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ABSTRACT

Conventional approaches to (oblique) decision tree construction for classification
are greedy in nature. They can fail spectacularly when the true labeling function
corresponds to a decision tree whose root node is uncorrelated with the labels (e.g.
if the label function is the product of the sign of a collection of linear functions of
the input). We define a new figure of merit to capture the usefulness of a linear
function/hyperplane in a decision tree that is applicable even in scenarios where
greedy procedures fail. We devise a novel deep neural network architecture that
is very effective at seeking out hyperplanes/half-spaces/features that score highly
on this metric. We exploit this property in a subroutine for a new decision tree
construction algorithm. The proposed algorithm outperforms all other decision
tree construction procedures, especially in situations where the hyper-planes cor-
responding to the top levels of the true decision tree are not useful features by
themselves for classification but are essential for getting to full accuracy. The
properties of the deep architecture that we exploit to construct the decision tree
are also of independent interest, as they reveal the inner workings of the feature
learning mechanism at play in deep neural networks. 1

1 INTRODUCTION

Neural networks and deep learning have demonstrated exceptional performance across diverse do-
mains, but they raise at least as many questions as they give answers. Some of them being:

• What are the component parts and features of a neural network model, and how are they
learned?

• What is the effect of different components on the final prediction function?

These and many more questions are mostly open and are a topic of current research. This leads us
to believe we are in the heady days analogous to the time of the steam engine, before the discovery
of thermodynamics. We believe making progress on these questions can supercharge the already
tremendous impact of AI and ML even further.

Decision trees are a classic machine learning paradigm known for its simple, effective and inter-
pretable models. While interesting in their own right, they form the ideal comparison point for
making progress on the fundamental questions in deep learning. Several of the questions asked in
the neural networks/deep learning setting, for which we have no answers, have elegant answers in
the decision tree setting.

In this paper, we make observations based on some experimental findings that can aid in transfer-
ring some answers in the decision tree paradigm to the neural network paradigm. This paper can
technically be just viewed as the design of a decision tree learning algorithm that exploits a property
of deep networks to get better decision trees. However, we believe that the real impact of this paper
lies in providing an alternative lens to study the key property of feature learning in neural networks.

1Our implementation and datasets are accessible at https://github.com/anonymousgithub09/
ICLR2024dlgndt.git
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1.1 RELATED WORK

Decision trees and neural networks are some of the oldest paradigms of machine learning, and there
have been muliple works using one in the aid of the other. Guo & Gelfand (1992) propose em-
ploying small multilayer nets at decision nodes to extract nonlinear features. Boz (2002) introduce
DecText, a method effective in deriving high-fidelity trees from trained networks.Krishnan et al.
(1999) employ a genetic algorithm to extract prototypes from trained networks, offering an alter-
native approach to traditional decision tree extraction. Schmitz et al. (1999) explore ANN-DT, a
method for extracting rules from neural networks without assuming internal structures or data fea-
tures, utilizing a novel attribute selection criterion.Sato & Tsukimoto (2001) introduced a method
for extracting rules from neural networks using decision tree induction, providing a means of inter-
preting the network’s behavior. Zhang et al. (2019) proposed a technique that employs decision trees
to elucidate the specific reasons behind CNN predictions, breaking down feature representations into
elementary object concepts for enhanced interpretability.

1.2 CONTRIBUTIONS

We make 5 distinct contributions in this paper.

1. We identify a family of class label functions that can be efficiently represented by an
oblique decision tree (ODT), but is immensely hard for any decision tree algorithm to learn
from finite data.

2. We define a new quantity that measures the suitability of an ODT split criterion that is
agnostic to how the other nodes (its ancestors particularly) in the tree are defined

3. We construct a novel deep architecture (DLGN) that outperforms kernel methods and is
competitive with ReLU networks on classification tasks. It has a notion of features that
corresponds to hyperplanes in the input space.

4. We show that these DLGN features exhibit strong tendencies to move towards the hyper-
planes corresponding to the true ODT label function (if such a function exists)

5. We design a novel algorithm that exploits the above tendency to recursively construct a
decision tree. This decision tree learning algorithm performs well even for label functions
identified in the first point above, and is competitive with other algorithms in general.

1.3 NOTATION/SETUP

In this paper, we consider a binary classification task, with training set S = {(x1, y1), . . . , (xn, yn)}
where xi ∈ Rd is drawn from some distribution D, and yi = f∗(xi) ∈ {+1,−1}. The ultimate
goal is to generalize well by finding a classifier f : Rd→{+1,−1} such that f(x) = f∗(x) with
high probability over x drawn from D. We assume that f∗ can be represented efficiently by an
oblique decision tree. For any positive integer a we denote the set {1, 2, . . . , a} as [a]. We denote
by 1(condition) as 0, 1 valued variable that takes 1 if the condition is true and 0 otherwise.

2 OBLIQUE DECISION TREES

An oblique decision tree (ODT) (Bertsimas & Dunn, 2017; Murthy et al.; 1994; Wickramarachchi
et al., 2016; Carreira-Perpinán & Tavallali, 2018) is a binary decision tree whose internal nodes
correspond to hyperplanes (not necessarily axis-parallel) and leaf nodes correspond to a label (that
is either +1 or −1). The label for a given instance x is got by traversing the ODT from root to the
leaf. The instance x goes along the left or right child of an internal node based on which side of its
hyperplane x falls on. A simple 3 level decision tree that we will use as a running example is given
in Figure 1.

2.1 FAILURE OF GREEDY METHODS

From Figure 1 one can convince themselves that to classify the given data perfectly, the 7 hyper-
planes are essential, and hence a depth 3 ODT is the smallest depth ODT that can express this label
function perfectly. If we can search over all 7 hyperplanes simultaneously, using some optimisation
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Figure 1: Hyperplanes and labelling function for a complete ODT of depth 3. The children of an
internal node i are 2i+ 1 and 2i+ 2.

algorithm with enough training data, we would indeed be able to recover the desired ODT. However,
most decision tree methods are greedy in nature and cannot do. In particular, for this example, no
greedy decision tree algorithm would choose the root node to correspond to the true decision tree
root node (indicated by 0 in the figures). This is because while splitting along the desired line is
essential to get the smallest depth decision tree, it is not the best greedy choice. In fact, all known
metrics for evaluating splits (accuracy, information gain etc.) would all evaluate the hyperplane
corresponding to 0 in the figure poorly.

This idea can be easily generalised to get a family of such labelling functions : f∗ functions corre-
sponding to complete ODTs, whose hyperplanes are oriented in random directions, split the data in
each node in a balanced manner and whose leaf node labels are such that sibling leaf nodes do not
both get the same label. For any such labelling function f∗, all greedy decision tree learning meth-
ods fail. Even ODT construction methods that are not purely greedy in nature (Zantedeschi et al.,
2020; Bertsimas & Dunn, 2017),(Lee & Jaakkola, 2020) seem to fail for such labeling functions. In
fact, as we show in Section 5, even kernel methods which correspond to learning linear models with
a fixed feature function fail on such data. Only algorithms that are capable of learning features, such
as deep neural networks, perform well on these data.

2.2 HYPERPLANE DISCONTINUITY SCORE

We now define a new metric to evaluate ODT splits based on how “discontinuous” the label function
is in the vicinity of the hyperplane in question. We define the hyperplane discontinuity score (HDS)
γ(w, b) for a given distribution D and label function f∗, and hyperplane H = {x : w⊤x+ b = 0}
as follows.

γ(w, b) = Px∼D

(
f∗
(
x+ ϵ

w

∥w∥

)
̸= f∗

(
x− ϵ

w

∥w∥

) ∣∣∣∣∣ w⊤x+ b

∥w∥
= 0

)
,

where ϵ > 0 is a small number. The value of γ(w, b) ranges between 0 and 1. A value of γ(w, b) = 1
corresponds to maximum discontinuity, i.e. for all points x on the hyperplane, pairs of points close
to x lying on opposite sides of the hyperplane have different labels. Similarly, a value of γ(w, b) = 0
corresponds to maximum continuity, i.e. for any point x on the hyperplane, pairs of points close to
x lying on opposite sides of the hyperplane have the same label.

Based on this definition, we can immediately see that for the data in Figure 1, all hyperplanes w, b
except the 7 hyperplanes corresponding to the true decision tree labelling function have a HDS of
0. The seven hyperplanes corresponding to the true decision tree all have a HDS strictly larger than
0. In fact, this is true for any data where the true labelling function f∗ corresponds to an oblique
decision tree. We also observe that for higher dimensions d when the data is labelled by an ODT, the
HDS for hyperplanes corresponding to the internal nodes of the true ODT increases with decrease in
distance of the node to the root. This suggests a decision tree construction algorithm which populates
its nodes using hyperplanes with large discontinuity scores, where the hyperplane with the largest
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HDS goes to the root and so on. A direct implementation of this suffers from computational and
robustness issues, however this core idea is quite central to the rest of the paper.

The HDS is quite impractical to compute from finite data due to its dependence on the true label
label function f∗ and marginal distribution of the instance D. However, it can be approximated quite
well, by expanding the conditioning criterion to include points x that are close to the hyperplane,
e.g. w⊤x+b

∥w∥ ∈ [− ϵ
2 ,

ϵ
2 ], and not just those exactly on it. With finite training data one is almost sure

to not have the true labels for x+ ϵ w
∥w∥ and x− ϵ w

∥w∥ , however we can relax this by using the label
of the nearest neighbours of these points (excluding x). Another practical issue is to ensure that the
hyperplane {x : w⊤x+ b = 0} passes through or divides significant amount of the data. Otherwise,
the conditioning in the definition of HDS could become vacuous. We can account for this by only
considering hyperplanes w, b such that w⊤x + b is positive (negative) for at least (say) 10% of the
data x drawn from D.

While hyperplanes are the main objects of interest in this paper, one can easily extend this idea
to general surfaces/manifolds. We conjecture that such surfaces of high discontinuity in the data
labelling function are the main drivers of feature learning in deep networks. Note that separating
hyperplanes (or surfaces) that separate the data into distinct class labels all have high HDS, but
the reverse is not true – one can have hyperplanes of high HDS that do not separate the data (e.g.
hyperplane 0 in Figure 1(c).

3 DEEP LINEARLY GATED NETWORK(DLGN)

ReLU networks have been a workhorse of deep learning and is the current focus of several theo-
retical results that aim to explain the success of deep learning over kernel methods. A mainstay of
such results is that ReLU networks can learn “features” of the data relevant to the task. While this
statement is quite plausible, it is ambiguous due to the vague nature of the term ‘features’. There are
multiple valid notions of features for deep networks, the main schools of thought on this are given
below:

1. The last layer neurons (Daniely, 2017; Lee et al., 2019) are a natural feature choice as the
prediction function can simply be viewed as a linear function of the last layer. However,
the why, when and how of last layer learning useful/relevant features for the classification
task remain impenetrable.

2. The Neural Tangent Kernel (NTK) feature (Jacot et al., 2018; Arora et al., 2019), which
corresponds to linearising the neural network prediction function around initialisation. The
constant NTK setting simply asserts no feature learning takes place, which is in contrast
to empirical results. Tools to study the change of the NTK features during training are
an interesting and active area of research. (Atanasov et al., 2022; Baratin et al., 2021;
Bordelon et al., 2020; Damian et al., 2022; Chen et al., 2022; Shi et al., 2022; Woodworth
et al., 2020; Atanasov et al., 2021; Fort et al., 2020; Hu et al., 2020; Ba et al., 2022; Chizat
& Bach, 2018)

3. Directions in activation space (Olah et al., 2020) are an intriguing new possibility and has
had practical success in some scenarios like Word2Vec (Church, 2017).

In this paper, we take an alternate route of designing a novel architecture that has the same “feature
learning” properties of ReLU networks that enable it to outperform linear and kernel methods. The
major difference between this novel architecture and the ReLU network is that it allows for a natural
notion of features that is interpretable and decomposable.

3.1 ARCHITECTURE DETAILS

The deep linearly gated network also has an architecture similar to that of a ReLU network, and is
defined by neurons residing in multiple layers. For simplicity, we assume the architecture consists
of L hidden layers with m neurons in each layer. The architecture is parameterized by matrices
W 1,W 2, . . . ,WL and U2, . . . , UL, and by vectors b1,b2, . . . ,bL and u1,uL+1. The matrices
W 2, . . . ,WL and U2, . . . UL are all of shape m×m. The vectors b1, . . .bL are all m-dimensional.
W 1 has shape m× d. u1 and uL+1 are vectors of size d and m respectively.
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Table 1: ReLU network(R) and DLGN(D) test accuracy on CIFAR10 with a simple 5 layer convo-
lutional architecture and also ResNet34 / ResNet110 architectures.

Conv5(R) Conv5(D) Res34(R) Res34(D) Res110(R) Res110(D)
72.17 72.2 91 86 94 89

The architecture is most naturally described using the notion of paths, which we denote by π =
(i1, . . . , iL) ∈ [m]L, giving the sequence of hidden nodes that the path consists of. Let Π = [m]L

denote the set of all paths. The output of the model is given as follows:

ŷ(x) =
∑
π∈Π

gπfπ(x) (1)

where fπ is called the path gating function corresponding to path π and gπ is the value of path π. The
path gating function fπ is defined by (what we call) the gating network – a deep linear network with
weights W 1, . . . ,WL and biases b1, . . .bL. The path gating function fπ can be decomposed as the
product of individual neuron gating functions that make up the path π. The path gating function for
path π = (i1, . . . , iL) is defined as follows,

fπ(x) =

L∏
ℓ=1

1
(
ηℓ
iℓ
(x) ≥ 0

)
(2)

∀ℓ ∈ [L], ηℓ(x) = W ℓηℓ−1(x) + bℓ = V ℓx+ cℓ (3)

where η0(x) = x and ∀ℓ ∈ [L] the matrices V ℓ ∈ Rm×d and vectors cℓ ∈ Rm form the ‘effective’
weights and biases of the neurons in layer ℓ and are given as V ℓ = W ℓW ℓ−1 . . .W 1 and cℓ =
bℓ +W ℓcℓ−1 with c0 = 0 ∈ Rd.

The value gπ of a path π = (i1, . . . , iL) is also defined by a network (that we call) the value network
– a deep linear network with weights U2, . . . , UL,uL+1, no biases, and input given by u1. It is
simply the product of weights along the path π.

gπ = u1
i1

[
L∏

ℓ=2

U ℓ
iℓ,iℓ−1

]
uL+1
iL

(4)

The model as defined in Equation (1) seems computationally hard to implement in a forward pass,
but due to standard matrix multiplication properties can be easily implemented at a cost that is less
than twice the cost of a ReLU net with the same mL hidden nodes. i.e.

ŷ(x) = ⟨uL+1, hL(x)⟩
where h1(x) = 1(η1(x) ≥ 0) ◦ u1 and hℓ(x) = 1(ηℓ(x) ≥ 0) ◦

(
U ℓhℓ−1(x)

)
for ℓ > 1. The

gates η are as defined in Equation 3. The symbol ◦ represents elementwise multiplication. In order
to learn the gating function parameters and back-propagate the gradient to W and b, we will need
to replace the indicator function by a sigmoid. i.e. we replace 1(a ≥ 0) with σ(βa) where σ is the
standard sigmoid function and β > 0 is a hyperparameter.

Thus the model ŷ is defined as a linear combination of path gating functions. The natural rigorous
choice for features in the DLGN model would be the path gating functions fπ , but they are expo-
nentially many in number. Fortunately, however the path gating functions decompose further into
product of neuron gating functions which are indicator functions over half spaces. These are much
simpler, number only a total of mL and make an apt choice of elemental features.

The DLGN model is more easily amenable to be broken down into easily understood components
than the ReLU network. It also outperforms fixed feature methods like kernel methods and is only
marginally inferior to ReLU networks in real data tasks. See Table 1 for a test accuracy comparison
between DLGN and ReLU networks on the CIFAR10 dataset.

3.2 PROPERTIES OF A TRAINED DLGN

A trained DLGN shows some interesting properties, that is not possible to even check on ReLU net-
works. The most important of these properties is a tendency of the effective hyperplane of the gating

5



Under review as a conference paper at ICLR 2024

Table 2: Number of DLGN hyperplanes (after training) within a given distance of the label function
ODT hyperplanes. At initialisation all these numbers are equal to zero. The 15 ODT internal nodes
are numbered 0 to 14, with 0 as root.

Distance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.1 31 4 4 0 0 0 0 0 0 0 0 1 2 1 3
0.2 162 8 18 0 0 2 0 2 1 5 2 2 6 2 6
0.3 284 14 40 1 2 5 2 2 1 6 5 2 8 4 9

neurons given by V ℓ
i and cℓi to cluster around hyperplanes of discontinuity in the label function. This

is most easily seen in data where the true label function corresponds to an ODT.

Figure 2 illustrates an example scenario when a 3-hidden layer DLGN is trained on data given in
Figure 1(c). The initial hyperplanes given by V 1, c1 and V 2, c2 and V 3, c3 as shown in Figure 2(a-c)
are essentially random. However, after training the hyperplanes in the later layers show a remarkable
tendency to move towards the hyperplanes corresponding to the decision tree – particularly that of
nodes close to the root (See Figures 2(d-f)).

Do note that Figure 2 is a schematic illustration and the decision tree hyperplane seeking behaviour
of the DLGN hyperplanes are exaggerated to illustrate the idea properly. Table 2 gives the results
of a real experiment on synthetic dataset in which the data is a 19-dimensional vector labelled by a
depth-4 complete ODT with 15 internal nodes. A 4 hidden layer DLGN with 1000 neurons in each
layer was trained on this dataset containing about 18000 data points. For each node in the ODT, we
count the number of DLGN hyperplanes within a distance of 0.1, 0.2 and 0.3 from it. We define the
distance between two hyperplanes H(v, c) = {x : v⊤x+c = 0} and H(z, d) = {x : z⊤x+d = 0}
as

dist(v, z) = min

(∥∥∥∥ z

∥z∥
− v

∥v∥

∥∥∥∥ ,∥∥∥∥ z

∥z∥
+

v

∥v∥

∥∥∥∥)
We ignore the scalars c and d for convenience, but they can also be incorporated in a more so-
phisticated distance function for hyperplanes. We normalise the vectors z and v before finding the
distance because scalar multiples of the coefficients do not change the hyperplanes. We also identify
v with −v for the same reason. For large d, most pairs of vectors are orthogonal to each other, and
hence a typical value of dist(v, z) is about

√
2. Thus, at initialisation there are almost no DLGN

hyperplanes close (say distance less than 0.3) to any of the ODT hyperplanes. But it can be clearly
seen from Table 2, that the training process attracts the DLGN hyperplanes towards the ODT hy-
perplanes. This happens most notably for the root node, despite the root node having almost zero
information gain or accuracy increase in the greedy decision tree construction setting.

We conjecture that there is a fundamental principle of feature learning in deep networks at play here,
and studying the reason for this behaviour is a very interesting direction that is beyond the scope of
this paper. For the purpose of this paper, we loosely assume the following principle: “ The model
features seek to match with the manifolds of discontinuity in the label function during neural network
training”. For the case of DLGN models and ODT labelling functions, this reduces to saying that the
DLGN hyperplanes move towards the ODT hyperplanes, with a preference towards the close-to-root
node hyperplanes which have a higher HDS.

4 DLGN BASED DECISION TREE CONSTRUCTION

Based on the principle conjectured in the previous section, we devise a novel decision tree learning
algorithm as follows. Figure 3 gives a schematic illustration of the algorithm. In the first stage,
a DLGN is trained on the entire data. Our conjectured principle would then imply that the hyper-
plane with the highest HDS would attract much more DLGN hyperplanes than others resulting in
a detectable cluster around it. A clustering is performed over the learned DLGN hyperplanes and
the largest cluster is chosen (See Figure 3(a)). The cluster center corresponding to it is chosen as
the root node in the decision tree construction procedure. Based on the root node hyperplane, the
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Figure 2: An illustration of DLGN hyperplanes before and after training on data in Figure 1c.

training data can be split into two halves and the procedure can be repeated on both halves recur-
sively (See Figure 3(b,c)) until the data for training becomes too small or contains only one class.
A oblique decision tree can thus be constructed by incorporating the largest cluster centers of the
trained DLGN hyperplanes in the appropriate nodes of a tree.

The details of the above procedure is given in Algorithm 1. It returns a decision tree consisting of
internal nodes and leaf nodes. Internal nodes are represented by a hyperplane and pointers to two
child nodes. Leaf nodes are represented by a value that is either +1 or −1.

The key subroutine in Algorithm 1 is the FINDDISCONTHYPERPLANE function detailed in Algo-
rithm 2. It trains a DLGN on a classification dataset, clusters the DLGN hyperplanes and splits the
data based on this hyperplane. In our experiments we used the DBScan (Ester et al., 1996) algorithm
for clustering the DLGN hyperplanes as it is robust to outliers.

Algorithm 1 Building a decision tree from trained DLGN
Arguments: Binary classification training set containing pairs (xi, yi)
Outputs: Root of an ODT

1: function BUILDTREE(currdata)
2: if IMPURE(currdata) or LARGE(currdata) then
3: dataleft,dataright,v∗, c∗ ← FINDDISCONTHYPERPLANE(currdata)
4: leftST← BUILDTREE(dataleft)
5: rightST← BUILDTREE(dataright)
6: return NODE(v∗, c∗, leftST, rightST)
7: end if
8: lv← MAJORITYLABEL(currdata)
9: return NODE(value=lv)

10: end function
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Figure 3: DLGN based ODT Learning. Illustration of the recursive procedure where for each level
starting at 0, we have 2level DLGNs are trained on different splits of the data given by previous levels.
The main result of each training run is the largest cluster of the learned DLGN hyperplanes, which
is shown in the figures by red dashed lines.

Algorithm 2 Finding Discontinuous Hyperplane
Arguments: Binary classification training set containing pairs (xi, yi)
Outputs: Data split into 2 halves along a hyperplane, and the hyperplane parameters w,b

1: function FINDDISCONTHYPERPLANE(currdata)
2: model← TRAINDLGN(currdata)
3: V ,c← RETURNGATEHYPERPLANES(model)
4: v∗, c∗ ← LARGESTCLUSTERCENTER(V ,c)
5: dataleft, dataright← SPLITDATA(currdata,v∗, c∗)
6: return dataleft, dataright,v∗, c∗

7: end function

Algorithm 3 Return gates of a trained DLGN model
Arguments: A DLGN model (Parameters: W 1, . . . ,WL,b1, . . . ,bL,u1, U2, . . . , UL,uL+1)
Outputs: mL hyperplanes in the input dimension

1: function RETURNGATEHYPERPLANES(model)
2: c0 = 0
3: for l← 1 to L do
4: V ℓ ←W ℓW ℓ−1 . . .W 1

5: cℓ ← bℓ +W ℓcℓ−1

6: end for
7: V ← V 1, . . . , V L

8: c← c1, . . . , cL

9: return V ,c
10: end function

8



Under review as a conference paper at ICLR 2024

Table 3: Dataset and model statistics

Dataset Train size Features count DLGN Arch. DLGN DT Arch.
SD - I 18k 19 1000×4 500×3,d=3
SD - II 24.5k 100 500×3 500×3,d=2
SD - III 45.4k 500 500×3 500×3,d=2
Adult 29.3k 14 125×4 750×3,d=6
Bank 27.12k 16 1000×3 750×3,d=6

Credit card 18k 23 200×3 750×3,d=6
Telescope 11.4k 10 10×3 750×3,d=6

Rice 2.3k 7 2×4 750×3,d=6
Statlog .1k 20 100×5 750×3,d=1

Spambase 2.8k 57 200×4 750×4,d=1
Gyro 19.2k 8 125×4 750×3,d=6

Swarm 14.4k 2400 200×3 750×3,d=6

Table 4: Test accuracy on synthetic datasets

Dataset DLGN ReLU SVM CART RF SDT Zan DT DLGN DT
SD - I 98.6 98.9 83.5 61.3 72.6 93.4 89.4 97.1
SD - II 99.3 94.8 73.9 54.6 65.5 96.7 89.7 97.8
SD - III 93.7 72.0 68.0 51.3 60.6 88.4 67.0 94.2

5 EXPERIMENTS

We assessed the performance of our methods, DLGN and DLGN-aided decision trees(DLGN DT),
in comparison to standard algorithms (multilayer ReLU networks and Kernel SVMs) . The evalua-
tion was conducted on Synthetic Datasets(SD) and real datasets, with the details of the dataset and
model architectures outlined in Table 3. DLGN Arch. denotes the architecture yielding the reported
accuracy for the DLGN model chosen via validation. We used Zan DT Zantedeschi et al. (2020)
as a standard oblique tree baseline method. Other baseline algorithms include the standard random
forest (which has standard axis parallel decision trees) and the Soft Decision Tree Frosst & Hinton
(2017).

5.1 DISCUSSION OF PERFORMANCE ON SYNTHETIC DATASETS

We construct 3 different synthetic datasets, where the data x was drawn uniformly from [−1, 1]d
and the labelling function is a complete ODT with internal node hyperplane normals drawn inde-
pendently from a circularly symmetric distribution, and biases chosen such that the data is split
almost equally among the children. The leaf node labels are chosen such that sibling labels get
opposite signs. The three datasets (SD-I, SD-II and SD-III) have different input dimensions (19,
100 and 500 respectively) and use decision trees with different depths (4,3 and 3 respectively). The
results on synthetic datasets are summarized in Table 4. DLGN and DLGN DT outperformed both
standard ML methods like SVM, CART and other oblique decision tree methods like Zan DT. Soft
Decision Trees perform comparably to DLGN-DT for lower dimensional data (SD-I and SD-II) but
underperform DLGN-DT on higher dimensional data. Standard ReLU nets give good accuracy for
several synthetic datasets, but seem to require extensive hyperparameter tuning , particularly for
higher dimensional data. Another qualitative property of DLGN-DT that is not fully reflected in
Table 4 is that, the hyperplanes in the learned tree very closely match the hyperplanes in the true
ODT.

5.2 DISCUSSION OF PERFORMANCE ON UCI DATASETS

We also conducted experiments on real UCI datasets. DLGN exhibited superior or comparable
performance over other ML algorithms. DLGN DT demonstrated comparable accuracy to other
decision tree learning algorithms. Detailed results can be found in Table 5.
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Table 5: Test accuracy on UCI datasets

Dataset DLGN ReLU SVM CART RF SDT Zan DT DLGN DT
Adult 85.3 83.2 84.4 83.2 86.4 84.8 84.6 84.1
Bank 91.7 89.0 90.6 90.0 91.3 91.5 91.2 90.6

Credit card 81.6 78.0 81.2 77.8 81.2 81.4 81.1 81.1
Telescope 88.1 87.7 87.0 82.9 88.1 86.4 87.1 85.6

Rice 92.8 92.4 91.7 91.9 91.9 92.5 92.2 92.7
Statlog 77.5 72 71.5 65.5 77.5 75.0 75.5 80.0

Spambase 94.1 94 93.1 89.1 95.0 93.4 93.3 93.6
Gyro 98.8 98.6 98.3 98.7 99.3 98.0 98.6 98.1

Swarm 100 100 100 99.8 100 100 100 99.9

6 CONCLUSION

We devised a novel architecture, with interpretable ‘features’ that show an interesting property of
seeking out discontinuities in the label function. We exploited this property to construct a novel
decision tree learning algorithm that performs well even in scenarios where greedy methods fail.
Studying the DLGN architecture further to characterise this feature learning phenomenon is an in-
teresting direction of future work.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

The results presented in Table 1 were obtained using the CIFAR-10 dataset. Conv5(R) denotes a five-
layered Convolutional Neural Network (CNN) employing Rectified Linear Unit (ReLU) activation,
while Conv(D) signifies a five-layered Convolutional model featuring DLGN architecture instead of
ReLU. The subsequent section outlines the specific hyperparameters and configurations utilized for
this analysis.

A.1.1 DEATAILS OF EXPERIMENTS PERFORMED ON CIFAR10

A.1.2 HYPERPARAMETERS

• Number of Convolution Layers = 5

• Number of filters in each layer = 26

• Optimizer: Adam

• Learning rate = 2e-4

A.1.3 ARCHITECTURES

• ReLU network : 5 Convolution layers with ReLU activation in each layer, followed by
Global Average Pooling, followed by 1 Dense layer with 64 neurons.

• DLGN: 5 Convolution layers, followed by Global Average Pooling, followed by 1 Dense
layer with 64 neurons.

A.2 DETAILS OF EXPERIMENTS PERFORMED ON SYNTHETIC DATASETS

The results are presented in Table 4. This dataset is synthetically generated from an oblique binary
tree with specified dimensions, depth, and a defined number of data points. The decision tree struc-
ture is constructed, and random weights for each internal node are generated. Data points are then
assigned labels based on their position in the tree. The resulting dataset is pruned to remove points
that pass through hyperplanes by threshold parameter. The final output includes the pruned data,
labels, and information about the tree’s structure. Three synthetic datasets (SD) are used, named SD
- I, SD - II, and SD - III.
The parameters used for constructing the datasets are as follows:

Synthetic Dataset I (SD - I):

• Number of datapoints = 300000

• Dimension of the data = 19

• Seed: 1387

• Depth = 4

• threshold = 0.1

Synthetic Dataset II (SD - II):

• Number of datapoints = 100000

• Dimension of the data = 100

• Seed: 1387

• Depth = 3

• threshold = 0.05

Synthetic Dataset III (SD - III):

• Number of datapoints = 100000
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• Dimension of the data = 500

• Seed: 365

• Depth = 3

• threshold = 0.01

The data and model(DLGN and DLGN DT) statistics are given in Table 3

A.2.1 HYPERPARAMETERS OF DLGN MODEL

• Number of hidden layers = 3(SD-II,SD-III) 4(SD-I)

• Number of nodes in each layer = 1000(SD-I) 500(SD-II,SD-III)

• Optimizer: Adam

• Learning rate = 0.001

• beta=3

A.2.2 HYPERPARAMETERS OF DLGN DT MODEL

DLGN Model used:

• Number of hidden layers = 3

• Number of nodes in each layer = 500

• Optimizer: Adam

• Learning rate = 0.001

• beta=3

Clustering Model used: We are using DBScan clustering to find the largest cluster center and
towards the bottom of the tree in case no cluster is detected, we are using Logistic Regression to find
the features for the nodes.

• Name of the algorithm = DBScan

• eps = 0.2

• min samples:
SD-I,SD-II

– Node 0 - 10
– Node 1 - 15
– Node 2 - 30
– Other nodes - 40

SD-III

– Node 0 - 30
– Node 1 - 100
– Node 2 - 50
– Other nodes - 100

A.3 DETAILS OF EXPERIMENTS PERFORMED ON UCI DATASETS

The results are presented in Table 5.The UCI Machine Learning Repository is a collection of numer-
ous datasets for machine learning tasks. We picked our real datasets from the UCI dataset repository
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available at https://archive.ics.uci.edu/datasets. The datasets picked for our bi-
nary classification tasks are Adult2 Bank3 Credit card4 Telescope5 Rice6 Statlog7 Spambase8

Gyro9 Swarm10

The data and model statistics are given in Table 3:

A.3.1 HYPERPARAMETERS OF DLGN MODEL

• Optimizer: Adam
• Learning rate = 0.001
• beta=3

A.3.2 HYPERPARAMETERS OF DLGN DT MODEL

Clustering Model used: We are using DBScan clustering to find the largest cluster center and
towards the bottom of the tree in case no cluster is detected, we are using Logistic Regression to find
the features for the nodes.

• Name of the algorithm = DBScan
• eps = 0.2 (Spambase) 0.3(rest all)
• min samples:

– Adult - 5
– Bank - 5
– Credit Card- 6
– Telescope - 6
– Rice - 6
– Statlog - 5
– Spambase Card- 10
– Gyro - 6
– Swarm - 6

A.4 ALGORITHMS USED

2https://archive.ics.uci.edu/dataset/2/adult
3https://archive.ics.uci.edu/dataset/222/bank+marketing
4https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
5https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
6https://archive.ics.uci.edu/dataset/545/rice+cammeo+and+osmancik
7http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
8http://archive.ics.uci.edu/dataset/94/spambase
9https://archive-beta.ics.uci.edu/dataset/755/accelerometer+gyro+

mobile+phone+dataset
10https://archive.ics.uci.edu/dataset/524/swarm+behaviour
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