
Towards Real Robot Learning in the Wild:
A Case Study in Bipedal Locomotion -

Supplementary Material

1 Video and Visualisations

See website for supplementary video and further visualisations: https://sites.google.com/
view/op3-vision-wild

2 Detailed Framework Overview

We employ a distributed training framework, which, in principle, admits an arbitrary number of
robots in different geographic locations with different environment properties, and does not re-
quire additional hardware or human intervention (except for battery exchange and robot repair as
required). All robots share the same control policy. Policy inference for action selection is performed
asynchronously on each robot’s onboard computer relying only on onboard sensors. Collected data
is sent to a central data storage (“replay buffer”). A learner (running on a separate compute server
“in the cloud”) draws data from the data storage and computes updates to the policy and value
function. The robots update their policy parameters at the beginning of each episode. Rewards are
computed using onboard sensors only. When a robot falls it is reset to a standing pose via a built-in
reset controller. In the experiments presented in this paper we prevent the robots from leaving their
workspace by enclosing the workspace with a foam wall (akin to a child’s play pen).

Figure 1: A distributed learning framework is employed. The policies are directly run on the differ-
ent robots and synchronized at the beginning of every episode. Only proprioception and vision are
required without additional instrumentation, allowing easy deployment in different environments.
After every episode the collected transitions are uploaded to the replay buffer and sampled by the
learner. A rate limiter imposes an upper limit on the number of learner steps as a function of envi-
ronment steps.

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://sites.google.com/view/op3-vision-wild
https://sites.google.com/view/op3-vision-wild

3 Practical Difficulties and Solutions

To further clarify our instrumentation free approach (see also Figure 1), Table 1 compares it to
a hypothetical fully instrumented approach which is more representative of today’s reinforcement
learning setups in the real world.

Difficulty Instrumented Approach Our Approach
Reward computa-
tion

Use motion capture to estimate ve-
locity and compute reward.

Use proprioception to estimate ve-
locity and compute reward.

Limited
workspace

Use motion capture based reward
or termination to keep robot away
from workspace boundaries.

Let the robot interact with the
workspace boundary and learn to
remain in the workspace.

Robot reset Use a gantry to reset the robot to the
middle of the workspace.

Use a standup controller and start
from wherever the robot terminated
the last episode.

Environment ob-
servability

Keep environment fix or provide
map and localisation information
(e.g. via motion capture) or provide
processed images.

Provide access to camera images.

Table 1: List of practical difficulties and solutions.

4 Proprioceptive Reward Computation

For the following we employ three different coordinate frames, an arbitrary gravity-aligned inertial
frame I , a robot body coordinate frame B, and a gravity-aligned robot coordinate frame A. We
denote the coordinate frame a vector is expressed in using a prefix, e.g. Ig = (0, 0,−9.81) is
the gravity vector g expressed in the inertial coordinate frame I . A rotation matrix mapping from
coordinates B to A is written as CAB .

The employed reward, R = wfRf + wuRu + wnRn, has three components, a forward velocity
component Rf with weight wf = 1.0, an upright component Ru with weight wu = 0.1, and a not
turning component Rn with weight wn = 0.22. All components are derived from the IMU’s rota-
tional rate measurement Bω or orientation estimate CIB and the encoders’ angular measurements a
(and its time differential ȧ via numeric differentiation).

The location Bli of the foot i w.r.t. the robot main body can be computed using forward kinematics,
Bli = Bli(a). Taking the differential gives B l̇i = Ji(a)ȧ using the Jacobian Ji(a). The position of
the foot Ifi in world coordinates can be written as Ifi = Ir + CIBBli, where Ir is the position of
the robot in world coordinates. Taking the total derivative w.r.t. time gives Ivif = Ivr +CIB(Bω ×
Bli + B l̇i), where Iv

i
f is the velocity of foot i and Ivr the velocity of the body. This can also be

expressed in the body coordinate frame, avoiding the dependency on the robot orientation: Bvif =

Bvr + Bω × Bli + B l̇i, with which one can compute the velocity of a particular foot i in the body
coordinate frame. But this identity can also be used to compute the velocity of the robot given that
a particular foot s is stationary: Bvr = −Bω×Bls−B l̇s. We can combine the two last identities to
obtain the following foot velocity estimator (subscript s is a stationary foot):

Bv
i
f = Bω × (Bli − Bls) + B l̇i − B l̇s (1)

Once we have estimated foot velocities, we simply compute the forward velocity reward Rf by
summing the forward velocities of all feet in a gravity aligned coordinate frame

Rf =
∑
i

(1, 0, 0) · CABBvif (2)

where CAB maps to gravity aligned coordinates and is a function of the gravity direction Bg =
CTIBIg.

2

The upright reward is based on the norm of the x-y component of the normalized gravity when
expressed in the body frame Ru = clip(1 − (‖Bgxy‖/‖Bg‖ − o)/s, 0, 1), with offset o = 0.2 and
scale s = 0.2.

The not turning reward is computed by taking the dot product between the estimate of the current
forward direction and the one K steps ago: Rn = CkIB(1, 0, 0) ·Ck−KIB (1, 0, 0). Note that this relies
on the IMU orientation estimates which are subject to drift in the heading component. But given that
K = 10 (corresponding to 0.5 s), this remain within a time frame where the drift can be neglected.

5 DMPO

DMPO is an actor critic algorithm which iterates between policy improvement and policy evaluation.
The essence of the policy improvement step is to solve (for each state s)

max
π

E
a∼πk(·|s)

[
eQ

k(a,s)/T

Zk(T, s)
log π(a|s)

]
− αKL

[
πk(·|s)||π(·|s)

]
, (3)

where πk(a|s) is the policy after the kth iteration,Qk(a, s) is an estimate of its Q-function, Zk(T, s)
normalizes the exponential factors to a probability distribution, and T and α are parameters which
are automatically adapted during learning in a way which ensures that policy changes remain within
a desired trust region (specified by a set of hyperparameters typically denoted ε). The full loss
employs several tricks which are discussed in the original references [1] and [2] as well as the open-
source reference implementation https://github.com/deepmind/acme/tree/master/acme/
agents/tf/dmpo.

Policy evaluation uses distributional reinforcement learning [3] which models the distribution
of future returns Rk(a, s) ∼ pk(q|a, s) rather than the Q-function which represents the aver-
age future returns, i.e. Qk(a, s) = E[Rk(a, s)]. TD(0) policy evaluation aims to find the
random variable R(a, s) ∼ p(q|a, s) which minimizes its distance from the random variable
r(a, s, s′) + γ Ea′∼πk(·|s′)

[
Rk(a′, s′)

]
over all transitions (s, a, s′) encountered by the agent. In

our case we model p(·|a, s) as a histogram, and the distance between the random variables is
the KL distance between their distributions. Again, we refer the reader to the implementation at
https://github.com/deepmind/acme/tree/master/acme/agents/tf/dmpo for all details
regarding the policy evaluation loss (such as TD(n) instead of TD(0), binning hyperparameters etc.).

The only differences between our and the reference implementation are that:

1. We use JAX instead of TensorFlow.
2. We run in a distributed setting with separate actor and learner processes.
3. We calculate losses and gradient updates over batches of multi-step trajectories instead of

batches of single-step transitions.
4. We estimate n-step returns directly inside the critic loss from the trajectories stored in the

replay buffer.

All hyperparameters are listed in Table 2.

6 Action Filter

An exponential filter is applied to the actions before sending them to the actuators. Let the agent
action be denoted by ut = π(ot) ∈ R20. The final command that is sent to the actuators is given
by p̄t ∈ R20, p̄t = p̄t−1 ∗ c + ut ∗ (1 − c), where c is the filter coefficient (we set c = 0.9 for all
experiments).

7 Detailed Simulation Results

A more detailed analysis of the simulation results is provided in Figure 2. In addition to the total
episode reward, we also plot the average episode length as well as the average per-step reward. The

3

https://github.com/deepmind/acme/tree/master/acme/agents/tf/dmpo
https://github.com/deepmind/acme/tree/master/acme/agents/tf/dmpo
https://github.com/deepmind/acme/tree/master/acme/agents/tf/dmpo

policy learning rate 0.0001
critic learning rate 0.0001
dual learning rate 0.01
trajectory length 48
batch size 32
updates per step 0.25
num samples 20
discount 0.99
init log temperature 10
init log alpha mean 10
init log alpha stddev 1000
epsilon 0.1
epsilon mean 0.0025
epsilon stddev 1e− 6
epsilon penalty 0.001
per dim constraining True
action penalization True
n step 5
target actor update period 25
target critic update period 100
clipping True
vmin −150
vmax 150

Table 2: List of DMPO hyperparameters.

average episode length is indicative of how long the robot stands before falling. At the beginning,
it increases sharply as the agents learn to maintain balance. It then decreases as the agents attempt
to move forwards, before increasing again when the agents’ behavior mature and become more
reliable. If we add a wall to the setup, the pose agent’s episode length decrease strongly as it runs
into the wall and is unable to prevent falling. Blind and vision agents are both able to maintain much
longer episodes.

The per-step reward is mostly indicative of the speed the robot achieves and its dependence on the
wall configuration is weak. Both the pose and vision agents have higher per-step reward than the
blind agent. This is likely due to the type of gait that can be employed when not having to recover
from collisions.

Figure 3 visualises the behavior of the learned policies. The vision agent achieves a good perfor-
mance and is able to avoid the additional wall. The pose agent shows the best performance in the
open court but is unable to deal with the additional wall, running into it and falling. The blind agent
is slower (as can be seen from the closer distance between the robot snapshots) but is able to recover
from wall collisions.

8 More Details for Real Experiments

We provide two additional figures for the real world experiments. Figure 4 compares the sample
complexity of the single and the two-robot experiments. Figure 5 depicts the reset to runtime ratio
for the two-robot experiment.

9 Image Processing Network Ablations

In order to test the effect of network architectures on data efficiency we ran different ablations
in simulation. Here we report some of the more important findings. While our simulation does
not try to mimic the visuals encountered in the real world, we randomize textures in simulation to
roughly match the diversity of possible visual inputs. This ensures that our conclusions regarding

4

Figure 2: Simulation results comparing agents trained with vision and proprioceptive sensing
(green), with groundtruth pose and proprioceptive sensing (blue), and with proprioceptive sensing
only (red). The right plots show the performance of the same agents in a court with an additional
wall which was not present during training. The shaded area corresponds to 95% confidence interval
across seeds. Top: total episode reward. Middle: episode length. Bottom: per-step reward.

viable network architectures are likely to also apply in the real world. See Figure 6 for an example
demonstration of the visual gap between simulation and the real robot.

We used the employed 3-block Resnet as the base network for our studies, and ablated different
settings such as the depth and width of the resnet channels, usage of a shared or separate resnet torso
between the actor and critic as well as the number of past stacked frames provided as input to our
vision pipeline (see Figure 7 and Figure 8). With regards to channel depth and width we found little
improvement in performance with larger networks; in practice, a fairly small network worked quite
well for our setting. We did find that sharing the resnet torso between the actor and critic led to faster

5

Figure 3: Trajectory visualisation for the learned agents. Top: vision agent. Middle: pose agent.
Bottom: blind agent. The two left examples are tested with additional wall to observe the reaction
of the robot. The white square highlights the start position. Spacing between robot snapshots is 1 s.

Figure 4: A comparison of learning curves from two independent real robot experiments. The green
curve corresponds to a two robot experiment distributed across two different locations while the
purple curve corresponds to a single robot experiment which took place in one of the two locations.
We see that the sample complexity is similar (within variability observed in analogous simulation
experiments where it is easy to run multiple seeds). Note that this is despite the fact that the agent
has to deal with more diverse inputs in the two-robot experiment.

learning (Figure 7, left vs right). Lastly, we did not see a change in performance when increasing
the history of frames we stack as inputs to our network (Figure 8).

References

[1] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa, D. Belov, N. Heess, and
M. Riedmiller. Relative entropy regularized policy iteration, 2018.

6

Figure 5: The rate at which we can collect data is not fixed throughout an experiment. The robot
falls very often at the beginning of an experiment, which means that we have to execute our stand
up reset controller much more frequently. The plot shows the ratio of the time we spent on resets to
that spent on collecting data as the learning progresses in the two-robot experiment. We see that the
experiment time during the first 25k steps is dominated by the resetting behavior.

Figure 6: An example comparison of the camera observations on the robot and in simulation. We
make no attempt to match the robot’s visual inputs in simulation since that would require realis-
tic modeling of shadows, varying lighting conditions, and artifacts such as motion blur. We only
randomize the simulated textures to roughly match the expected diversity which allows us to more
accurately tune the vision architecture.

[2] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maxi-
mum a posteriori policy optimisation, 2018.

[3] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449–458. PMLR, 2017.

7

Figure 7: Ablation of ResNet channels. Left: without shared torso. Right: with shared torso. A
small network with a shared torso between the actor and critic tends to be best in terms of data
efficiency.

Figure 8: Ablation for different image stacking lengths. Providing more past images to the agent
does not seem to improve performance.

8

	Video and Visualisations
	Detailed Framework Overview
	Practical Difficulties and Solutions
	Proprioceptive Reward Computation
	DMPO
	Action Filter
	Detailed Simulation Results
	More Details for Real Experiments
	Image Processing Network Ablations

