and want

to apply it to a wide matrix A. There are two steps: (i) Compute B = AA
T ; (ii) Compute

(c0 + (c1 +B(c2 +B(c3 +B))))A.

If we apply it to the tall matrix A, the two steps are: (i) Compute B = A
T
A; (ii) Compute

A(c0 + (c1 +B(c2 +B(c3 +B)))).

C.4 COMPUTATION TIME

We discuss the computation time of POLY-FITTING, FPC and APC. POLY-FITTING solves a con-
vex quadratic problem with dimension being the number of samples (e.g., 300) in [�L, �U] = [0, 1.1].
This takes little time to run and is done offline.

The extra computation time due to a PC-layer depends on the degree 2k + 1 of the preconditioning
polynomial g. We use a few implementation tricks, including Horner’s method for implementing
the polynomial evaluation, which only requires k + 1 matrix multiplications. See Appendix C.3 for
details. In our implementation of FPC with a degree 3, 5, 7 or 9 polynomial, the actual added time is
around 20� 30% (Fig. 4 (a)) of the original training time of SN-GAN. Interestingly, the extra time
for degrees 3, 5, 7, 9 polynomials are quite close (less than 5% difference).

The computation time of APC is smaller than FPC. Since most layers during practical training are
well-conditioned, APC essentially applies nothing to most layers, and only applies PC to few layers.
Compared to FPC, APC requires an extra step of computing the condition number of each layer. We
only perform this extra step every 1000 iterations, thus the amortized extra cost over all iterations is
small (contributing less than 1% to the total time). Fig. 4 (b) shows that the extra time of APC over
SN is often less than 10%.

D GLOBAL CONVERGENCE: PROOFS AND OTHER RESULTS

In this section, we will provide a proof of Theorem 1, as well the discussions of the theorem and a
few related technical results. We will first review the notion of NTK (neural tangent kernel) and a
basic convergence result. Then we prove the global convergence of continuous gradient dynamics
under assumptions on minimal singular values of weights. Finally, we prove the global convergence
of discrete gradient descent, i.e., Theorem 1.

D.1 BASICS: NEURAL TANGENT KERNEL AND CONVERGENCE LEMMA

Neural tangent kernel (NTK) is introducd in Jacot et al. (2018) (see also Du et al. (2018)). We
briefly review some basics of NTK. The gradient is @F (✓;xi)

@✓
2 RP⇥dy , where P is the number of

parameters. Define the Jacobian

G(✓) =

✓
@f(✓;x1)

@✓
, . . . ,

@f(✓;xn)

@✓

◆
2 RP⇥dyn (14)

20

Under review as a conference paper at ICLR 2021

and define the neural tangent kernel (NTK)

K(✓) = G(✓)TG(✓). (15)

Lemma 1 Define WNTK(0) = {✓ : �min(K(✓)) � 0}. Suppose the optimization trajectory ✓(t)
stays in WNTK(0) for 1  t  T, then

kF (✓(t))� yk  kF (✓(0))� yk exp(�2t0), 8 0  t  T.

Proof of Lemma 1:

Let e(t) = F (✓(t)) � y and K(t) = K(✓(t)). We have de(t)
dt

= �G(✓(t))TG(✓(t))e(t) =
�K(t)e(t). Therefore,

dke(t)k2

dt
= �2e(t)TK(t)e(t)  �2�min(K(t))ke(t)k2  �20ke(t)k2.

This implies

d(exp(2t0)ke(t)k2)
dt

= 20 exp(2t0)ke(t)k2 + exp(2t0)
dke(t)k2

dt

 20 exp(2t0)ke(t)k2 � 20ke(t)k2 exp(2t0) = 0.

Therefore exp(2t0)ke(t)k2  ke(0)k2, i.e.,

kF (✓(t))� yk  kF (✓(0))� yk exp(�2t0).

This proofs the lemma. 2

A common trick is to show that for ultra-wide neural-nets, all iterates stay in the set WNTK; see,
e.g., work by Du et al. (2018); Arora et al. (2019); Lee et al. (2019). However, this requires a very
large width, in order to ensure that the weights move little (i.e., the NTK stays positive definite).
We assume the weights are well conditioned, thus we allow the weights to freely move away as
long as they stay in the well-conditioned region. This permits to provide a simpler proof of global
convergence. Note that we do not view this simplicity as a major contribution in theory, since we
do need extra assumptions; instead, this simplicity is helpful for non-theory readers to understand
the essence of the convergence analysis, and also helpful for them to understand the importance of
weight spectrum.

D.2 CONVERGENCE OF CONTINUOUS DYNAMICS

For linear networks, the expression of the Jacobian is

G(✓) =

✓
@f✓(xi)

@Wj

◆
=

"
x1 ⌦ (WLWL�1 . . .W2) . . . xn ⌦ (WLWL�1 . . .W2)

.

WL�1 . . .W1x1 ⌦ I . . . WL�1 . . .W1xn ⌦ I

#
.

There are P = d0d1 + · · ·+ dL�1dL rows, and ndL = ndy columns.

The assumption on the architecture is that it is a pyramid-like structure.

Assumption D.1 (Pyramid net) There exists some r 2 {1, . . . , L}, such that dy = dL  dL�1 
· · ·  dr, and dx = d0  d1  · · ·  dr.

Define

Wlow(µ1, . . . , µL) = {✓ = (W1, . . . ,WL) | �min(Wl) � µl, l = 1, 2, . . . L}.

Given a deep net that satisfies these assumptions, the exponential convergence of the gradient flow
defined via d✓(t)

dt
= �rL(✓(t)) can be shown:

Theorem 2 Consider a deep linear network that satisfies Assumption D.1. Assume n  dx and
suppose �min(X) � µ0 > 0. Suppose the optimization trajectory ✓(t) of the gradient dynamics
satifiy ✓(t) 2Wlow(µ1, . . . , µL), 0  t  T . Define �̄ = (µ0µ1 . . . µL)2, then

kF (✓(t))� F (✓⇤)k  kF (✓(0))� F (✓⇤)k exp(�2t�̄), 0  t  T.

21

Under review as a conference paper at ICLR 2021

Below, we provide the proof of the theorem. We present two technical results, and then provide the
proof at the end of this subsection (one line proof).

Claim D.1 Suppose Am, Am�1, . . . , A1 are matrices of size nm⇥nm�1, nm�1⇥nm�2, . . . , n1⇥
n0, where nm � nm�1 � n0. Suppose �min(Ai) � µi, i = 1, . . . ,m. Then the product M =
AmAm�1 . . . A1 satisfies �min(M) � µ1µ2 . . . µm.

Proof of Claim D.1: We first prove the following result: for a k1 ⇥ k2 matrix A and k2 ⇥ k3 matrix
B, where k1 � k2 � k3,

�min(AB) � �min(A)�min(B). (16)
This is proved by the following chain of inequalities:

�min(B
T
A

T
AB) = min

kuk=1
u
T
B

T
A

T
ABu � �min(A

T
A)kBuk2 = �min(A

T
A)uT

B
T
Bu

� �min(A
T
A)�min(B

T
B) = �min(A)2�min(B)2.

Applying the result multiple times, we immediately obtain the desired result. 2

Lemma 2 Consider a deep linear network that satisfies Assumption D.1. Assume n  dx and
�min(X) � µ0. If a point ✓ = (W1, . . . ,WL) satisfies �min(Wl) � µl for each l, then
�min(K(✓)) � (µ0µ1 . . . µL)2.

Proof of Lemma 2: Define Wi:j = WiWi�1 . . .Wj . We write the l-th row as Gl =
(Wl�1:1X) ⌦ (WL:l)T . which is a (dl�1dl ⇥ dyn) matrix. Then we can write the matrix
G(✓) = [G1(✓);G2(✓); . . . ;GL(✓)]. According to Assumption D.1, and Claim D.1, we have
�min(Wr:1X) � µ0µ1 . . . µr. and �min(WT

L:r+1) � µr+1µ1 . . . µL. By Theorem 4.2.15 of
Horn et al. (1994), �min(Wr:1X ⌦ W

>
L:r+1) � µ0µ1 . . . µL. Therefore, K =

P
L

l=1 G
>
l
Gl ⌫

G
>
r+1Gr+1 ⌫ (µ0µ1 . . . µL)2In. 2

Proof of Theorem 2: By Lemma 2 and Lemma 1, we immediately obtain the desired result. 2

D.3 CONVERGENCE OF DISCRETE TIME GD: THEOREM AND DISCUSSION

Motivating works for the result. The idea of bounding spectrum has been around for a long time,
but rigorous theory only appears quite recently to our knowledge. Pennington et al. (2017); Xiao
et al. (2018; 2020) suggested that the spectrum of the input-output Jacobian or neural tangent kernel
(NTK) is important for training. Jacot et al. (2018); Du et al. (2018); Allen-Zhu et al. (2019); Zou
et al. (2018) proved that if the NTK stays full rank, then gradient descent on wide neural networks
converges to global minima. Directly manipulating the spectrum of NTK is hard, thus one may
wonder whether manipulating the spectrum of weight matrices can ensure a full-rank NTK. For
multi-layer wide linear neural nets, Hu et al. (2020) proved that starting from orthogonal weight
matrices, the initial NTK is full-rank and stays full rank during training, thus converging to a global
minimum.

Our Theorem 1 is strongly motivated by the aforementioned progress in neural net theory, and the
proof framework somewhat resembles that of (Hu et al., 2020). The main differences with (Hu
et al., 2020) are two-fold: first, they assume orthogonal initial point, and we assume arbitrary initial
spectrum (as long as weight matrices are full-rank); second, they directly prove convergence to
global-min, i.e., K = 1, but we do not provide a bound on K. It is not hard to derive our proof
based on (Hu et al., 2020). Our contribution is not on presenting new proof techniques; rather, our
contribution mainly lies in proposing PC layer, and this theorem is just a direct motivation for our
purpose.

Previous theoretical works on convergence analysis Hu et al. (2020); Jacot et al. (2018); Du et al.
(2018); Allen-Zhu et al. (2019); Zou et al. (2018) are mainly interested in proving theoretical con-
vergence and do not directly relate the weight spectrum during training to to convergence rate; note
that of course the NTK spectrum is related to the convergence rate but these works do not present
direct methods to manipulate NTK spectrum during training. (Xiao et al., 2020), in some sense,
provides some “control” of the spectrum of the NTK by analyzing the condition number of the NTK
for difference cases, then potentially they provided guidance on how to choose a setting with good

22

Under review as a conference paper at ICLR 2021

NTK spectrum. However, their result mainly applies to the initial NTK and requires large-width-
assumption to show NTK spectrum moves little during training, thus is not directly applicable for
controlling the spectrum during practical training.

In light of the above discussion, we choose to present Theorem 1 explicitly, to single out the impor-
tance of the weight matrix condition numbers.

Restatement of the theorem. Denote the initial point as ✓(0). Consider gradient descent with
constant stepsize

✓(k + 1) = ✓(k)� ⌘rL(✓(t)).
For any positive numbers ⌧1, . . . , ⌧L, define the set

Wup(⌧1, . . . , ⌧L) = {✓ = (W1, . . . ,WL) | �max(Wl)  ⌧l, 8l}.

We restate Theorem 1 using different notation.

Theorem 3 (restatement of Theorem 1) Consider a deep linear network that satisfies Assump-
tion D.1. Assume n  dx and suppose �min(X) � µ0 > 0. Assume

{✓(k)}K
k=0 2Wup(⌧1, . . . , ⌧L) \Wlow(µ1, . . . , µL), k = 0, 1, . . . ,K.

Assume ⌧l � 1 and µl > 0, l = 1, . . . , L. Denote e(k) = F (✓(k);X)� y. Suppose

� = LkXk2⌧L . . . ⌧1 (ke(✓(0))k+ kXkF ⌧L . . . ⌧1) , µ = (µ1 . . . µL)
2
�min(X)2.

Suppose the learning rate ⌘ = 1
�
. Then we have

ke(k + 1)k2  (1� µ

�
)ke(k)k2, k = 1, . . . ,K. (17)

Remark 1: Our result is really about a one-step reduction: if using stepsize ⌘k = 1/�k where
�k = LkXk2⌧L . . . ⌧1 (ke(✓(k))k+ kXkF ⌧L . . . ⌧1), then Eq. (17) holds. For simplicity of pre-
sentation, we use a fixed stepsize 1/�0 where �0 = � defined in the theorem statement. As
the algorithm converges, the error ke(✓(k))k diminishes to 0, thus the dominant term should be
LkXk2kXkF (⌧L . . . ⌧1)2. If �min(Wl(k))k � µl and (Wl(k))  l for k = 0, 1, . . . , then the
asymptotic convergence rate is 1 � �min(X)2(µL...µ1)

2

LkXk2kXkF (⌧L...⌧1)2
 1 � (L

p
n(L . . .1)2(X)2)�1

. The
total number of iterations to achieve error ke(T)k  ✏ is at most

L
p
n(L . . .1)

2
(X)2 log

1

✏
.

This number is proportional to the product of the squared condition numbers of all weight matrices.
Thus reducing the condition numbers can reduce the number of iterations, and consequently increase
the convergence speed.

Remark 2: The extra assumption ⌧l � 1 is added to simplify the original constant � =p
LkXk2⌧L . . . ⌧1

qP
L

i=1
1
⌧
2
i
(ke(✓(0))k+ kXkF ⌧L . . . ⌧1) to the current form.

Remark 3: We fix � = LkXk2⌧L . . . ⌧1 (ke(✓(0))k+ kXkF ⌧L . . . ⌧1) and pick a fixed stepsize ⌘ =
1/�. This is just for simplicity, and we can strengthen the statement a bit like many optimimzation
papers. First, we can pick any ⌘ < 1/� and then prove Eq. (17) with a rate that depends on
⌘, µ and �. Second, we can change � = LkXk2⌧L . . . ⌧1 (ke(✓(0))k+ kXkF ⌧L . . . ⌧1) to � �
LkXk2⌧L . . . ⌧1 (ke(✓(0))k+ kXkF ⌧L . . . ⌧1) and then prove the same result.

Assumption of pyramid networks: Hu et al. (2020) analyze an equal-width linear network with
n  d0. We analyze a pyramid linear network, which covers the equal-width network as a special
case. Our assumption n  d0 is the same as that of Hu et al. (2020). This pyramid structure and
the assumption n  d0 are used in lower bounding the minimum singular value of the NTK matrix.
The pyramid structure has been used in neural network theory studies (Nguyen & Hein, 2017). Note
that the assumption n  d0 is less desirable; anyhow, we follow Hu et al. (2020) and keep this
assumption.

Assumption of bounded spectrum for K iterations: To understand the assumption and the essence
of the theorem, one needs to understand that there is a certain order of picking parameters. We first

23

Under review as a conference paper at ICLR 2021

pick an initial point ✓(0), then pick ⌧1, . . . , ⌧L, µ1, . . . , µL, such that the spectrum of Wl(0) lie
in [µl, ⌧l]. These ⌧i’s and µi’s can be larger than the spectrum range of Wl(0). We then pick �

according to ⌧i’s, L, kXk2, kXkF and the initial loss e(0). Then we run GD with the stepsize
⌘ = 1/� and generate a sequence ✓(k). This sequence starts in the region R = Wup(⌧1, . . . , ⌧L) \
Wlow(µ1, . . . , µL), and may stay in R forever, or leave R at some point K. Within the region R, the
loss diminishes at a geometric rate. In case K = 1, the algorithm converges to global minimum;
even if K is not infinity but quite large, the algorithm can generate very small loss after K iterations.
Note, however, that we do not know a priori when the iterates will leave R. This is why other works
on neural networks try hard to bound the movement of the weights. We do not attempt to prove the
iterates stay in R; instead, we use this as a motivation: if we could improve the spectrum of weights
during training, then they may stay in R for longer time, and thus lead to smaller loss values.

Theory for networks with PC layers: Intuitively, adding PC layers can allow the weights to stay
in the region R for a longer time, but directly proving this is not easy and requires extra work. One
challenge is that the added PC layer has changed the structure of the neural net, thus the gradient has
a different form. Note that analyzing gradient descent with normalization layers is typically harder,
thus it is not surprising that the analysis of PC layers is also harder than the case without any extra
normalization. We leave the theoretical analysis of PC-layers for future study.

D.3.1 PROOF OF THEOREM 1

To prove this result, we need a few bounds.

Claim D.2 (G spectral norm bound) Consider a deep linear network of any shape. Assume
�max(X)  ⌧0. If a point ✓ = (W1, . . . ,WL) satisfies �max(Wl)  ⌧l for each l, then
�max(K(✓))  L(⌧0⌧1 . . . ⌧L)2, or equivalently,

kG(✓)k2 
p
L⌧0⌧1 . . . ⌧L.

Claim D.3 (F is Lipschitz continuous) Consider a deep linear network of any shape. If a point
✓ = (W1, . . . ,WL) satisfies �max(Wl)  ⌧l for each l, then

kF (✓;X)� F (✓̂;X)kF  k✓ � ✓̂kkXkF ⌧L . . . ⌧1

vuut
LX

i=1

1

⌧2
i

.

Claim D.4 (G is Lipschitz continuous) Consider a deep linear network of any shape. Assume
�max(X)  ⌧0. If a point ✓ = (W1, . . . ,WL) satisfies �max(Wl)  ⌧l for each l, then
kG(✓)�G(✓̂)k2 

p
L⌧L . . . ⌧1⌧0

⇣P
L

i=1
1
⌧
2
i

⌘
k✓ � ✓̂k.

Lemma 3 Consider a deep linear network F (✓;x) = WL . . .W1x. Then

krL(✓;X)�rL(✓̂;X)k  �(✓)k✓ � ✓̂k, 8✓, ✓̂ 2Wup(⌧1, . . . , ⌧L), (18)

where

�(✓) =
p
LkXk2⌧L . . . ⌧1

vuut
LX

i=1

1

⌧2
i

(ke(✓)k+ ⌧L . . . ⌧1kXkF) .

Here e(✓) = vec(F (✓;X)� Y) is the estimation error and we consider ✓ as a vectorized version of
all parameters, thus rL(✓;X) is a vector.

Proof of Theorem 1:

The proof is a simple application of the standard convergence proof of gradient descent. Denote
�k = ke(k)k2.

We prove by induction. Assume the result holds for 0, 1, . . . , k � 1. Then we have F(✓(k)) 
F(✓(0)), i.e., e(✓(k))  e(0). This implies

�(✓(k))  �. (19)

24

Under review as a conference paper at ICLR 2021

For simplicity, let us denote g(✓) = rL(✓), and gk = rL(✓(k)).
Denote �k = �⌘gk = w(k + 1)� w(k). We obtain

L(w(k + 1)) = L(w(k)) + g
T

k
�k +

Z 1

0
[g(✓(k) + t�k)� g(✓(k))]T �kdt

 L(w(k)) + g
T

k
�k +

Z 1

0
kg(✓(k) + t�k)� g(✓(k))kk�kkdt.

According to Lemma 3 and Eq. 19. we have kg(✓(k)+ t�k)�g(✓(k))k  �(✓(k))kt�kk  �kt�kk.
Plugging into the previous inequality, we get

L(w(k + 1))  L(w(k)) + g
T

k
�k +

Z 1

0
�kt�kkk�kkdt

= L(w(k))� ⌘kgkk2 +
1

2
�⌘

2kgkk2

= L(w(k))� 1

2�
kgkk2.

Recall that kg(k)k2 = kG(✓(k))e(✓(k))k2 � �min(G(✓(k))TG(✓(k)))ke(✓(k))k2 �
µke(✓(k))k2 = �k. Combining the two relations above, and by replacing L(w(k)),L(w(k + 1))
with 2�k, 2�k+1, we get

�k+1  �k �
µ

�
�k = (1� µ

�
)�k.

This completes the proof. 2

D.3.2 PROOF OF CLAIMS ON LIPSCHITZ CONTINUITY

Proof of Claim D.2:

We have kWl�1:1Xk  kWl�1kkW1kkXk  ⌧0⌧1 . . . ⌧l�1, and kWL:lk  kWLk . . . kWlk 
⌧L⌧L�1 . . . ⌧l, thus �max(Kl(✓)) = �max([(Wl�1:1X)T| {z }

n⇥dl�1

(Wl�1:1X)| {z }
dl�1⇥n

])�max([WL:l|{z}
dy⇥dl

W
T

L:l|{z}
dl⇥dy

]) 

(⌧L⌧L�1 . . . ⌧l)2(⌧0⌧1 . . . ⌧l�1)2 = (⌧0⌧1 . . . ⌧L)2. Since this holds for each l, we have
�max(K(✓))  L(⌧0⌧1 . . . ⌧L)2. 2

Proof of Claim D.3:

kF (✓;X)� F (✓̂;X)kF = kWL . . .W1X � Ŵ
L
. . . Ŵ

1
XkF

 kWL . . .W1 � Ŵ
L
. . . Ŵ

1k2kXkF

= k
LX

l=1

Ŵ
L
. . . Ŵ

l+1(Wl � Ŵ
l)Wl�1 . . .W1k2kXkF

 ⌧L . . . ⌧1

LX

i=1

1

⌧i
kWi � Ŵik2kXkF

 ⌧L . . . ⌧1kXkF

vuut
LX

i=1

1

⌧2
i

vuut
LX

i=1

kWi � Ŵik22.

We can relax
qP

L

i=1 kWi � Ŵik22 
qP

L

i=1 kWi � Ŵik2F = k✓� ✓̂k, thus obtaining the desired
result. 2

Proof of Claim D.4: Recall that G(✓) = [G1(✓);G2(✓); . . . ;GL(✓)], in which Gl(✓) =
(Wl�1:1X) ⌦ (WL:l)T . Similarly, denote Gl(✓̂) = (Ŵl�1:1X) ⌦ (ŴL:l)T . We bound kGl(✓) �

25

Under review as a conference paper at ICLR 2021

Gl(✓̂)k2 as follows:

kWl�1 . . .W1X � Ŵl�1 . . . Ŵ1Xk

= k
l�1X

i=1

Ŵl�1 . . . Ŵi+1(Wi � Ŵi)Wi�1 . . .W1Xk


l�1X

i=1

kŴl�1k . . . kŴi+1kkWi � ŴikkWi�1k . . . kW1kkXk


l�1X

i=1

⌧l�1 . . . ⌧1⌧0
1

⌧i
kWi � Ŵik

Combining with kWL:lk2  ⇧L

j=l
kWjk2  ⇧L

j=l
⌧j , we get

k(Wl�1:1X � Ŵl�1:1X)k2kWL:lk2  ⌧L . . . ⌧1⌧0

l�1X

i=1

1

⌧i
kWi � Ŵik. (20)

Similarly,

kŴl�1:1Xk2kWL:l � ŴL:lk2  ⌧L . . . ⌧1⌧0

LX

i=l

1

⌧i
kWi � Ŵik. (21)

kGl(✓)�Gl(✓̂)k2 = k(Wl�1:1X)⌦ (WL:l)
T � (Ŵl�1:1X)⌦ (ŴL:l)

T k2
= k(Wl�1:1X � Ŵl�1:1X)⌦ (WL:l)

T + (Ŵl�1:1X)⌦ (WL:l � ŴL:l)
T k2

 k(Wl�1:1X � Ŵl�1:1X)⌦ (WL:l)
T k2 + k(Ŵl�1:1X)⌦ (WL:l � ŴL:l)

T k2
= k(Wl�1:1X � Ŵl�1:1X)k2kWL:lk2 + kŴl�1:1Xk2kWL:l � ŴL:lk2

 ⌧L . . . ⌧1⌧0

LX

i=1

1

⌧i
kWi � Ŵik2

 ⌧L . . . ⌧1⌧0

vuut
LX

i=1

1

⌧2
i

vuut
LX

i=1

kWi � Ŵik22

 ⌧L . . . ⌧1⌧0

vuut
LX

i=1

1

⌧2
i

k✓ � ✓̂k.

In the last inequality we used
qP

L

i=1 kWi � Ŵik22 
qP

L

i=1 kWi � Ŵik2F = k✓ � ✓̂k.

Now we have

kG(✓)�G(✓̂)k2 =

r
�max

h
(G(✓)�G(✓̂))>(G(✓)�G(✓̂)

i

=

vuut
�max

"
LX

l=1

(Gl(✓)�Gl(✓̂))>(Gl(✓)�Gl(✓̂)

#


p
Lmax

l

kGl(✓)�Gl(✓̂)k2 
p
L⌧L . . . ⌧1⌧0

vuut
LX

i=1

1

⌧2
i

k✓ � ✓̂k.

This completes the proof. 2

26

Under review as a conference paper at ICLR 2021

Figure 5: True spectrum and spectrum estimated by SN with one power iteration along the 100k iterations
training on CIFAR-10 with CNN (above) and ResNet (bottom).

Proof of Lemma 3: Recall that rL(✓;X) = G(✓)e(✓), where e(✓) = vec(F (✓;X) � Y). When
✓ 2 ⌦(c), by the definition of ⌦(c) we have ke(✓)k  c. Thus

krL(✓;X)�rL(✓̂;X)k = kG(✓)e(✓)�G(✓̂)e(✓̂)k
 kG(✓)�G(✓̂)k2ke(✓̂)k+ kG(✓)k2ke(✓)� e(✓̂)k
= kG(✓)�G(✓̂)k2ke(✓)k+ kG(✓)k2kvec(F (✓;X)� F (✓̂;X))k.

Denote

⌧̂ =
p
LkXk2⌧L . . . ⌧1

vuut
LX

i=1

1

⌧2
i

, ⌧prod = ⌧L . . . ⌧1kXkF ,

Applying Claim D.3, Claim D.4 and Claim D.2, we get

krL(✓;X)�rL(✓̂;X)k

 ⌧̂k✓ � ✓̂kke(✓)k+ k✓ � ✓̂kkXkF ⌧̂
1p

LkXk2
·
p
LkXk2⌧1 . . . ⌧L

= k✓ � ✓̂k⌧̂ (ke(✓)k+ kXkF ⌧1 . . . ⌧L)
= k✓ � ✓̂k⌧̂ (ke(✓)k+ ⌧prod)

 k✓ � ✓̂k⌧̂ (c+ ⌧prod) .

Since � =
p
LkXk2⌧L . . . ⌧1

qP
L

i=1
1
⌧
2
i
(c+ ⌧L . . . ⌧1kXkF) , the result holds. 2

E SUPPLEMENTARY MATERIAL FOR SECTION 3

This section consists of more details of SN, and proofs of two results on spectrum of polynomials.

E.1 SPECTRAL NORMALIZATION AND ESTIMATED SPECTRAL NORM

For a given weight matrix W , Miyato et al. (2018) uses one iteration of power iteration to update
u and v as follows: u W>v/kW>vk and v Wu/kWvk and let the estimated spectral norm
W̃ = u

T
Wu/kuk2. The spectral norm operator is then defined as SN(W) = W/kW̃k.

Miyato et al. (2018) use “warm start”, i.e., the updated u and v at certain iteration k will be used at
iteration k + 1. Thus if W moves slowly (the weight is updated by SGD), then they are essentially
using multiple power iteration to estimate kWk2. This may be why their estimation of the spectral
norm by “only one power iteration” is quite good.

In Fig. 5, we present the figures that show the true spectral norm and the estimated spectral norm by
the method of Miyato et al. (2018).

27

Under review as a conference paper at ICLR 2021

E.2 PROOFS OF TECHNICAL RESULTS

E.2.1 PROOF OF CLAIM 3.1

This is a standard proof in linear algebra. For completeness, we include it here. Since Q is a real
symmetric matrix, we write its eigenvalue decomposition as Q = U⇤UT

, where U 2 Rm⇥m is
an orthogonal matrix and ⇤ 2 Rm⇥m is a diagonal matrix with entries �i, i = 1, . . . ,m. There-
fore Q

j = (U⇤UT)j = U⇤j
U

T
. Suppose ĝ(x) =

P
k

i=0 cix
i, then ĝ(Q) =

P
k

i=0 ciQ
i =P

k

i=0 ciU⇤j
U

T = U(
P

k

i=0 ci⇤
j)UT

. This is the eigenvalue decomposition of ĝ(Q), where U

is orthogonal and
P

k

i=0 ci⇤
j is a diagonal matrix with entries

P
k

i=0 ci�
j

i
= ĝ(�i). Therefore the

eigenvalues of ĝ(Q) are ĝ(�i), i = 1, . . . ,m.

E.2.2 PROOF OF CLAIM 3.2

For any polynomial p, we have
p(AA

T)A = Ap(AT
A). (22)

The proof is just one line: suppose p(x) =
P

k

i=0 aix
i
, then p(AA

T)A =
P

k

i=0 ai(AA
T)iA =P

k

i=0 aiA(AT
A)i = Ap(AT

A).

Suppose the singular values of g(A) = p(AA
T)A = Ap(AT

A) are �̃1, . . . , �̃m.

Then the eigenvalues of g(A)T g(A) g(A)T g(A) = p(AT
A)TAT

Ap(AT
A) =

p(AT
A)AT

Ap(AT
A) 2 Rm⇥m are �̃1 = �̃

2
1 , . . . , �̃n = �̃

2
m
.

The eigenvalues of A
T
A are �

2
1 , . . . ,�

2
m

, thus by Claim 3.1, the eigenvalues of
p(AT

A)AT
Ap(AT

A) are p(�2
i
)�2

i
p(�2

i
), i = 1, . . . ,m.

The above two descriptions of the eigenvalues of g(A)T g(A) should be the same, thus we have
{p(�2

i
)�2

i
p(�2

i
) | i = 1, . . . ,m} = {�̃2

i
| i = 1, . . . ,m}. Since singular values �̃i’s are non-

negative, these �̃i’s (i.e., the singular values of g(A)) are |p(�2
i
)|�i = |g(�i)|, i = 1, . . . , n. 2

F EXPERIMENTS: MORE DETAILS AND MORE RESULTS

We present more details of our experiments and also report further results.

Neural Net Structures: To compare PC and APC with other GAN training mechanisms, we con-
duct experiments on two low resolution datasets: CIFAR-10 (32⇥32) and STL-10 (48⇥48), and
three high resolution datasets: LSUN bedroom (128⇥128), LSUN bedroom (256⇥256) and LSUN
tower (256⇥256). Low resolution images are generated with both CNN and ResNet structure, fol-
lowing the setting of Miyato et al. (2018). For the high resolution images we use a CNN structure.
Architecture details are listed Tab. 7, Tab. 8, Tab. 9 and Tab. 10.

Hyper-parameters: For all experiments, we use a batchsize of 64. For experiments on ResNet with
Dit = 5, we set �1 = 0 and �2 = 0.9 in Adam. For others, �1 = 0.5 and �2 = 0.999 are used
in Adam. Unless Dit = 5 is specified, Dit = 1 is always used across all experiments. We fix the
learning rate for both the generator and the discriminator to be 0.0002.

F.1 RESULTS ON CIFAR-10 AND STL-10 WITH CNN

For all experiments on the CNN structure, we use the non-saturating log loss suggested by Goodfel-
low et al. (2014). The log loss is given by

L
Log
D

(✓; Ĝ) = min
✓

1

2n

"
X

i

log(D(xi)) + log(1�D(Ĝ(zi)))

#
,

L
Log
G

(w; D̂) = min
w

� 1

n

X

i

log(D̂(Gw(zi))).

The results are summarized in Tab. 4. We found that PC deteriorates the performance for both degree
3 and degree 7. More specifically, SN-GAN achieves an FID score 28.07 on CIFAR-10 and 44.06

28

Under review as a conference paper at ICLR 2021

(a) SN (FID: 28.07) (b) FPC deg-3 (FID: 30.34)

(c) FPC deg-7 (FID: 32.38) (d) APC (FID: 26.80)

Figure 6: Condition number evolution of all convolution layers in the CNN during the training on CIFAR-10
for (a) SN, (b) FPC deg-3, (c) FPC deg-7 and (d) APC and the corresponding FID.

on STL-10, which is reasonably good1. However, applying PC-GAN with deg-3 precondtioner or
deg-7 preconditioner achieves worse or similar FID scores (30.34, 32.38 vs. 28.13; 43.89, 46.18 vs.
44.06).

We conjecture that PC hurts in this scenario because it is not “proper”: conditioning is already good
enough, so preconditioning does not help. We verify this conjecture by computing the condition
numbers: for SN the largest condition number is around 12, which is indeed quite good. Applying
PC-GAN with deg-3 and deg-7 precondtioner reduces the condition numbers to below 6, and to
below 2.2, respectively, and the majority of the condition numbers are close to 1. Preconditioning
clearly “overshoots.” (See Fig. 6 When conditioning is already good, preconditioning only slightly
improves the optimization, but the benefit is offset by harming the network’s expressivity.

APC experiments support our hypothesis that proper PC can improve the performance. APC
achieves an FID of 26.80 on CIFAR-10 and 42.43 on STL-10. If PC hurts the performance, it is
likely due to strong preconditioning which reduces the representation power. It can be corrected
by properly adjusting PC. A good strategy to apply PC is to apply a proper preconditioner only to
not-well-conditioned layers.

F.2 RESULTS ON CIFAR-10 AND STL-10 WITH RESNET

And for all experimetns on the ResNet structure, we use the non-saturating hinge loss (Miyato et al.,
2018), which is

L
Hinge
D

(✓; Ĝ) = min
✓

1

2n

"
X

i

max(0, 1�D✓(xi)) +
X

i

max(0, 1 +D✓(Ĝ(zi))

#
,

L
Hinge
G

(w; D̂) = min
w

� 1

n

X

i

D̂(Gw(zi)).

The results are listed in Tab. 4.

1FID 28.07 and 44.06 are reasonably good for this architecture; changing to other architectures such as
ResNet can improve to 23 and 41, but we shall compare for a fixed architecture.

29

Under review as a conference paper at ICLR 2021

CIFAR-10 STL-10
Inception Score " FID # Inception Score " FID #

Real Dataset 11.24±0.19 5.18 24.45±0.41 5.34
Standard CNN
BatchNorm 6.27±0.10 49.13 8.01±0.07 50.38
WGAN-GP 6.68±0.06 39.66 8.11±0.09 55.64
Weight Norm 6.96±0.06 37.69 7.12±0.08 55.39
Orthogonal Reg 6.67±0.09 33.41 7.80±0.09 51.27
Spectral Norm 7.42±0.08 28.07 8.32±0.10 44.06
SVD 7.28±0.08 27.74 8.34±0.06 44.29
FPC; deg-3 7.27±0.05 30.34 8.06±0.08 43.89
FPC; deg-7 7.00±0.08 32.38 7.99±0.07 46.18
APC 7.46±0.09 26.80 (27.28±0.34) 8.42±0.09 42.49 (42.90±0.30)
ResNet; Dit = 1
Spectral Norm 4.82±0.05 84.74 4.25±0.02 169.58
Spectral Norm (2x updates) 5.13±0.07 77.85 4.52±0.03 147.90
SVD 7.97±0.87 22.61 8.32±0.02 51.18
SVD (2x updates) 8.01±0.08 20.75 8.96±0.09 38.01
FPC; deg-3 7.89±0.10 21.68 9.22±0.10 40.95
FPC; deg-3 (2x updates) 8.25±0.08 20.09 9.46±0.14 33.99
FPC; deg-7 8.05±0.13 22.41 9.28±0.16 37.19
FPC; deg-7 (2x updates) 8.16±0.04 19.31 9.34±0.11 34.28
APC 8.04±0.09 21.66 (22.21±0.34) 9.27±0.14 44.52 (45.17±0.75)
APC (2x updates) 8.16±0.11 19.53 (19.81±0.27) 9.34±0.14 34.08 (34.52±0.49)
ResNet; Dit = 5
Spectral Norm 7.87±0.08 23.80 8.87±0.07 36.33
SVD 7.92±0.06 22.31 9.24±0.06 36.85
FPC; deg-3 7.85±0.12 22.60 9.21±0.06 36.02
FPC; deg-7 7.93±0.09 21.79 8.94±0.13 41.96
APC 8.00±0.13 20.32 (20.80±0.35) 9.24±0.08 34.94 (35.73±0.56)

Table 4: Inception score (IS) (higher is better) and Frechét Inception distance (FID) (lower is better) on CIFAR-
10 and STL-10. For APC, across 3 runs we report the best score (across runs and iterations) as well as in
parenthesis is averaged (across runs) best (across iterations) mean and std.

Dit = 1: We run all baselines and PC-GANs for 200k iterations. We find that for CIFAR-10,
both SVD and PC-GANs can converge within 100k iterations. One remarkable point is that APC-
Dit = 1 can beat the SN-Dit = 5 by 2 FID scores (21.66 vs. 23.80) using just 100k iterations,
i.e., using only 1/3 of the training time (Fig. 4(b)). And with 200k iterations, APC-Dit = 1 can
improve SN-Dit = 5 by 4 FID scores (19.53 vs. 23.80), using 2/3 of the training time. Both SVD
and PC-GANs need 200k iterations to converge on the STL-10 dataset. APC-GAN-Dit = 1 can
beat both SVD-Dit = 1 and SN-Dit = 5 by 4 FID scores (34.08 vs. 38.01) and 2 FID scores (34.08
vs. 36.66).
Dit = 5: We run all experiments for 100k iterations. We find Dit = 5 is a hard case, since all
baselines are well-trained under this setting. But with proper PC layers, APC can still improve the
FID scores by approximate 2 scores.

EMA: Since training stability and convergence are two orthogonal problems in GAN training, we
claim that applying EMA can further improve the performance of PC. The EMA generator applies
a weighted averaging across all the generators along the training process. Specifically, the EMA
generator at the t

th iteration is obtained as follows:

w
(t)
EMA = �w

(t�1)
EMA + (1� �)w(t)

, (23)

where w
(0)
EMA = w

(0) and w
(t) are the original generator parameters. Due to the weighted averaging

trick, EMA can speed up convergence. We apply EMA on all baselines and PC-GAN. We set the
� = 0.9999 for all experiments and provide results in Tab. 5.

30

Under review as a conference paper at ICLR 2021

CIFAR-10 STL-10
Inception Score " FID # Inception Score " FID #

Real Dataset 11.24±0.19 5.18 24.45±0.41 5.34
Standard CNN
Spectral Norm 7.52±0.09 26.76 8.48±0.07 43.68
SVD 7.46±0.09 26.44 8.42±0.13 43.69
FPC; deg-3 7.43±0.11 27.70 8.07±0.11 43.51
FPC; deg-7 7.20±0.12 30.12 8.01±0.12 45.06
APC 7.64±0.08 25.30 (25.83±0.48) 8.52±0.06 41.48 (41.72±0.33)
ResNet; Dit = 1
Spectral Norm 5.11±0.03 80.99 4.37±0.04 166.30
Spectral Norm (2x updates) 5.32±0.01 74.26 4.60±0.03 145.89
SVD 8.36±0.06 19.93 8.78±0.10 49.32
SVD (2x updates) 8.42±0.08 18.23 9.19±0.13 36.85
FPC; deg-3 8.69±0.05 17.04 9.49±0.11 32.95
FPC; deg-3 (2x updates) 8.75±0.10 16.17 9.62±0.10 32.36
FPC; deg-7 8.75±0.13 17.05 9.62±0.15 32.86
FPC; deg-7 (2x updates) 8.78±0.08 16.95 9.65±0.10 31.02
APC 8.93±0.14 16.20 (16.61±0.41) 9.62±0.15 36.39 (36.73±0.36)
APC (2x updates) 8.99±0.10 16.04 (16.06±0.02) 9.64±0.12 31.05 (31.42±0.38)
ResNet; Dit = 5
Spectral Norm 8.37±0.13 20.98 9.14±0.12 33.06
SVD 8.30±0.07 19.22 9.50±0.07 33.17
FPC; deg-3 8.49±0.11 19.00 9.51±0.13 34.04
FPC; deg-7 8.42±0.06 19.06 9.17±0.11 39.46
APC 8.63±0.12 17.52 (17.90±0.55) 9.59±0.12 31.76 (32.41±0.50)

Table 5: Inception score (IS) (higher is better) and Frechét Inception distance (FID) (lower is better) on CIFAR-
10 and STL-10 with EMA trick. For APC, across 3 runs we report the best score (across runs and iterations) as
well as in parenthesis averaged (across runs) best (across iterations) mean and std.

degree-3 degree-5 degree-7 degree-9 APC

CIFAR-10 30.34 30.51 32.38 32.69 26.80
LSUN-bedroom 35.61 35.71 32.43 30.35 31.17

Table 6: FPC-GAN’s performance on CIFAR-10 and LSUN bedroom 256 with different degrees.

F.3 ROBUSTNESS OF APC-GAN

We also test the robustness of both SN-GAN and APC-GAN on different choices of hyper-
parameters. We study four learning rate (dlr, glr) choices and four choices for the Adam optimizer
parameters (�1,�2). The setting details are listed in Fig. 7. We keep all other hyper-parameters iden-
tical. In Fig. 7, we show the SN-GAN and APC-GAN’s Inception Scores (IS) and FID scores on
STL-10 with CNN structure using these settings. We observe SN-GAN and APC-GAN are equally
robust w.r.t. the learning rate settings. APC-GAN also performs reasonably well with aggressive
momentum parameters (setting F and H) while SN-GAN performs less well.

F.4 FPC RESULTS WITH DIFFERENT DEGREES

To test how sensitive FPC-GAN to different degrees, we conduct a serious of FPC-GAN training
with degree 3, 5, 7, 9 on CIFAR-10 and LSUN-bedroom (256⇥256). The result is listed in Tab. 6.
We can see that FPC-GAN is robust to degree overall. But the optimal degree requires tuning. Thus,
APC-GAN is a automatic trade-off solution.

F.5 GENERATED SAMPLES

31

Under review as a conference paper at ICLR 2021

setting glr dlr �2 �2 SN IS APC IS SN FID APC FID
A 1e-4 1e-4 0.5 0.999 8.14±0.09 8.15±0.11 46.38 45.05
B 2e-4 1e-4 0.5 0.999 8.29±0.11 8.39±0.06 43.92 43.68
C 5e-4 1e-4 0.5 0.999 8.28±0.07 8.20±0.08 44.96 43.77
D 1e-3 1e-4 0.5 0.999 8.12±0.08 8.18±0.05 46.08 44.23
E 2e-4 2e-4 0.0 0.9 8.49±0.07 8.46±0.12 42.24 41.29
F 2e-4 2e-4 0.5 0.9 2.82±0.01 7.72±0.09 181.27 57.41
G 2e-4 2e-4 0.5 0.999 8.32±0.12 8.42±0.09 44.06 42.49
H 2e-4 2e-4 0.9 0.999 5.18±0.04 6.62±0.10 95.36 69.31

Figure 7: Hyper-parameter settings we studied in the robustness experiments. IS (left) and FID (right) scores
on STL-10 with SN-GAN and APC-GAN.

(a) Generator
z 2 R128 ⇠ N (0, I)

128! h⇥ w⇥ 512, dense, linear

4⇥ 4, stride 2 deconv, 256, BN, ReLU

4⇥ 4, stride 2 deconv, 128, BN, ReLU

4⇥ 4, stride 2 deconv, 64, BN, ReLU

3⇥ 3, stride 1 conv, 3, Tanh

(b) Discriminator
RGB image x 2 [�1, 1]H⇥W⇥3

3⇥ 3, stride 1 conv, 64, LReLU 0.1

4⇥ 4, stride 2 conv, 128, LReLU 0.1
3⇥ 3, stride 1 conv, 128, LReLU 0.1

4⇥ 4, stride 2 conv, 256, LReLU 0.1
3⇥ 3, stride 1 conv, 256, LReLU 0.1

4⇥ 4, stride 2 conv, 512, LReLU 0.1
3⇥ 3, stride 1 conv, 512, LReLU 0.1

h⇥ w ⇥ 512! s, dense, linear
Table 7: CNN models for CIFAR-10 and STL-10 used in our experiments on image generation. h = w =
4, H = W = 32 for CIFAR-10. h = w = 6, H = W = 48 for STL-10.

(a) Generator
z 2 R128 ⇠ N (0, I)

dense, 4⇥ 4⇥ 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3⇥ 3 conv, 3 Tanh

(b) Discriminator
RGB image x 2 [�1, 1]32⇥32⇥3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

dense! 1
Table 8: Regular ResNet models for CIFAR-10 used in our experiments on image generation.

32

Under review as a conference paper at ICLR 2021

(a) Generator
z 2 R128 ⇠ N (0, I)

dense, 6⇥ 6⇥ 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3⇥ 3 conv, 3 Tanh

(b) Discriminator
RGB image x 2 [�1, 1]48⇥48⇥3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ReLU

Global sum pooling

dense! 1
Table 9: Regular ResNet models for STL-10 used in our experiments on image generation.

(a) Generator
z 2 R128 ⇠ N (0, I)

128! 4⇥ 4⇥ 1024, dense, linear

4⇥ 4, stride 2 deconv, 512, BN, ReLU

4⇥ 4, stride 2 deconv, 256, BN, ReLU

4⇥ 4, stride 2 deconv, 128, BN, ReLU

4⇥ 4, stride 2 deconv, 64, BN, ReLU

4⇥ 4, stride 2 deconv, 32, BN, ReLU

4⇥ 4, stride 2 deconv, 16, BN, ReLU

3⇥ 3, stride 1 conv, 16, BN, ReLU

3⇥ 3, stride 1 conv, 3, Tanh

(b) Discriminator
RGB image x 2 [�1, 1]H⇥W⇥3

4⇥ 4, stride 2 conv, 32, LReLU 0.1

4⇥ 4, stride 2 conv, 64, LReLU 0.1

4⇥ 4, stride 2 conv, 128, LReLU 0.1

4⇥ 4, stride 2 conv, 256, LReLU 0.1

4⇥ 4, stride 2 conv, 512, LReLU 0.1

4⇥ 4, stride 2 conv, 1024, LReLU 0.1

4⇥ 4⇥ 1024! 1, dense, linear

Table 10: CNN models for LSUN 256⇥ 256 image generation.

33

Under review as a conference paper at ICLR 2021

(a) real data (b) Batch Norm

(c) WGAN-GP (d) Weight Norm

(e) Orthogonal Reg (f) Spectral Norm

(g) SVD (h) FPC, deg-3

(i) FPC, deg-7 (j) APC

Figure 8: Generated CIFAR-10 samples using a CNN.

34

Under review as a conference paper at ICLR 2021

(a) SN, Dit = 1 (b) SN, Dit = 5

(c) SVD, Dit = 1 (d) SVD, Dit = 5

(e) FPC, deg-3, Dit = 1 (f) FPC, deg-3, Dit = 5

(g) FPC, deg-7, Dit = 1 (h) FPC, deg-7, Dit = 5

(i) APC, Dit = 1 (j) APC, Dit = 5

Figure 9: Generated CIFAR-10 samples using a ResNet with Dit = 1 (left) and Dit = 5 (right).

35

Under review as a conference paper at ICLR 2021

(a) real data (b) Batch Norm

(c) WGAN-GP (d) Weight Norm

(e) Orthogonal Reg (f) Spectral Norm

(g) SVD (h) FPC, deg-3

(i) FPC, deg-7 (j) APC

Figure 10: Generated STL-10 samples using a CNN.

36

Under review as a conference paper at ICLR 2021

(a) SN, Dit = 1 (b) SN, Dit = 5

(c) SVD, Dit = 1 (d) SVD, Dit = 5

(e) FPC, deg-3, Dit = 1 (f) FPC, deg-3, Dit = 5

(g) FPC, deg-7, Dit = 1 (h) FPC, deg-7, Dit = 5

(i) APC, Dit = 1 (j) APC, Dit = 5

Figure 11: Generated STL-10 samples using a ResNet with Dit = 1 (left) and Dit = 5 (right).

37

Under review as a conference paper at ICLR 2021

(a) SN

(b) SVD

(c) FPC, deg-3

(d) APC

Figure 12: Generated LSUN Bedroom 256⇥ 256 samples using CNN.

38

Under review as a conference paper at ICLR 2021

(a) SN

(b) SVD

(c) FPC, deg-3

(d) APC

Figure 13: Generated LSUN Living Room 256⇥ 256 samples using CNN.

39

Under review as a conference paper at ICLR 2021

(a) SN

(b) SVD

(c) FPC, deg-3

(d) APC

Figure 14: Generated LSUN Tower 256⇥ 256 samples using CNN.

40

	Introduction
	Related Work
	Notation and Definition

	Why Controlling the Spectrum?
	Preconditioning Layer
	Preliminary: Polynomial Preconditioner
	Preconditioning Layer in Deep Nets
	Finding Preconditioning Polynomials
	Fixed Preconditioning and Adaptive preconditioning

	Experimental Results
	Conclusion
	More related works
	Preconditioning: Introduction
	Polynomial preconditioner
	Preconditioning a rectangular matrix: linear regression

	Details of Algorithms
	Polynomial fitting algorithm
	Detailed Description of FPC and APC
	Implementation of PC layer
	Computation time

	Global Convergence: Proofs and Other Results
	Basics: Neural Tangent Kernel and Convergence Lemma
	Convergence of Continuous Dynamics
	Convergence of Discrete Time GD: Theorem and Discussion
	Proof of Theorem 1
	Proof of Claims on Lipschitz Continuity

	Supplementary Material for Section 3
	Spectral normalization and estimated spectral norm
	Proofs of Technical Results
	Proof of Claim 3.1
	Proof of Claim 3.2

	Experiments: More Details and More Results
	Results on CIFAR-10 and STL-10 with CNN
	Results on CIFAR-10 and STL-10 with ResNet
	Robustness of APC-GAN
	FPC results with different degrees
	Generated Samples

