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Appendix

Due to space limitation of the main paper, we provide supplementary results and details in the
appendix, including: 1) Supplementary related work, 2) Supplementary implementation detail, 3)
Supplementary results and analysis, 4) Limitation analysis. We also provide the visualization results
of OS-3DETIC together with the baseline and ground truth in the same folder as a supplementary
video.

A SUPPLEMENTARY RELATED WORK

A.1 OPEN-SET DETECTION

open-set object detection targets to detect the novel classes that are never provided labels during the
training |Bansal et al.| (2018)); |Gu et al.| (2021); Rahman et al.| (2020a3b)); Zhou et al.| (2022); |Zareian
et al.| (2021); Radford et al.| (2021). The classic open-set object detection method directly replaces
the classifier with language embedding layer Bansal et al.|(2018). To advance the embedding layer,
more popular approaches aim at leveraging image-text pairs to extract the rich semantics from text
thus broadening the detector Radford et al.| (2021)); |Gu et al.| (2021)); Zareian et al.| (2021). Existing
open-set 3D detection (Cen et al.| (2021} 2022); Wong et al.| (2020) is a similar but different setting,
compared with our open-set 3D detection. The “Detection” in Open-set 3D Object Detection is
to identify the unknown objects from known ones. It does not classify each unknown object into
specific categories. However, the “Detection” in our setting (open-set 3D detection) is to localize and
classify each object with a specific bounding box and category. The most similar work to us is Detic
Zhou et al.|(2022)), which utilizes ImageNet21K to broaden the classifier of the 2D detector. Yet, it is
infeasible to directly use the same method to broaden the classifier of the point-cloud detector, due
to the large gap between the image and point-cloud. Different from Detic which transfers knowledge
from ImageNet with the image-level class to 2D detection within the same modality, we propose to
transfer the knowledge from ImageNet to a totally different modality, point-cloud, with customized
pseudo-label strategy and de-biased cross-modal contrastive learning.

A.2 POINT-CLOUD DETECTION

Early works on point-cloud object detection discretize and project points onto Bird’s Eye View
(BEV) or front-view images, and process 2D Lidar feature using standard 2D CNN networks, such
as PIXOR |Yang et al.| (2018), MV3D |Chen et al.| (2017), SqueezeSeg [Wu et al.| (2018 [2019); Xu
et al.| (2020). A more natural way is to directly process each point using PointNet-alike backbones
such as PointRCNN/|Shi et al.| (2019) and PointFusion | Xu et al.|(2018)), which is, however, limited by
its high computation costXu et al.|(2021b)). Recent popular method is the voxel representation Zhou
& Tuzel| (2018)), which can not only be processed efficiently using 3D sparse convolution Yan et al.
(2018); |Shi et al.| (2020bga), but also preserve approximately similar information to raw point-cloud
with small voxel size. Recently, vision transformer dominates the field of image field [Dosovitskiy
et al. (2020); [Wu et al.| (2020); |Liu et al.| (2021c)), and point-cloud transformer is also gradually
developed Misra et al.| (2021)); [Zhao et al.| (2021). Our method is based on 3DETR |Misra et al.
(2021).

A.3 ZERO-SHOT LEARNING IN POINT-CLOUD

Previous zero-shot (open-set) learning works in the point-cloud field mainly study classification. Im-
age2Point|Xu et al.|(2021a) directly inflates the 2D model pre-trained on large-scale image dataset,
and shows a significant improvement for point-cloud classification. PointCLIP [Zhang et al.| (2021
leverages CLIP pre-trained embedding to broaden vocabulary of the point-cloud classifier. In |(Cher-
aghian et al.|(2019bfa; [2021), PointNet is pre-trained on seen classes and classifies unseen objects
by calculating the similarity to the seen class. Recently, although zero-shot semantic segmentation
in point-cloud is studied |Liu et al.| (2021a)); Michele et al.| (2021).
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Figure 6: Network architecture of OS-3DETIC

Table 4: Supplementary baselines (A P»5) on unseen classes of SUN RGB-D.
Method toilet bed chair bathtab sofa dresser scanner fridge lamp desk mean

Detic-ImageNet-box 4.18 0.08 2.69 0.12  0.08 1.08 0.06 120 0.08 697 1.65
Detic-ModelNet-box  4.52 3.37 3.86 0.10 1.09 456 0.13 025 027 245 206

B SUPPLEMENTARY IMPLEMENTATION DETAIL

B.1 NETWORK ARCHITECTURE

Fig. [f] illustrates the network architecture of OS-3DETIC. The overall network consists of three
branches: the point-cloud branch, the paired image branch, and the ImageNet branch. 3DETR
Misra et al.(2021) is used as the backbone of the point-cloud branch, which composes of Set Ag-
gregation, Transformer Encoder, and Transformer Decoder. DETR [Carion et al.|(2020) is used as the
backbone of paired image and ImageNet branch, note that the parameters are shared between these
two branches. Besides, there are four heads with four different losses concatenate after 3DETR and
DETR. 3D and 2D box head are used to regress bounding boxes, while the classification head that
is shared among three branches are used to predict category label. Besides, the contrastive learning
head aggregates features from three branches and align the distribution among them.

B.2 DATA PREPROCESSING FOR SCANNET

ScanNet is a richly annotated dataset of 3D reconstructed meshes of indoor
scenes. It contains ~1.2K training examples collected from hundreds of different scenes and anno-
tated with semantic and instance segmentation labels. Since each reconstructed scene in ScanNet
is paired with multiple RGB images, while OS-3DETIC only consumes a single paired image at
a time, thus we use the raw data of ScanNet instead of processed meshes. And finally, there are
~4.6K and ~4.5K samples in the train and test set, respectively. Furthermore, to generate oriented
bounding for ScanNet, we first calculate the center and size of each instance from the instance map
and then use principal component analysis (PCA) to compute the heading angle for each bounding
box. Other than the above differences, we follow the data preprocessing as VoteNetQi et al.|
does.
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Table 5: Supplementary results (A Ps5) on resampled unseen classes of SUN RGB-D. (Set 1)

Method bed  bathtub dresser fridge desk stand  counter bookshelf microwave stool —mean

3DETR Misra et al.|(2021) ~ 0.20 0.02 1.24 0.17 2.68 0.18 0.29 0.19 0.00 0.08 0.51
Ours 1.35 47.25 9.51 10.17  13.39  25.96 3.65 17.28 0.71 458 13.39
Improvement +1.15  +47.23  +827 +10.00 +10.71 +25.78  +3.36 +17.09 +0.71 +4.5 +12.88

Table 6: Supplementary results (A Ps5) on resampled unseen classes of SUN RGB-D. (Set 2)

Method chair  bathtub sofa  lamp  desk table  counter pillow  sink stool  mean

3DETR Misra et al.|(2021)  1.12 0.02 022 0.00 037 0.19 0.46 0.00 0.18 0.04 0.26
Ours 438 4570 323 272 7.62 10.64 10.39 416 2745 216 11.85
Improvement +3.26  +45.68 +3.01 +2.72 +7.25 +1045 4993 +4.16 +27.27 +2.12 +11.59

Table 7: Supplementary results (A Ps5) on resampled unseen classes of SUN RGB-D. (Set 3)

Method toilet  bathtub sofa  fridge lamp table counter bin microwave stool  mean

3DETR Misra et al.|(2021)  2.72 0.05 0.29 0.29 0.02  1.37 0.39 0.42 0.00 0.07 0.56
Ours 50.97 4430 473 13.60 0.01 10.27 4.34 16.11 0.72 254  14.76
Improvement +48.25 +44.25 +4.44 +1331 -0.01 +8.90 +3.95 +15.69 +0.72 +247  +14.20

B.3 PERFORM OPEN-SET DETECTION ON FULLY-SUPERVISED SETTING

As shown in Tables [T] and [2] the performance of state-of-the-art detectors is relatively lower than
the number that reported in their original paper, which is because we modify their fully-supervised
setting to open-set. Specifically, compared with the fully-supervised version, the only difference
is that we slightly modify the classification head that can predict both seen class and unseen class,
e.g., 10 seen classes and 10 unseen classes, then the output channel size of the classification head is
20. Note that no ground truth is provided for unseen classes during training. During inference, we
evaluate the results of unseen classes.

C SUPPLEMENTARY RESULTS AND ANALYSIS

C.1 (NEWLY ADDED) RESULTS OF OTHER BASELINES

As a supplement to the main results in Tables[T]and2] in this section, we report the results of another
two baselines: Detic-ImageNet-box and Detic—ModelNet-box. These two baselines are
the extension of Detic-ImageNet and Detic-ModelNet, respectively, based on which the
suffix ~box denotes that the ground truth bounding boxes of both seen and unseen categories are
used during training. Intuitively, these two baselines handle localization by ground truth annotation,
and address classification via using ImageNet or ModelNet as Detic|{Zhou et al.|(2022) does. Results
are presented in Table ] which demonstrates that using bounding box supervision further outper-
forms Detic-ImageNet and Detic-ModelNet by 0.74% and 0.54%, respectively. However,
both of them are inferior to OS-3DETIC by a large gap, even though they use the grounding truth
supervision of unseen classes. The results of Detic-ImageNet and Det ic-ModelNet further
indicate that due to the large gap between image and point-cloud, directly extends the idea of Detic
Zhou et al.|(2022) to open-set 3D detection does not perform well.

C.2 RESULTS ON OTHER RANDOMLY RESAMPLED UNSEEN CLASSES

In order to verify the robustness against the sampling of unseen classes, we further shuffle and
randomly resample multiple sets of unseen classes. As shown in Tables [5]to[7] for different settings
of unseen classes, we compare OS-3DETIC with the baseline method (3DETR that trained on seen
class). The results show that OS-3DETIC outperforms the baseline and achieves 13.3% mAPy5
that averages over all sets. Besides, even the worst-performing set (Set 2) overtakes the baseline
by a large margin of 11.59%, which demonstrates OS-3DETIC is robust to the sampling of unseen
classes. By the way, we observe that there are some classes that perform well across all sets of
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Table 8: Supplementary results (A Ps5) of 3DETR in SUN-RGBD.
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Table 9: Supplementary results (AP,5) of 3DETR in ScanNet.
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unseen classes, such as “toilet” and “’bathtub”, while there are also some cases that perform poorly,
such as “microwave” and “lamp”. This phenomenon indicates that the inherent difficulty of each
class directly relates to the final results.

C.3 (NEWLY ADDED) RESULTS OF THE CLOSE-SET FULLY-SUPERVISED DETECTOR

Here, we report the fully supervised results of both seen and unseen categories in Tables [§] and [9]
which can be regarded as our upper bound. Even though OS-3DEIC outperforms a wide range of
baselines, there is still a large gap, compared to the fully supervised setting, indicating the huge
space for further improvement.

C.4 (NEWLY ADDED) RESULTS ON ENABLING COLOR INFORMATION

Paired image is used as the intermediary to bridge RGB image and xyz point-cloud, yet, during in-
ference, paired image is not required. In this section, we would like to investigate what if RGB color
is available during inference. Specifically, RGB color is used as initial feature of each point which
is further processed by 3DETR Misra et al] (2021)). Results are presented in Tables [9]and [T0} where
3DETR-color denotes 3DETR with the input of colored point-cloud, and OS-3DETIC-color repre-
sents OS-3DETIC with the input of colored point-cloud. As we can see, RGB colors marginally help
3DETR and OS-3DETIC. Intuitively, however, RGB colors are very helpful for human recognition
of objects. The reason is that 3DETR is not designed for processing color information, the official
version of 3DETR only uses xyz geometry, and OS-3DETIC is mainly based on 3DETR. Nonethe-
less, finding a way to fully exploit RGB colors is an interesting problem. We will investigate this
further in the future.

C.5 (NEWLY ADDED) ABLATION ON DISTANCE-AWARE TEMPERATURE

To further uncover how the proposed Distance-Aware Temperature works, we perform this ablation
study that sets y (7y is the base of exponential function) range from 0.5 to 1.5, and the results are
shown in Table @ As we can see, when v < 1, which means Lpgcc focusing on distant objects,
the mAP;5 drops. And when v = 1, the distance-aware temperature degenerates to class-based
contrastive learning. And when v > 1, which means Lpgcc focusing on close-by objects, the
mAPss is improved first and then drops. As we discussed in Section 3.3] intuitively, distance-aware
temperature leverages the prior that the correlation between close-by objects is stronger than that of
distant objects.

C.6 (NEWLY ADDED) ABLATION ON DECOUPLING PSEUDO-LABEL AND DE-BIASED
CROSS-MODAL CONTRASTIVE LEARNING

As we discussed in Section [3.2] “There is significant synergy between pseudo-label strategy and
our proposed de-biased cross-modal contrastive learning”, the pseudo-label is beneficial for true
positive sampling of de-biased contrastive learning, and de-biased contrastive learning in turn helps
to generate better pseudo-labels. Therefore, the proposed OS-3DETIC works in an iterative scheme
that the improvement achieved by the de-biased cross-modal contrastive learning will be merged
into the updated pseudo-label.
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Table 10: Supplementary results (A Ps5) of OS-3DETIC-color in ScanNet.

Class toilet bed chair sofa dresser table cabinet bookshelf pillow sink mean
OS-3DETIC-color  50.21 2.74 7.33 1893 291 1444 265 4.75 435 2271 13.10

Table 11: Ablation on Distance-Aware Temperature.
¥ 0.5 0.7 0.9 1.0 1.1 1.3 1.5
mAPys 1135 12.27 1275 12.92 13.03 12.87 12.54

Table 12: Ablation on decoupling Pseudo-Label and DECC. (m A Pz5)

Iteration 0 1 2 3 4
Pseudo-Label 1.16 5.86 9.10 10.45 10.86
Pseudo-Label + DECC 1.16 6.55 10.58 12.35 13.03
Improvement +0.00 +0.69 +1.48 +1.90 +2.17

In order to decouple the improvement of pseudo-label and de-biased cross-modal contrastive learn-
ing, in this experiment, we disable the de-biased cross-modal contrastive learning altogether. The
results are given in Table As we can see, with the updating of pseudo-label, mAP,5; of
both Pseudo-Label and Pseudo-Label + DECC are improved, while the improving of
Pseudo-Label + DECC is better than that of Pseudo—-Label, further demonstrating the ef-
fectiveness of de-biased cross-modal contrastive learning.

C.7 VISUALIZATION OF LEARNED REPRESENTATIONS

Inspired by (Chuang et al.| (2020), we investigate the learned representation via comparison among
T-SNEs. Specifically, we compare OS-3DETIC with four different settings, they are baseline set-
ting, baseline and pseudo-label with position-based contrastive learning, baseline and pseudo-label
with class-based contrastive learning, and unbiased contrastive learning with ground truth. Please
note that the unbiased contrastive learning is the upper bound of OS-3DETIC. Besides, we visualize
the feature both before and after the linear layer of contrastive loss. The results are shown in Figs.
and |8} The "Dot” and “Triangle” markers denote the feature of point-cloud and images from Ima-
geNet, respectively. Fig.[7|(a) can be mainly divided into three parts: ImageNet features (left), seen
classes features of point-clouds (right-top) and unseen classes features of point-clouds (right-down).
The comparison among these three parts indicates that, in the baseline setting, ImageNet features
are clearly clustered, and that of seen classes could barely distinguish from each other, while those
of unseen classes are almost indistinguishable. Moreover, comparing the first four sub-figures of
Fig. [/} we find that the “Pseudo-Label”, ”Class-based contrastive learning” and “Distance-aware
temperature” help the clustering of the representations of unseen classes progressively.

Above observations can be also found in the feature distribution after the linear layer, we evaluate
the gain of de-biased contrastive learning by observing the ImageNet and point-cloud feature distri-
butions. Specifically, if these two feature distributions are close to each other, then the contrastive
strategy works. As shown in Fig.[8|(e), in the unbiased setting, the two feature distributions overlap
with each other, and in the biased setting (Fig. E] (b)), there is a significant difference between these
two distributions. Our de-biased setting (Fig. [8] (d)) performs better than the biased setting, while
there are still some hard examples that could be improved.

D LIMITATION ANALYSIS

The proposed OS-3DETIC transfers open-set knowledge from image-level annotated ImageNet to
3D detector. The major limitation is that we assume the calibration matrix between Camera and
Depth sensor is available. Even though calibrating the camera and depth sensor is a mature tech-
nique, this assumption hinders the using of the massive unpaired image and point-cloud data. Be-
sides, loosely calibrated camera and depth sensor may also lead to mAP loss. It is interesting to
investigate knowledge transfer through unpaired image and point-cloud. As we analyzed in Sec-
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Figure 7: T-SNE visualization before linear layer: "PL, P, C, D” are the abbreviation of “Pseudo-
Label”, ”Position-Based Contrastive Learning”, ’Class-Based Contrastive Learning” and “’Distance
Aware Temperature”. ”Unbiased” represents using the ground truth of unseen classes for contrastive
learning. The "Dot” and “Triangle” markers in each figure denote the representations of the point-
clouds and the images from ImageNet, respectively. The distinct colors of markers indicate different
categories.
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Figure 8: T-SNE visualization after linear layer: "PL, P, C, D” are the abbreviation of "Pseudo-
Label”, ”Position-Based Contrastive Learning”, ’Class-Based Contrastive Learning” and “’Distance
Aware Temperature”. ”Unbiased” represents using the ground truth of unseen classes for contrastive
learning. The “Dot” and “Triangle” markers in each figure denote the representations of the point-
clouds and the images from ImageNet, respectively. The distinct colors of markers indicate different
categories.

tion[4.3] not all classes achieve the same improvement. The unseen classes can be roughly divided
into three groups, they are simple, normal and hard. Take hard categories as example. There are a
variety of reasons that lead to these challenges, including but not limited to: too small target, rare
samples, clutter background. These challenges also exist in close-set 3D detection.
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