
A Expression for the marginal and conditional distributions

Here we derive and show that the marginal and conditional distributions in the neural response
space can be straightforwardly expressed in terms of the corresponding marginal and conditional
distributions in the transformed response space when the transformation function T is separable.
Consider partitioning neurons into two mutually-exclusive subgroups r(1) and r(2). Furthermore
assume that the transformation function factorizes over these two subgroups such that T (r) =
[T1(r(1))>, T2(r(2))>]> = [v(1)>,v(2)>]> = v, for some constituent diffeomorphisms T1 and T2.
Given this,
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where pr and pv denote the densities for the respective random variables. Then the marginal over r(1)

can be expressed as follows:
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Hence, the marginal over r(1) can be simply expressed in terms of marginal distribution over the
transformed variable T1(r(1)). Finally, we can write the conditional distribution over original
responses in terms of the conditionals over the transformed variables:
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Note again that in order for the expressions for the conditionals and marginals to cleanly reduce, it is
essential that the transformation T (·) is separable over the two groups of neurons.
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B Zero-Inflated Flow-based Factor Analysis (ZIFFA)

Joint distribution Here, we provide the derivation of the joint distribution p(r|x) of the ZIFFA
model. Let m ∈ {0, 1}n denote whether a neuron has a response ri below or above the threshold ρ as
indicated by mi = 0 or mi = 1, respectively. For a given assignment of m, we model the density of
a response vector r ∈ Rn≥0 as a product of (1) a uniform distribution between 0 and threshold ρ and
(2) a joint FlowFA model for above threshold responses. Accordingly, the conditional distribution
can be expressed as follows:
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where r+ and fθ,+(x) are the sub-vectors corresponding to responses that are above the threshold.
Also, C+ and Ψ+ are sub-matrices of C and Ψ, respectively, only containing entries corresponding to
the neurons with above threshold response. We choose Tφ such that T−1

φ (v) > ρ, where v = Tφ(r).
We use a slight abuse of notation and determine the size of Tφ(r+) by the dimensionality of its input
r+. Here JAK denotes the indicator function for the set A. Note that (1) this is a proper density on
Rn≥0 since it remains non-negative and integrates to one, and that (2) all population responses r that
do not agree with m (i.e. mi = 0 and ri > ρ, and vice versa) have zero density since one of the
indicator functions in the product will be zero (i.e. they enforce m). To get p(r|x), we marginalize
out m. To this end, we model the probability of each mi independently as a function qi (x) of the
image x. This yields
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Note that all 2n− 1 mixture components whose m are not in agreement with r are zero, which leaves
only one single mixture component in the end.

Conditional distribution The conditional distribution over ith neuron’s response ri given the
response of all other neurons r\i, can be computed as:
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where subscript + \ i is used to denote all neurons with responses above threshold except for the ith
neuron. While conditioning does not change the distribution over the responses below the threshold ρ,
for the responses above the threshold, the conditional distribution is computed as the fraction of joint
distribution of all neurons p(r|x) over the joint distribution of all neurons except the target neuron
p(r\i,x). This fraction of the two Gaussian distributions is equivalent to a Gaussian distribution over
the response of the target neuron i where the mean and variance are computed conditioned on other
neurons \i:

N (Tφ(r+); fθ,+(x),C+C>+ + Ψ+)

N (Tφ(r+\i); fθ,+\i(x),C+\iC
>
+\i + Ψ+\i)

= N (Tφ(ri);µi, σ
2
i ),

where µi and σ2
i are the posterior mean and variance, respectively, of the ith neuron’s transformed

response conditioned on the stimulus x and transformed responses of other neurons Tφ(r+\i). These
quantities can be straightforwardly computed from the FA model as follows:

µi = fθ,+,i(x) + Σ+,i,\iΣ
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σ2
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where Σ = CC> + Ψ and Σ+ = C+C>+ + Ψ+.

It is worth noting that the expressions for the conditionals cleanly reduce only when Tφ is separable
for each neuron (see appendix A for derivations).
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C Details on data recording and stimulation

Imaging was performed at approximately 9.7Hz for scan 1 and 7.2Hz for scan 2. The recorded visual
areas were identified based on retinotopic maps generated as previously described [49, 58]. We
selected cells based on a classifier for somata on the segmented cell masks and deconvolved their
fluorescence traces using the CNMF algorithm [59].

Images were presented for 500 ms followed by a blank screen with a random duration uniformly
distributed between 300 and 500 ms. After spike inference from Calcium data, the neural responses
were extracted as the accumulated activity of each neuron between 50 and 550 ms after stimulus
onset. All behavior traces (i.e. pupil dilation and running speed) were extracted using the same
temporal offset and integration window. The neural responses traces were normalized by their
standard deviation computed on the training set.
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D Additional details about model training

The models were trained end-to-end via gradient-based optimization to maximize the log-likelihood
obtained from Eq. (1), (2), (3) or (4) for the corresponding model, optimizing over all parameters
of the model. For optimization, we used Adam [60] with (i) an early stopping mechanism [61] that
would stop the training if the log-likelihood does not improve for twenty training iterations, and (ii) a
learning rate scheduler that reduces the learning rate by a factor of 0.3 if the log-likelihood does not
improve for ten training iterations.

To find the best image-computable model, we used Bayesian optimization [48] to find hyper-
parameters that optimized the final log-likelihood (explained in section 2.4) of the trained model.
Hyper-parameters included the learning rate and the regularization coefficient on the readout weights.
The ZIFFA and ZIG models included the zero-threshold parameter ρ as an additional hyper-parameter.
To find ρ, we experimented with several candidate values and chose the value which resulted in the
highest score for the ZIG model, and used the same value for the ZIFFA model.

Each instance of the model with a specific choice of hyper-parameters was trained on a workstation
with a single NVIDIA GeForce RTX 2080 Ti GPU. A single ZIFFA model takes approximately
2–3 hours to train whereas all other models take approximately 20–30 minutes to train. The hy-
perparameter search was completed using one GPU for a total of ~20 hours. All code for model
definition, training, and evaluation were implemented in Python 3.8 using PyTorch [62] and NumPy
[63] packages.
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E Computation of conditional response predictions

We estimated the posterior mean of the neuron’s responses to an image x conditioned on the responses
of other neurons via Monte Carlo approximation. To achieve this, we first drew samples from the
posterior based on the learned FA model, yielding samples in the space of the transformed responses.
We then inverse-transformed these samples to yield samples in the space of the neural responses.
Subsequently, we computed the average across these samples.

More specifically, for the FA-based models (except ZIFFA, see below), the posterior mean of the
neuron’s original response to image x was computed as E[ri|x, r\i] = 1
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of the ith neuron’s transformed response conditioned on the stimulus x and transformed responses
of other neurons v\i = Tφ(r\i). These quantities can be straightforwardly computed from the FA
model as follows:
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where Σ = CC> + Ψ.

For the ZIFFA model, the procedure for posterior mean computation is almost identical to the
procedure explained above with two differences: 1) when computing the posterior mean and variance
of the neuron’s transformed response, we condition only on other neurons who exhibit above threshold
responses r+\i (refer to appendix B for details), and 2) the posterior mean in the neural response
space is computed as the mixture of the mean of the two mixture model components:

E[ri|x, r\i] = (1− qi(x)) · ρ
2

+ qi(x) · E[ri|x, r+\i].
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F Synthetic data generation

We generated 5,000 samples from a correlated 100-d Gaussian distribution, corresponding to the
transformed responses v of 100 neurons. The covariance matrix of the Gaussian distribution took
the form CC> + Ψ, corresponding to that of FA models. CC> was of rank 4 with C ∈ R100×4,
where the choice of the rank was arbitrary. To ensure that generated Gaussian samples (1) fall
in a range where the transformation is invertible and that they (2) cover the most nonlinear part
of the transformation, we kept the variances and covariances relatively small and sampled the
mean for each neuron in a transform-specific fashion. The entries of C were sampled uniformly
between 0.02 and 0.07, and the diagonal entries of Ψ were sampled uniformly between 0.002 and
0.01. We further imposed stronger or weaker correlations between selected neurons by scaling the
corresponding entries of the full covariance matrix either by 1.5 or 0.2. The mean for each neuron (in
the transformed response space) was uniformly sampled between a transform-specific minimum and
maximum value. The transform-specific minimum value was computed as T (ε)+α ·max(CC>+Ψ)
where ε was a small value (10−12) close to zero and α took on a transform-specific value summarized
in Table 1. The transform-specific maximum value was computed as T (10). Once the Gaussian
samples were generated for each transformation function, the samples were inverse-transformed via
the corresponding T−1 into the simulated neural responses. The code used to generate simulated data
can be found at https://github.com/sinzlab/bashiri-et-al-2021.

Table 1: transform-specific α values
T : identity sqrt anscombe example 1 example 2 example 3 example 4
α: 1.0 3.0 2.0 1.5 3.0 3.0 1.0
T : example5 example 6 example 7 example 8 example 9 example 10
α: 3.0 3.0 3.0 1.0 3.0 3.0
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G Computing orthonormalized latent states

We extract latent states from the FA-based model by computing the posterior mean E[z|x, r]. While
the relationship between the latent states z and the neural responses r is well defined via the model
relationship r = T−1

φ (fθ(x) + Cz + ε), the factor loading matrix C can only be uniquely determined
up to an arbitrary orthogonal transformation. That is, given z ∼ N (0, Ik), we can transform the
factor loading matrix C and z by any arbitrary orthogonal transform matrix R to yield C′ = CR
and z′ = R>z. The resultant alternative definition of z′ along with C′ would yield identical fit to
the neural responses since C′z′ = CRR>z = Cz and z′ ∼ N (0, Ik). Furthermore, the inferred
latent states z are not necessarily ordered by how much neural variability they account for. In fact,
the order of the latent states are arbitrary, and this can be seen by noting that a permutation matrix
is an example of an orthogonal transformation. Combined with an additional observation that the
columns of C are not guaranteed to be mutually orthogonal, interpreting the inferred latent states z is
difficult and quite arbitrary.

To address this issue, we follow a similar approach to Yu et al. [30]. Briefly, we orthonormalize
the columns of C by applying the singular value decomposition to the learned C which yields
C = UDV>. As a result, Cz can be re-written as Cz = U(DV>z) = Uz̃ where z̃ ≡ DV>z
is the orthonormalized latent state. Consequently, instead of visualizing the MAP of z, E[z|x, r],
we would visualize DV>E[z|x, r]. This approach incurs multiple advantages. Firstly, while the
elements of z (and corresponding columns of C) have no particular order, the elements of z̃ (and
corresponding columns of U) are ordered by the amount of data variance they explain. Therefore,
the inferred latent states are ordered by their contribution in explaining the variance observed in
neural activity, resulting in more intuitive and interpretable latent states. Secondly, when the singular
values are non-zero and non-repeating, the method recovers a unique latent state z̃ for C′ ≡ CR and
z′ ≡ R>z regardless of R. This can be seen from the fact that singular value decomposition of C′ is
given by C′ = UDV′> where V′ = R>V, therefore

z̃′ ≡ DV′>z′

= DV>RR>z

= DV>z

= z̃.

23



H Supplementary Figures

b

a

Figure S1: Comparison of flow-based models with different model configurations. These configu-
rations include: 1) using a shared vs neuron-specific flow transformation, and 2) unconstrained vs
constrained covariance matrix of the FA. The transformation Tφ could be defined such that a single
flow transformation is shared among all neurons or it could be defined such that it contains neuron-
specific parameters resulting in neuron-specific transformations (for details refer to section 2.2).
As expected, per-neuron transformation (darker color) seem to results in a higher likelihood. The
constrain imposed on the covariance matrix was used to ensure that the marginals have unit variance
(i.e. a correlation matrix). While unconstrained covariance matrix (blue color) works best for the
FlowFA model, the ZIFFA model with constrained covariance matrix (orange color) generally results
in highest likelihood. a: FlowFA model. b: ZIFFA model.

ZIG Response r across repeats FlowFAZIFFA
a b

log p(r  | x) [bits/neuron] log p(r  | x) [bits/neuron]

Figure S2: Comparison of the learned density by the ZIFFA, FlowFA, and ZIG models. a: Example
marginal distribution of responses of 8 sample neurons to the repeated presentations of an image from
the test set and the corresponding fits of ZIFFA, FlowFA, and ZIG. While all three models peak at
zero, the FlowFA puts relatively little probability mass on positive responses r>ρ = {ri|ri(x) > ρ}.
b: Flow-based models vs ZIG log-likelihood in bits/neuron for positive responses r>ρ and “zero”
responses r≤ρ, respectively. Each point is a single trial. Compared to ZIFFA and ZIG, FlowFA
model seems to put less mass on responses r>ρ and, for many trials, more mass on responses r≤ρ.
Importantly, while ZIFFA performs very similar to ZIG for responses r≤ρ, it slightly puts more mass
on the responses r>ρ resulting in a higher likelihood performance as illustrated in (Fig. 3).
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ZIFFA FlowFA

a

b c ZIFFA FlowFA

Figure S3: Consistency of the learned transformation across models initialized and trained with
different random seeds, and across different number of latent dimensions. a: The learned flow
transformation for both ZIFFA (green) and FlowFA (pink) models with 0-dimensional latent. Square-
root (blue) and Anscombe (yellow) are also visualized for reference. Top row: Scan 1; bottom
row: Scan 2. Colors are the same as in Fig. 3. b: Quantification of the consistency of learned flow
transformations across random seeds, for the same models shown in a. To quantify the consistency,
we flattened “transformed” responses v across all neurons getting a single vector for one seed, and
then computed the R2 between flattened v of all pairs of seeds. Higher R2 value implies more
consistency. Top row: Scan 1; bottom row: Scan 2; Left column: ZIFFA; right column: FlowFA. c:
Same as b, but extended to also show the consistency of the learned transformation across models
with different number of latent dimensions.
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a b

Figure S4: Correlation and regression analysis between inferred latent states and the pupil dilation. a:
The regressed pupil dilation vs the recorded pupil dilation for the same model as in Fig. 4. b: First
three rows: The R2 values between orthonormalized latent states and pupil dilation across all random
seeds. Last row: The R2 values between regressed and recorded pupil dilation. Top: scan 1; bottom:
scan 2.
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