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ABSTRACT

Patient data is widely used to estimate heterogeneous treatment effects and thus
understand the effectiveness and safety of drugs. Yet, patient data includes highly
sensitive information that must be kept private. In this work, we aim to estimate
the conditional average treatment effect (CATE) from observational data under
differential privacy. Specifically, we present DP-CATE, a novel framework for
CATE estimation that is Neyman-orthogonal and further ensures differential pri-
vacy of the estimates. Our framework is highly general: it applies to any two-stage
CATE meta-learner with a Neyman-orthogonal loss function, and any machine
learning model can be used for nuisance estimation. We further provide an exten-
sion of our DP-CATE, where we employ RKHS regression to release the complete
CATE function while ensuring differential privacy. We demonstrate our DP-CATE
across various experiments using synthetic and real-world datasets. To the best of
our knowledge, we are the first to provide a framework for CATE estimation that
is Neyman-orthogonal and differentially private.

1 INTRODUCTION

Machine learning (ML) is increasingly used for estimating treatment effects from observational data
(e.g., Baiardi & Naghi, 2024; Braun & Schwartz, 2024; Ellickson et al., 2023; Feuerriegel et al.,
2024). Yet, this involves sensitive information about individuals, and, hence, methods are often
needed to ensure privacy.
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Figure 1: Setting: CATE estimation under DP.
Only the trusted data curator can access the data,
while published CATE estimates do not allow pri-
vate information about individuals to be inferred.

Motivating example: Electronic health
records (EHRs) are commonly used to estimate
treatment effects and thus to personalize care.
Yet, EHRs capture highly sensitive data about
patients (Brothers & Rothstein, 2015). Hence,
many regulations, such as the US Health
Insurance Portability and Accountability Act
(HIPAA), mandate strong privacy guarantees
for ML in medicine.

To ensure the privacy of information contained in the training data of ML models, multiple privacy
mechanisms have been introduced. Arguably, the most common mechanism is differential privacy
(DP) (Dwork, 2006; Dwork & Lei, 2009). DP builds upon the idea of injecting noise into algorithms
so that sufficient information about the complete population in a dataset is kept while safeguarding
sensitive information about individuals. Importantly, DP enjoys stringent theoretical guarantees and
is widely used across different fields (e.g., Abadi et al., 2016; Bassily et al., 2014; Wang et al., 2019).

However, methods for treatment effect estimation under DP are scarce. Existing work has primarily
focused on the average treatment effect (ATE) (e.g., Lee et al., 2019; Ohnishi & Awan, 2023).
However, the ATE fails to capture important variations in how different subgroups or individuals
respond to treatments. Therefore, many applications such as personalized medicine are interested in
the conditional average treatment effect (CATE) (e.g., Ballmann, 2015; Feuerriegel et al., 2024).

In this paper, we estimate the CATE from observational data under DP (Fig. 1). Specifically, we
propose DP-CATE, an output perturbation mechanism for Neyman-orthogonal CATE estimators that
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satisfies DP. Neyman-orthogonal estimators are generally preferred over standard plug-in estimators,
as they are less dependent on the estimation errors of nuisance functions (Morzywolek et al., 2023).

Our DP framework is highly flexible and can be combined with all weighted Neyman-orthogonal
two-stage CATE learners, such as the R-learner (Nie & Wager, 2020). Further, our framework is
model-agnostic and can be used with any ML model as a base learner. To the best of our knowledge,
we are the first to provide a framework for Neyman-orthogonal CATE estimation under differential
privacy. Our DP-CATE is designed for two use cases relevant to medical practice:

1 Finitely many queries: Reporting research findings about medical studies that involve sensitive
data requires that finitely many CATE values are estimated, such as treatment effects of a drug for
various patient subgroups. In this setting, we treat the different CATE estimates as a potentially
high-dimensional vector, for which we derive DP guarantees. Interestingly, we later employ a
largely unexplored connection between Neyman-orthogonality and privacy, which allows us to
base our DP-CATE on efficient influence functions (→ our Theorem 1).

2 Functional query: Medical researchers may want to have access to the complete CATE function.
This is relevant when deploying a CATE function in clinical decision support systems where
predictions about treatment effects are made for every incoming patient. Hence, this requires
querying the CATE function a large number of times, but where the exact number is a priori
unknown. In this case, the respective CATE vector would have an infinite dimension, and, as a
result, privately releasing the complete CATE function cannot be performed in the same manner
as in the first use case. As a remedy, we derive a tailored privacy framework for functional
queries, where we make use of tools from functional analysis to calibrate a Gaussian process,
which we add to the CATE function estimated through RKHS regression (→ our Theorem 3).

Why is it non-trivial to derive privacy mechanisms for CATE estimation? Common DP strategies
include perturbations of either the data, model, or output (e.g., Abadi et al., 2016; Chaudhuri et al.,
2011). Yet, a naı̈ve application of such perturbations would naturally violate causal assumptions
and/or lead to CATE estimates that are biased. Furthermore, the CATE is an unobservable, func-
tional quantity. However, common privatization mechanisms are only developed for vector-valued
quantities. Thus, it is not possible to follow the standard procedure of adding calibrated noise to the
algorithm. Rather, we have to derive a novel, non-trivial framework that is tailored to our setting.

Our contributions:1 (1) We propose a novel framework for CATE estimation that is differentially
private and Neyman-orthogonal. (2) We extend our framework to privately release both CATE
estimates and even the complete CATE function. (3) We demonstrate our proposed framework for
differentially private CATE estimation in experiments across various datasets.

2 RELATED WORK

We provide a brief overview of the different literature streams relevant to our work, namely, (i) CATE
estimation, (ii) differential privacy, and (iii) works that adapt DP to treatment effect estimation.

CATE estimation: Popular methods for estimating CATE from observational data are the Neyman-
orthogonal meta-learners, such as the DR-learner (Kennedy, 2023a; van der Laan, 2006) and the
R-learner (Nie & Wager, 2020). A strength of meta-learners is that these are model-agnostic and
can thus be instantiated with arbitrary ML models (e.g., neural networks). Neyman-orthogonal
learners (also known as debiased learners) have several additional benefits. (i) The learners achieve
quasi-oracle efficiency2, which is guaranteed due to the first-order insensitivity to errors in the esti-
mation of nuisance functions. As a result, the estimators are asymptotically equivalent to the oracle
estimator (= the estimator that has access to the oracle nuisance functions), thereby mitigating the
finite-sample bias arising from the misspecification of the nuisance functions (Mackey et al., 2018;
Morzywolek et al., 2023). (ii) The DR-learner is further doubly robust: it yields consistent esti-
mation even when either the outcome or the propensity model is not correctly specified. (iii) The
R-learner is less sensitive to overlap violations due to its overlap weighting of the loss.

In this paper, we focus on DP for Neyman-orthogonal meta-learners. We derive a framework for the
R-learner in the main paper and provide an extension to the DR-learner in Supplement B.

1The source code is available at our GitHub repository.
2Informally, quasi-oracle efficiency means that the target model is learned almost equally well using either

the estimated nuisance functions or the ground truth.
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Differential privacy: DP ensures that the release of aggregated results does not reveal information
about individual data samples, typically with strict theoretical results (Dwork, 2006; Dwork & Lei,
2009). As a result, DP has been employed in various fields of machine learning (e.g., Abadi et al.,
2016; Bassily et al., 2014; Wang et al., 2019), but typically outside of CATE estimation. We discuss
different strategies on how DP can be achieved in Supplement A. For example, one strategy is output
perturbation, where one adds calibrated random noise to the non-private model prediction prior to
its release in order to ensure DP (e.g., Chaudhuri et al., 2011; Zhang et al., 2022).

In our setting, we later adopt output perturbation to CATE estimation. Output perturbation has two
clear advantages in our task: (i) it can be applied to any ML model after training, which naturally
fits the idea of meta-learners from above as model-agnostic approaches; and (ii) it leaves the original
objective and the data unchanged. The latter is crucial because changes to the input or the objective
(i.e., the estimand) arguably could violate causal assumptions and lead to biased results.

ATE

CATE
Betlei et al. (2017)

Niu et al. (2019)

Ours

Observational 
data

Model / data
agnostic*References

e.g., Javanmard et. al (2024), Lee et al. (2019) 

* Model agnostic methods can be applied to many ML models. Data agnostic implies
  no restrictions on the data structure (e.g., binary outcomes). 

Guha & Reiter (2024)

Figure 2: Comparison of relevant literature.

DP in treatment effect estimation: The ex-
isting literature on DP methods for treatment
effect estimation is sparse. We provide an
overview in Fig. 2, where we group prior works
by the underlying estimand: •Average treat-
ment effect (ATE). Many works focus on pri-
vately estimating the ATE (e.g., Javanmard
et al., 2024; Lee et al., 2019; Yao et al., 2024).
Yet, the ATE is a much simpler causal quan-
tity than the CATE. It makes population-wide
estimates and, thus, unlike the CATE, does not
allow to make individualized predictions about
treatment effects. •Conditional average treatment effect (CATE). The few works aimed at DP for
CATE estimation have clear limitations (Fig. 2): they (i) are either restricted to interventional data
from RCTs and thus not applicable to observational data (Betlei et al., 2021); (ii) are only applicable
to binary outcomes (Guha & Reiter, 2024); or (iii) require special private base learners and are thus
not model-agnostic (Niu et al., 2022). In particular, the latter work (Niu et al., 2022) is restricted
to explainable boosting machines. Therefore, it is not applicable to other models such as neural
networks. In sum, none of the above works provide a method for CATE estimation under DP where
both observational data and different types of ML models can be used.

Research gap: So far, a DP framework for CATE estimation from observational data with meta-
learners is missing. We are thus the first to propose a Neyman-orthogonal framework for CATE
estimation that fulfills DP.

3 PROBLEM FORMULATION

Notation: We write random variables as capital letters X with realizations x. We denote the prob-
ability distribution over X by PX , where we omit the subscript whenever it is apparent from the
context. We denote the probability mass function / density function by P (x) = P (X = x). We rely
on the potential outcomes framework (Rubin, 2005) and denote the outcome under intervention a by
Y (a). Finally, ∥z∥2 =

√
z21 + · · ·+ z2d is an l2 norm for z ∈ Zd; ∥f∥Lk

= (E |f(Z)|k)1/k is an Lk

norm; a ≲ b means there exists C ≥ 0 such that a ≤ C · b; and Xn ∈ oP (rn) means Xn/rn
p→ 0.

Setting: We consider a dataset D̄ := {(Xi, Ai, Yi)}i=1,...,2n, consisting of observed confoundersX
in a bounded domain X ⊆ Rq , a binary treatment A ∈ {0, 1}, and a bounded discrete or continuous
outcome Y ∈ Y , where Zi := (Xi, Ai, Yi) ∼ P i.i.d., Zi ∈ Z . Let π(x) := P (A = 1 | X = x)
define the propensity score and µ(x, a) := E[Y | X = x,A = a] the outcome function.

Estimand: Our objective is to estimate the conditional average treatment effect (CATE) τ(x) for
individuals with covariates X = x. We make the standard assumptions for causal treatment effect
estimation: positivity, consistency, and unconfoundedness (e.g., Curth & van der Schaar, 2021;
Rubin, 2005). 3 Then, the CATE is identifiable as

τ(x) := E[Y (1)− Y (0) | X = x] = µ(x, 1)− µ(x, 0). (1)

3We give more details on the standard causal assumptions and CATE estimation in Supplement A.4.
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In our work, we aim to estimate τ(x) by (i) using Neyman-orthogonal meta-learners (Sec. 3.1) while
(ii) ensuring differential privacy (Sec. 3.2), which we briefly review in the following.

3.1 NEYMAN-ORTHOGONAL META-LEARNERS FOR CATE ESTIMATION

To estimate the CATE from Eq. (1), the common approach is to regress the difference between the
potential outcomes (i.e., Y (1)−Y (0)) on the covariates X . Thus, one considers the population risk
for a working model g ∈ G : X 7→ R via

RP (g, η, λ(π)) = E[λ(π(X)) ((µ(X, 1)− µ(X, 0))− g(X))2] + Λ(g), (2)
where η = (µ, π) are nuisance functions, λ(·) > 0 is a weight function, and Λ(g) is a
regularization term. We denote a population minimizer of RP (g, η, λ(π)) with g∗(·; η) =
argming∈G RP (g, η, λ(π)) (Hirano et al., 2003; Morzywolek et al., 2023). However, RP cannot
be directly estimated and subsequently minimized given the data D̄, as it depends on the unknown
nuisance functions π and µ. One could employ the estimated nuisance functions (i.e., π̂D̄ and µ̂D̄)
here, but then, their estimation errors propagate into the minimization of RP .

A popular approach to circumvent the above problem is to use Neyman-orthogonal meta-learners.
Formally, such meta-learners operate in two stages (e.g., Kennedy, 2023b; Nie & Wager, 2020). Let
the dataset D̄ be a disjoint union of the two subsets D̃ and D of size n, i.e., D̄ = D̃ ∪ D. In the
first stage, the meta-learners estimate nuisance functions η̂D̃ = (π̂D̃, µ̂D̃) on dataset D̃, and, in the
second stage, we minimize the adapted Neyman-orthogonal population risk function

RP (g, η, λ(π)) = E
[
ρ(A, π(X)) (ϕ(Z, η, λ(π(X)))− g(X))2

]
+ Λ(g) (3)

with ρ(a, π) := (a− π(x))λ
′
(π(x)) + λ(π(x)) and (4)

ϕ(z, η, λ(π)) :=
λ(π(x))

ρ(a, π(x))

a− π(x)

π(x) (1− π(x))
(y − µ(x, a)) + µ(x, 1)− µ(x, 0) (5)

on datasetD, where η̂D̃ is used in place of η (Morzywolek et al., 2023). The use of this loss function
allows for quasi-oracle efficiency of the final estimator. In the following, we denote the estimated
population risk RP via a loss RD that is dependent on the data D, namely

RD(g, η, λ(π)) =
1

n

n∑
i=1

ρ(Ai, π(Xi)) (ϕ(Zi, η, λ(π(Xi)))− g(Xi))
2 + Λ(g). (6)

Later, we use the R-learner (Nie & Wager, 2020), which is given by λR(π) = π(x) (1 − π(x)),
due to its theoretical advantages (e.g., Neyman-orthogonality and oracle-efficiency). Importantly,
Neyman-orthogonal meta-learners such as the R-learner achieve state-of-the-art performance, and
the orthogonality property makes the models less sensitive to the misspecification of the nuisance
functions (e.g., Curth & van der Schaar, 2021; Kennedy, 2023b; Melnychuk et al., 2025).

3.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) ensures that the inclusion or exclusion of data from any individual does
not significantly affect the estimated outcome (Dwork, 2006; Dwork & Lei, 2009). Specifically,
for a given privacy budget ε, DP ensures that the probability density of any outcome y on dataset
D ∈ Zn is ε-indistinguishable from the probability density of the same outcome y stemming from
a neighboring datasetD

′ ∈ Zn with a probability of at least 1−δ. The datasetsD andD
′

are called
neighbors, denoted as D ∼ D

′
, if their Hamming distance equals one, i.e., dH(D,D

′
) = 1.

Definition 1 (Differential privacy (Dwork & Lei, 2009)). A function f̂D(x) : X d 7→ Rd trained
on a dataset D is (ε, δ)-differentially private if, for all neighboring datasets D, D

′ ∈ Zn and all
measurable S ⊆ Rd , it holds that

P (f̂D(x) ∈ S) ≤ exp(ε) · P (f̂D′ (x) ∈ S) + δ for all x ∈ X d. (7)
One common strategy to ensure DP is output perturbation (Chaudhuri et al., 2011; Zhang et al.,
2022), which we later tailor to CATE estimation as part of our framework. Intuitively, one perturbs
the prediction in a way that the predictions resulting from two neighboring databases cannot be
differentiated. It has been shown (e.g., Dwork & Roth, 2014) that adding appropriately calibrated
zero-centered noise (e.g., Gaussian noise) to the prediction is sufficient to ensure differential privacy
for traditional, supervised machine learning tasks (but not for CATE estimation, as we discuss later).
This is stated in the following Gaussian noise privacy mechanism.
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Definition 2 (Gaussian noise privacy mechanism (Dwork & Roth, 2014)). Let f̂D(x) : X d 7→ Rd

be a function on dataset D with l2-sensitivity ∆2(f̂) = supD∼D′,x∈Xd∥f̂D(x) − f̂D′ (x)∥2 and
U ∼ N (0, σId) for σ ≥ 1

ε

√
2 ln (1.25/δ) ∆2(f̂). Then, the output perturbation mechanism returns

M : f̂DP(x) = f̂D(x) +U that preserves (ε, δ)-differential privacy.

Definition 2 describes how to ensure DP for a given prediction. However, this requires estimating
the training sensitivity ∆2(f̂) of the employed model f̂ , which, for general function classes such as
neural networks, is infeasible. Hence, this motivates our custom framework later.

3.3 PROBLEM STATEMENT

In our work, we aim at Neyman-orthogonal CATE estimation under differential privacy. Specifically,
we aim to derive an (ε, δ)-differentially private version of ĝD(·; η) = argming∈G RD(g, η, λ(π))
of the form

ĝDP(x; η) = ĝD(x; η) + r(ε, δ, ĝD, η) ·U, (8)

where ĝD(x; η) = (ĝD(x1; η), . . . , ĝD(xd; η))
⊤, U ∼ N (0, Id), and where r(·) is a calibration

function. Importantly, we consider arbitrary working model classes G.

Our problem statement – and thus our framework – is intentionally flexible. (1) We assume that
the propensity score is not known and, instead, is estimated from observational data. (2) We focus
on Neyman-orthogonal meta-learners because these are model-agnostic and can thus be seamlessly
instantiated with any machine learning model, including neural networks. (3) Our derivations are
general and, therefore, apply to any orthogonal loss of the form in Eq. (3). Below, we present
our DP-CATE framework for the R-learner due to its state-of-the-art performance. We additionally
provide an extension of our framework for the DR-learner in Supplement B.

The above task is highly non-trivial as the identification of CATE relies on the standard causal as-
sumptions of positivity, consistency, and unconfoundedness (Rubin, 2005). Yet, privacy mechanisms
perturb different parts of the data (or the model), which could arguably violate the causal assump-
tions (in the case of the input perturbation) or lead to biased estimates (in the case of the model
perturbation). Thus, instead of blindly introducing noise to the estimation setup to guarantee DP,
we must cautiously calibrate the noise in a targeted setup to retain the consistency and quasi-oracle
efficiency of the privatized CATE estimators.

4 OUR FRAMEWORK: DP-CATE

Overview: We now present our DP-CATE framework aimed at CATE estimation for Neyman-
orthogonal meta-learners under (ε, δ)-differential privacy. To address the challenges from above,
we employ output perturbation, which is highly suitable to our purpose for two reasons. First, it
allows us to ensure that causal assumptions are fulfilled even after perturbation. Second, we retain
the favorable Neyman-orthogonality properties of the existing CATE estimation methods.

Use cases: Our framework comes in two variants, relevant for different use cases in medical practice:

1 DP-CATE for finite queries (→ Sec. 4.1): We aim to report a number d of CATE estimates
(e.g., treatment effects across different age groups). ⇒ How do we solve this? We draw upon
the shared property of robustness and privacy of ML models in terms of insensitivity to outliers
and small measurement errors (Dwork & Lei, 2009). We then propose calibrating the noise
added with a function r(·) that depends on the meta-learner’s second-stage influence function.
Importantly, our model-agnostic approach preserves the quasi-oracle guarantees of the non-
private model stemming from the Neyman-orthogonal loss function.

2 DP-CATE for functional queries (→ Sec. 4.2): We release an estimate ĝDP of the complete
CATE function τ , which can then be queried arbitrarily often (e.g, as in clinical decision support
systems). Existing output perturbation mechanisms only apply to scalar or finite-dimensional
vector-valued outputs. Therefore, the above is only valid if the overall number of queries made
to the algorithm is both finite and known before the perturbation. ⇒ How do we solve this? We
derive an output perturbation method based on Gaussian processes that is valid for all functional
CATE estimates solving Eq. (3), as long as the estimation in the second stage is performed
through a Gaussian kernel regression.
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4.1 DP-CATE FOR A FIXED NUMBER OF QUERIES

Here, a total number of d CATE estimates should be released. The number of queries, d, to the
CATE function is known a priori. For notational simplicity, we thus rewrite the d separate CATE
estimates as a d-dimensional vector. We employ bold letters in the following to emphasize that we
are interested in a vectorized version of the CATE meta-learner output ĝD(·; η), i.e., ĝD(x; η) ∈ Rd.

We now derive a calibration function r(·) that is applicable to any Neyman-orthogonal CATE meta-
learner. We employ r(·) to calibrate a noise vector U with respect to the privacy budget (ε, δ) and
the model sensitivity. Finally, we perturb ĝD(x; η) to fulfill DP through ĝDP(x; η) = ĝD(x; η) +
r(ε, δ, ĝD, η) ·U.

For this, we borrow ideas from the literature that observed similarities between differential privacy
and robust statistics (e.g., Avella-Medina, 2021; Dwork & Lei, 2009) but which we carefully tailor to
our setting in the following. Our idea is to employ the so-called influence function (IF) of the second-
stage CATE model to calibrate the noise. The IF allows us to quantify how a single observation in
D influences CATE estimation and the model output. Intuitively, the IF describes the effect of an
infinitesimally small perturbation of the input z on the model output.
Definition 3. Let T be a functional of a distribution that defines the parameter of interest, T =
T (P ) ∈ Rd. The gross-error sensitivity of T at z under P is given by the supremum of the l2 norm
of the influence function, i.e.,

γ(T, P ) := sup
z∈Z

∥IF(z, T ;P )∥2, (9)

where IF(z, T ;P ) = d
dt

[
T ((1 − t)P + tδz)

]∣∣
t=0

is an influence function (IF) of T at z under a
distribution with the density/probability mass function P , and δz denotes the Dirac-delta function.
Next, we derive the IF of the second-stage models for CATE meta-learners. Observe that T (P )
depends on the data distribution directly through P and indirectly through the first-stage estimation.
Specifically, now T (P ) = g∗(x; η) and T (D) = ĝD(x; η) if the nuisance functions were known;
and T (P ) = g∗(x; η̂D̃) and T (D) = ĝD(x; η̂D̃) if the nuisance functions are estimated.

We now state our main theorem for differentially private CATE estimation with a known number
d of queries. The intuition behind constructing the calibration function r(·) builds upon a result in
Nissim et al. (2007) in which (ε, δ)-differential privacy is achieved through calibrating noise with
respect to the smooth sensitivity of the prediction model in comparison to the commonly employed
global sensitivity from Definition 2. However, calculating the smooth sensitivity is still difficult or
even infeasible for general function classes. Nevertheless, we show that the smooth sensitivity of
the second-stage model can be upper bounded by the gross-error sensitivity γ of the second-stage
regression.4

Theorem 1 (DP-CATE for finite queries). Let z := (a, x, y) define a data sample following the
joint distribution Z and η̂DP = (µ̂DP, π̂DP) the nuisance functions estimated on dataset D̃ in a
(ε/2, δ/2)-differentially private manner of choice.5 Furthermore, let D be the training dataset for
the second-stage model with |D| = n. For z = (a, x, y) ∈ Z , we define

ĝDP(x; η̂DP) := ĝD(x; η̂DP) + γ
(
T,D

)
· c(ε, δ, n)︸ ︷︷ ︸

r(ε,δ,ĝD,η̂DP)

·U, T (P ) = g∗(x; η̂DP), (10)

γ
(
T, P

)
= sup

z∈Z

∥∥∥∥h(g∗,x, x, η̂DP) ρ(a, π̂DP(x))
(
ϕ(z, η̂DP, λ(π̂DP(x)))− g∗(x; η̂DP)

)∥∥∥∥
2

, (11)

where γ
(
T,D

)
is a sample gross-error sensitivity with T (D) instead of T (P ) in Eq. (9),

U ∼ N (0, Id), c(ε, δ, n) := 5
√

2 ln(n) ln (2/δ)
/
(εn), and where h(g∗,x, z, η̂DP) ∈ Rd and

g∗(·; η̂DP) depend on the machine learning model employed for the second-stage regression. Then,
ĝDP(x; η̂DP) is (ε, δ)-differentially private.

Proof. We prove Theorem 1 in Supplement F. To do so, we first state the IF of the second-stage
model that minimizes a weighted loss. Then, we calculate the gross-error sensitivity to show that the
sample-size-weighted sensitivity upper-bounds the smooth sensitivity of the respective learner.

4See Lemma 5 in Supplement E
5As we need to query the nuisance functions multiple times, the privatization method needs to be suitable

for functions, such as gradient perturbation through DP-SGD (Abadi et al., 2016).
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In the case of the R-learner, Theorem 1 yields the following gross-error sensitivity γR
(
T, P

)
:

γ
R(

T, P
)
= sup

z∈Z

∥∥∥∥h(g∗
,x, x, η̂DP) (a − π̂DP(x))

2︸ ︷︷ ︸
ρ(a,π̂DP)

(
y − µ̂DP(x, a)

a − π̂DP(x)
+ µ̂DP(x, 1) − µ̂DP(x, 0)︸ ︷︷ ︸

ϕ(z,η̂DP,λ(π̂DP))

−g
∗
(x; η̂DP)

)∥∥∥∥
2

. (12)

In the following, we present two corollaries stating the form of the function h(g∗,x, z, η̂DP) for
parametric models such as neural networks, as well as the non-parametric kernel ridge regression
estimator.
Corollary 1 (Parametric second-stage regression). If the second-stage regression is a smooth para-
metric model, namely G = {g(x; θ) : X 7→ R, θ ∈ Θ ⊆ Rp}, then, in Theorem 1, we have

g∗(·; η̂DP) = g(·; θ∗) and h(g∗,x, x, η̂DP) = 2 Jθ

[
g∗(x; η̂DP)

]
·H−1

θ · ∇θ

[
g∗(x; η̂DP)

]
, (13)

where θ∗ = argmin
θ∈Θ

RP (g, η̂DP, λ(π̂DP)); Jθ ∈ Rd×p is a Jacobian matrix wrt. θ; Hθ =

∇2
θ

[
RP (g

∗, η̂DP, λ(π̂DP))
]
∈ Rp×p is a Hessian matrix; and ∇θ is a gradient.

Proof. We prove Corollary 1 in Supplement F.

A note on applicability: Corollary 1 requires access to and invertibility of Hθ. This might restrict
the applicability of certain deep neural networks for the second-stage regression. However, we note
that, in Theorem 1, we are only interested in predicting the CATE at certain values x. This motivates
the local CATE estimation through kernel weighting. We present our alternative approach below.
Corollary 2 (Non-parametric second-stage regression). If the second-stage regression is a kernel
ridge regression with Λ(g) = λ∥g∥2H, where G = H is a reproducing kernel Hilbert space (RKHS)
induced by a kernel K(·, ·) : X × X 7→ R+, then, in Theorem 1, we have

g∗(·; η̂DP) =
(
Lρ + λI

)−1
S(·) and h(g∗,x, x, η̂DP) =

(
Lρ + λI

)−1
K(·, x)(x), (14)

where Lρ : H 7→ H is a weighted covariance operator Lρf(·) = E
[
ρ(A, π̂DP(X))K(·, X)f(X)

]
;

λIf(·) = λf(·) is a scaling operator; S ∈ H is a cross-covariance functional S(·) =
E
[
ρ(A, π̂DP(X))K(·, X)ϕ(Z, η̂DP, λ(π̂DP(X)))

]
.

Proof. We prove Corollary 2 in Supplement F.

Scalability: The complexity of calculating γ(·) is independent of the size of the dataset once the
second-stage model ĝD(·; η̂DP) is fitted.
Theorem 2 (Neyman-orthogonality and quasi-oracle efficiency of DP-CATE). The privatization of
the second-stage model asymptotically preserves the property of Neyman-orthogonality, namely

∥g∗(·; η)− ĝDP(·; η̂DP)∥2L2
≲ RP

(
g∗(·; η̂DP), η̂DP, λ(π̂DP)

)
−RP

(
g∗(·; η), η̂DP, λ(π̂DP)

)
+R2(η̂DP, η)

+ ∥g∗(·; η̂DP)− ĝD(·; η̂DP)∥2L2︸ ︷︷ ︸
depends on the model class G

+ oP (n
−1).︸ ︷︷ ︸

output perturbation

(15)

Furthermore, under additional regularity conditions on the privatization of the nuisance functions
(e.g., gradient perturbation), our DP-CATE achieves quasi-oracle efficiency. Specifically, if the orig-
inal estimation of the nuisance functions is at rate of at least oP (n−1/4), then the privatized estima-
tion preserves this rate.

Proof. We prove Theorem 2 in Supplement F.

4.2 DP-CATE FOR COMPLETE CATE FUNCTIONS

In this variant of DP-CATE, we seek to privately release an estimate ĝD(·; η) of the complete CATE
function τ(·). Note that we cannot leverage Theorem 1 because it is only applicable to CATE
estimates but not to complete functions. Instead, we must now derive a tailored approach.

Intuitively, we need to find (I) a type of noise and (II) a calibration function that does not depend on
d. More precisely, the added noise should be a function itself to guarantee the privacy of the CATE
function. For (I), we propose to add a calibrated Gaussian process (GP) to the predicted CATE. 6

6We refer to Rasmussen & Williams (2006) for an in-depth introduction to Gaussian processes.
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Definition 4 (Gaussian process). A family of random variables {Xt}t∈T is a Gaussian process if
for any subset S ∈ T , {Xt}t∈S has a Gaussian distribution. The process is entirely determined by
its mean function m(t) := E[Xt] and covariance function K(s, t) := Cov(Xs, Xt).

We are left with answering question (II) from above: how to calibrate the GP noise to fulfill DP?
We make the following important observation: If ĝD(·; η) lies in a reproducing kernel Hilbert space
(RKHS), we can calibrate the GP noise with respect to the RKHS norm using results from functional
analysis (Hall et al., 2013). To ensure that ĝD(·; η) indeed lies in an RKHS, we can later follow prior
research (e.g., Kennedy, 2023a; Singh et al., 2024) and model the second-stage estimation in DP-
CATE framework as a Gaussian kernel regression.

We now want to bound the difference of CATE functions trained on neighboring datasets with re-
spect to the norm of the Hilbert space. Recall that differential privacy of function f under the
Gaussian mechanism in Def. 2 requires knowledge about supD∼D′,x∈Xd ||f̂D(x)− f̂D′ (x)||2 to cal-
ibrate the Gaussian noise variable. Similarly, we now require knowledge of supD∼D′ ||f̂D− f̂D′ ||H
where f̂D specifies an RKHS regression to calibrate the Gaussian process. However, to the best of
our knowledge, no closed-form solution for this quantity exists. We thus derive the following lemma
as an extension of Hall et al. (2013) in our setting.

Lemma 1. Let H denote the RKHS induced by the Gaussian kernel K(x, x′) =

(
√
2πh)−q exp(−∥x − x′∥22

/
(2h2)) for x, x′ ∈ X ⊆ Rq , and let f̂D be the optimal solution to

the RKHS regression

f̂D(·) = argmin
f∈H

1

n

n∑
i=1

w(Xi) · ℓ(f(Xi), Yi) + λ∥f∥2H, (16)

where w(·) > 0 is a weight function, D is a dataset with |D| = n, and ℓ(ŷ, y) is a convex and
Lipschitz loss function in ŷ with Lipschitz constant L. Then, for D ∼ D′, we have

||f̂D − f̂D′ ||H ≤ sup
x∈X

[w(x)]
L

λn

(√
(2π)h

)−q

. (17)

Proof. We prove Lemma 1 in Supplement F.

We now use the above results and present our DP framework for CATE functions: (i) Stage 1: We
estimate the (ε/2, δ/2)-differentially private nuisance functions µ̂DP and π̂DP through any paramet-
ric or non-parametric machine learning method and perturbation method. (ii) Stage 2: We perform
a Gaussian kernel regression to minimize Eq. (3). (iii) We calibrate a suitably chosen Gaussian pro-
cess based on Lemma 1 and add the resulting GP to the CATE function. In the case ℓ is a squared
loss, the quasi-oracle efficiency of our framework directly follows from Theorem 2 and (Foster &
Syrgkanis, 2019). We present the pseudo-code for DP-CATE in Supplement C.

Theorem 3 (DP-CATE for functional queries). Let µ̂DP and π̂DP denote the (ε/2, δ/2)-differentially
private nuisance estimators trained in stage 1 on D̃. Let z = (a, x, y) be a data sample from
dataset D with |D| = n and x ∈ X ⊆ Rq . Let H denote the RKHS induced by the kernel
K(x, x′) = (

√
2πh)−q exp(−∥x−x′∥22

/
2h2), and let ℓ(·, ·) be a convex and Lipschitz loss function

with Lipschitz constant L. We define ĝD(·; η̂DP) as the second-stage regression solving Eq. (3) via

ĝD(·; η̂DP) = argmin
g∈H

1

n

n∑
i=1

ρ(Ai, π̂DP(Xi)) ℓ
(
g(Xi), ϕ(Zi, η̂DP, λ(π̂DP(Xi)))

)
+ λ∥g∥2H. (18)

Furthermore, let U(·) ∈ H be the sample path of a zero-centered Gaussian process with covariance
function K(x, x′). Then, (ε, δ)-differential privacy is guaranteed by

ĝDP(·; η̂DP) := ĝD(·; η̂DP) + sup
(a,x)∈{0,1}×X

[
ρ(a, π̂DP(x))

] 4L√2 ln (2/δ)(√
2πh

)q
λnε︸ ︷︷ ︸

r(ε,δ,ĝD,η̂DP)

·U(·). (19)

Proof. We prove Theorem 3 in Supplement F.
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Importantly, for both R- and DR-learner, sup(a,x)∈{0,1}×X
[
ρ(a, π̂DP(x))

]
≤ 1. Also, the above

theorem requires a convex Lipschitz loss ℓ(·, ·). There are many suitable loss functions (e.g., the
squared loss on bounded domains, a trimmed squared loss, or the Huber loss). For many losses, the
Lipschitz constant is data-independent and directly computable from the loss function.7 We further
require the second-stage in the meta-learner to be a Gaussian kernel regression, which is widely used
in causal inference (e.g., Kennedy, 2023a; Singh et al., 2024). Nevertheless, our DP-CATE is still
fairly flexible in that any Neyman-orthogonal meta-learner can be used (e.g., R-learner, DR-learner)
and that any machine learning model can be used for nuisance estimation. In Supplement C, we
present an algorithm for releasing private outputs of the function ĝDP(·; η̂DP).

5 EXPERIMENTS

Implementation: Our DP-CATE is model-agnostic and highly flexible. Therefore, we instantiate
our DP-CATE with multiple versions of the R-leaner (Nie et al., 2021) where we vary the underlying
base learners. Hence, we implement the pseudo-outcome regression in the second stage via both
a neural network (NN) and the Kernel regression estimator (KR). We estimate the nuisance func-
tions through neural networks. This is recommended as one typically allows for flexibility in the
nuisance functions (Curth & van der Schaar, 2021). Details on implementation and training are in
Supplement G. We emphasize again that there are no suitable baselines for our task.

Performance metrics: As explained in Sec. 2, there are no flexible CATE meta-learners ensuring
DP. Thus, there is no suitable baseline for our task. Hence, we perform experiments to primarily
show the applicability of our DP-CATE across different privacy budgets. We expect that the pre-
diction performance will increase with increasing privacy budget and then approach the prediction
performance of a non-private CATE learner. We measure the performance via the precision in esti-
mation of heterogeneous effects (PEHE) with regard to the true CATE (e.g., Hill, 2011).

5.1 EVALUATION ON SYNTHETIC DATASETS
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Figure 3: Dataset 1 (finite queries). Predictions
under different base learners and privacy budgets.

Synthetic datasets: Due to the fundamen-
tal problem of causal inference, counterfactual
outcomes are never observed in real-world data.
Thus, we follow common practice and evaluate
DP-CATE on synthetic data, which allows us to
access the ground-truth CATE and compute the
PEHE (e.g., Kennedy, 2023a; Oprescu et al.,
2019). We evaluate DP-CATE on 300 queries.

We consider two settings with different treat-
ment effect complexities following Oprescu et al. (2019). •Dataset 1 contains two observed con-
founders from which only one influences the CATE. This allows us to visualize the CATE function
and the effect of privatization on the prediction for varying covariate values. •Dataset 2 contains 30
observed confounders and multiple dimensions influence the CATE. Details are in Supplement G.
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Figure 4: Dataset 1 (functional queries). Predic-
tions under different privacy budgets.

Results for finite queries: •Dataset 1: Fig. 3
shows the predictions for different base learn-
ers and different privacy budgets. We make
the following observations: (1) Our DP-CATE
performs as expected: with increasing privacy
budget, the predictions become less ‘noisy’ and
converge to those of the non-private estimator.
(2) Our DP-CATE shows consistent patterns for
different base learners. For example, the predictions under both KR and NN are almost identical,
showing the flexibility and robustness of our framework. •Dataset 2: Fig. 5 shows the PEHE. Note
that we directly compare DP-CATE for finite queries (combined with KR and NN) and DP-CATE for
functional queries. Again, we find that our DP-CATE performs as expected: the PEHE decreases
with increasing privacy budget and converges towards that of the non-private learner.

7For example, for the l1 loss, the Lipschitz constant L equals 1; for the Huber loss, L equals the loss
parameter δ; and, for the truncated l2 loss, the constant equals the gradient at the truncation value.
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Results for functional queries: •Dataset 1: Fig. 4 shows the predictions of DP-CATE for func-
tional queries across different privacy budgets. We observe similar behavior as in the case of finite
queries: With increasing privacy budget, the predictions converge to those of the non-private learner.
•Dataset 2: Fig. 5 shows the results for more complex dataset. As before, we observe that DP-CATE
for functions behaves in the same way as DP-CATE for finite queries. Overall, our findings are robust
across datasets and base learner specifications.

5.2 EVALUATION ON MEDICAL DATASETS
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Figure 5: Dataset 2. Prediction errors under dif-
ferent privacy budgets of DP-CATE (finite) on KR
and NN and DP-CATE (functional) over 10 runs.
Plots centered at the PEHE of the original learner.

Medical datasets: We demonstrate the appli-
cability of DP-CATE to medical datasets by
using the MIMIC-III dataset (Johnson et al.,
2016) and the TCGA dataset (Weinstein et al.,
2013). MIMIC-III contains real-world health
records from patients admitted to intensive care
units at large hospitals. We aim to predict
a patient’s red blood cell count after being
treated with mechanical ventilation. The Can-
cer Genome Atlas (TCGA) dataset contains a large collection of gene expression data from patients
with different cancer types. We assign a treatment indicator based on the gene expression level and
aim to predict a constant effect across all expression levels. Details are in Supplement G.

Results: • MIMIC-III: Fig. 6 reports the predictions of the CATE against different levels of hema-
tocrit and different privacy budgets. Here, we have d = 1312 queries (i.e., the size of the test
set). Our DP-CATE framework works as desired: for smaller privacy budgets, more noise should be
added, which is also reflected in a larger variation of the predictions. • TCGA: Fig. 7 shows again
that our DP-CATE is effective on a large number of queries (i.e., d = 2659). Overall, the loss in
precision due to DP (i.e., when comparing DP-CATE to the non-private learner) is fairly small.
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Figure 6: MIMIC-III (finite queries). Our DP-
CATE generates private estimates of the effect
of ventilation for different levels of hematocrit.
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Figure 7: TCGA (finite queries). DP-CATE
consistently estimates the constant treatment
effect across the sum of all covariate values.

Takeaways: The prediction error of DP-CATE decreases with larger privacy budgets as desired and
converges to the non-private error, confirming that our framework makes precise CATE predictions.

6 DISCUSSION

Applicability: We provide a general framework for differentially private and Neyman-orthogonal
CATE estimation from observational data. First, our DP-CATE is carefully designed for observa-
tional data, which are common in medical applications (Feuerriegel et al., 2024). Second, DP-CATE
is applicable to various meta-learners (e.g., R-learner, DR-learner), which are widely used in prac-
tice. Third, DP-CATE allows different use cases: one can release either a certain number of CATE
estimates or even the complete CATE function (e.g., as in clinical decision support systems).

Extension to the DR-learner: Our derivations focus on the popular R-learner due to its favorable
theoretical properties. Nevertheless, our DP-CATE can be applied to any other Neyman-orthogonal
meta-learner. In Supplement B, we thus provide an extension to the DR-learner. Therein, we also
provide additional numerical experiments. At a technical level, the weight function for the DR-
learner simplifies to λDR(π(x)) = 1 in contrast to the weight function of the R-learner λR(π(x)) =
π(x) (1 − π(x)). However, λDR(π(x)) is less suitable for DP because it needs a larger noise term
during the perturbation (see Supplement B for a detailed discussion), which hinders downstream
performance. Hence, we recommend employing DP-CATE with the R-learner in practice.

Conclusion: Ensuring the privacy of sensitive information in treatment effect estimation is man-
dated for ethical and legal reasons. Here, we provide the first framework for differentially private
CATE estimation from observational data using meta-learners.
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A ADDITIONAL BACKGROUND MATERIAL

A.1 DIFFERENTIAL PRIVACY

Objective
perturbation

Input
perturbation

Gradient
perturbation

Output
perturbation

PredictionModelObjectiveData

Figure 8: Privacy mechanisms in the machine learning
workflow.

DP mechanisms: There are four
main strategies of DP mechanisms
(see Fig. 8): (i) Input perturbation
independently randomizes each data
sample before model training (e.g.,
Fukuchi et al., 2017). (ii) Objective
perturbation adds a random term to
the objective and releases the respec-
tive minimizer (e.g., Iyengar et al.,
2019; Kifer et al., 2012; Redberg
et al., 2023). The mechanisms in this
field commonly make strong assumptions on the smoothness or convexity of the objective. (iii) Gra-
dient perturbation clips, aggregates, and adds noise to the gradient updates in each step of gradient
descent methods during model training (e.g., Abadi et al., 2016; Wang et al., 2017; 2019). (iv) Out-
put perturbation adds noise to the non-private model prediction before its release (e.g., Chaudhuri
et al., 2011; Zhang et al., 2022). All stated mechanisms are general strategies that must be carefully
adapted to our CATE estimation setting. In our work, we employ output perturbation for the reasons
explained below.

Choice of DP mechanism: Our DP-CATE framework employs output perturbation to achieve DP.
Output perturbation is highly suitable for our setting since (i) it ensures that causal assumptions are
fulfilled even after perturbation, and (ii) it retains the power of existing CATE estimation methods for
addressing the fundamental problem of causal inference. The other DP strategies discussed above
fail to fulfill the requirements.

In contrast, input perturbation might introduce confounding bias or violate the consistency assump-
tion. For gradient and objective perturbation, the convergence of the model might be unclear. Fur-
thermore, objective perturbation might fail to achieve the targeted privacy guarantee if the model
does not converge to the exact global minimum in finite time (Iyengar et al., 2019). Gradient per-
turbation results in a non-trivial privacy overhead and does not align with our goal of providing a
model-agnostic meta-learning framework (Redberg et al., 2023).

A.2 EXTENDED RELATED WORK

The only existing method designed for our setting was proposed by Niu et al. (2022). The au-
thors provide an algorithm for differentially private CATE estimation through existing CATE meta-
learners. However, the method necessitates special private base learners for the separate sub-
algorithms in each stage of the meta-learner. It is thus not agnostic to the choice of ML method
for the first- and second-stage regressions, meaning that arbitrary choices are not supported. Fur-
thermore, it has been shown that privatizing different parts of causal estimators separately can result
in biased causal estimates (Ohnishi & Awan, 2023).

A different line of work proposes locally differentially private (LDP) algorithms (Agarwal & Singh,
2024; Huang & Ascara, 2023; Ohnishi & Awan, 2023). This notion of privacy becomes necessary if
the central data curator cannot be trusted. During data collection, calibrated noise is added to each
sample before adding it to the database. However, the perturbed data might violate the assumptions
to identify causal treatment effects. Furthermore, this notion of privacy significantly reduces the
predictive accuracy of the estimators (Huang & Ascara, 2023). Thus, whenever the data curator is
a trusted party (as assumed in our work), global differential privacy is sufficient and should be the
notion of choice as it is less accuracy-compromising than its local counterpart.

A.3 FUTURE RESEARCH DIRECTIONS FOR PRIVACY IN CAUSAL ML

Applying causal machine learning methods to real-world problems requires the methods to adhere
to guidelines on ML safety and ethical ML. The privacy of predictions is only one aspect of the
former. Of note, privacy has a direct effect on other ethical and safety-related aspects, such as the
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uncertainty or the fairness in the predictions. Hence, there are many impactful directions for future
research.

Uncertainty in causal ML, including causality-specific types of uncertainty such as unobserved
confounding, have been studied in the literature (e.g. Jesson et al., 2020; Melnychuk et al., 2024;
Schröder et al., 2024a). However, so far, there is no method that quantifies the uncertainty added
through the privatization of the causal model or the predictions. Developing such methods is an
important step for future research.

Ethical causal ML has been mostly studied through the lens of causal fairness (e.g., Frauen et al.,
2024; Ma et al., 2023; Plecko & Bareinboim, 2024; Schröder et al., 2024b). However, the trade-off
between fair and private causal ML is unexplored. Research outside the field of causal ML suggests
opposing effects of privatization and fairness (e.g., Tran et al., 2021). Therefore, investigating this
relationship is an interesting avenue for future research and may help in providing ethical, causal
treatment effect estimation.

A.4 THEORY ON CATE ESTIMATION

The estimation of causal quantities, such as the conditional average treatment effect τ(x) =
E[Y (1) − Y (0) | X = x], involves counterfactual quantities Y (a), since only one outcome per
individual can be observed. Here, Y (a) is the potential outcome that would hypothetically be ob-
served if a decision a is taken.

Due to the above, identification of causal effects from observational data necessitates the following
three assumptions that are common in the literature (e.g., Curth & van der Schaar, 2021; Feuerriegel
et al., 2024):

1. Consistency: The potential outcome Y (a) equals the observed factual outcome Y when the
individual was assigned treatment A = a.

2. Positivity/overlap: The treatment assignment is not deterministic. Specifically, there exists
a positive probability for each possible combination of features to be assigned to both the
treated and the untreated group, i.e., there exists κ > 0 such that κ < π(x) < 1− κ for all
x ∈ X .

3. Unconfoundedness: Conditioned on the observed covariates, the treatment assignment is
independent of the potential outcomes, i.e., Y (0), Y (1) ⊥⊥ A | X . Specifically, there are
no unobserved variables (confounders) influencing both the treatment assignment and the
outcome.

Importantly, the above assumptions are standard in the literature. Further, the assumptions are nec-
essary for consistent causal effect estimation for any machine learning model. Then, CATE is iden-
tifiable as

τ(x) := E[Y (1)− Y (0) | X = x] = µ(x, 1)− µ(x, 0), (20)

where µ(x, a) = E[Y | X = x,A = a]. To estimate τ , one could thus train a machine learning
model that estimates the aforementioned conditional expectation and then calculates the difference
in conditional expectations for a given X = x. This is commonly referred to as plug-in method, yet
which has several drawbacks, as we outline below. Rather, the preferred way to estimate the CATE
is through meta-learners.

Meta-learners define model-agnostic algorithms, which can be implemented with arbitrary machine
learning algorithms. Therefore, meta-learners are flexible and commonly employed in practice.
CATE meta-learners can be classified into four different categories, depending on the ways they
leverage the data: (1) one-step plug-in learners, (2) two-stage regression-adjusted learners, (3) two-
stage propensity-weighted learners, and (4) two-stage Neyman-orthogonal learners (Curth & van
der Schaar, 2021). Meta-learners for specialized tasks have also been proposed recently, such as
partial identification or treatment effects over time (e.g., Frauen et al., 2025; Oprescu et al., 2023;
Schweisthal et al., 2024)

We now discuss each type of meta-learner and their potential drawbacks in more detail:
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1. One-step plug-in learner: Here, ML models are trained to predict µ(x, a), either one single
model for both treatment values or two different models, i.e., µ̂(x, 1) and µ̂(x, 0). Then,
the CATE is estimated directly as τ̂(x) = µ̂(x, 1)− µ̂(x, 0).

2. Two-stage regression-adjusted learner: In the observed data, the difference between fac-
tual and counterfactual outcomes is never present. Therefore, two-stage learners construct
pseudo-outcomes as surrogates, which equal the CATE in expectation. The regression-
adjusted learner designs the pseudo-outcome through a reweighting based on the function
µ, which is estimated by µ̂ in the first stage. A misspecification of µ̂ results in a biased
CATE estimator, where the error of µ̂ propagates with the same order into the final estima-
tor τ̂ .

3. Two-stage propensity-weighted learner: Here, the pseudo-outcome is constructed based
on the Horvitz-Thompson transformation. Only the propensity function π needs to be
estimated in the first step by π̂. A misspecification of π̂ results in a biased CATE estimator.
Here, again, the error of π̂ propagates with the same order into the final estimator τ̂ .

4. Two-stage Neyman-orthogonal learners: Different from the above two-stage learners, these
learners have a lower error if either the propensity function π or the outcome regressions µ
are correctly specified. Specifically, the final estimation is first-order insensitive to small er-
rors in the nuisance functions (known as quasi-oracle efficiency). This property is achieved
through Neyman-orthogonal losses such as Eq. (3).

Hence, we focus on the two-stage Neyman-orthogonal learners throughout our work due to the clear
advantages.
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B EXTENSION TO THE DR-LEARNER

In our main paper, we focused on the R-learner for the derivations and the experiments. However,
DP-CATE is applicable to any weighted two-stage Neyman-orthogonal CATE meta-learner. Here,
we now provide an extension to the DR-learner.

For the DR-learner, the weight function simplifies to λDR(π(x)) = 1. Then, the d-dimensional
(ε, δ)-differentially private CATE estimated through the DR-learner is given by

ĝDP(x; η̂DP) = ĝD(x; η̂DP) + γDR
(
T,D

)
· c(ε, δ, n) ·U, (21)

where γDR
(
T,D

)
is a sample version of the gross-error sensitivity of γDR

(
T, P

)
, c(ε, δ, n) :=

5
√
2 ln(n) ln (2/δ)

/
(εn), and U ∼ N (0, Id). Specifically, γDR

(
T, P

)
is given by

γ
DR(

T, P
)
= sup

z∈Z

∥∥∥∥h(g∗
,x, x, η̂DP)

(
(a − π̂DP(x))(y − µ̂DP(x, a))

π̂DP(x)(1 − π̂DP(x))
+ µ̂DP(x, 1) − µ̂DP(x, 0)︸ ︷︷ ︸

ϕ(z,η̂DP,λ(π̂DP))

−g
∗
(x; η̂DP)

)∥∥∥∥
2

.

(22)

Observation: The noise calibration necessary for the privatization requires maximizing the influ-
ence function. For the DR-learner, the IF includes the inverse of π(x)(1 − π(x)). Although we
assume π(x) to be bounded away from zero and one (due to the overlap assumption), maximizing
over this term can lead to a very large calibration factor. This might limit the applicability of the
DR-learner for differentially private CATE estimation.

Below, we evaluate the private DR-learner in the same manner as the R-learner in the main paper.
We observe the expected behavior in Fig. 9.
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specifications on dataset 1.
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C SIMILARITIES AND DIFFERENCES OF THE FINITE AND FUNCTIONAL
DP-CATE FRAMEWORK

C.1 DISCUSSION

If one only wants to release private CATE estimates once, both approaches 1 and 2 are applicable.
Nevertheless, the second approach, which we call the “functional approach”, can also be employed
for iteratively querying the function, which is especially of interest to medical practitioners aiming
to assess the treatment effect of a drug for various patients with different characteristics. Put simply,
the functional approach is relevant when companies want to release a decision support system to
guide treatment decisions of individual patients. Since such treatment decisions are made based on
the entire CATE model, the functional approach is preferred. In contrast, the first approach (which
we call “finite-query approach”) is preferred whenever only a few CATE values should be released.
This is relevant for researchers (or practitioners) who may want to share the treatment effectiveness
for a certain number of subgroups (but not for individual patients).

The functional approach requires sampling from a Gaussian process. Depending on whether one
aims to report finitely many queries once through this approach or iteratively query the function, the
sampling procedure from the Gaussian process U(·) differs. We highlight the differences in the type
of queries in the following:

• Simultaneous finitely many queries: When querying the function only once with a finite
number of queries, sampling from a Gaussian process implies sampling from the prior dis-
tribution of the Gaussian process. In empirical applications, this means that one samples
from a multivariate normal distribution. Therefore, the noise added in the functional ap-
proach is similar to the finite-query approach. However, the approaches 1 and 2 are not
the same, as the noise added in the functional approach is correlated, whereas the noise
variables in the finite-query approach are independent. Therefore, the functional approach
might result in a consistent under- or overestimation of the target. Still, both approaches
guarantee privacy.

• Iteratively querying the function: In this setting, sampling from a Gaussian process im-
plies sampling from the posterior distribution of the process. Specifically, if no query has
been made to the private function yet, the finite-query approach proceeds by providing the
first private CATE estimate of query x1. Observe that the privatization of every further
iterative query xi needs to account for the information leakage through answering for-
mer queries. Thus, sampling from a Gaussian process now relates to sampling from the
posterior distribution. To do so, it is necessary to keep track of and store former queries
x1, . . . , xi−1 and the privatized outputs. This setting is entirely different from our finite
setting approach, in which we propose adding Gaussian noise scaled by gross-error sensi-
tivity.

C.2 ALGORITHMS FOR DP-CATE FUNCTIONS

Private outputs of the function ĝDP(·; η̂DP) in Theorem 3 can be released in two ways: (i) the
standard batch setting presented in Algorithm 1, in which the private function outputs a private
vector of CATE estimates once and (ii) the iterative (or online) setting, in which the function is
queried iteratively, outputting one private CATE estimate at a time. Below, we provide an alternative
algorithm to apply Theorem 3 in an iterative way.
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Algorithm 1: Pseudo-code of out DP-CATE for functions

Input: CATE meta-learner ĝD(·; η̂DP) trained on dataset D with |D| = n, Gaussian kernel matrix
(K(xi, xj))

d
i,j=1, query xquery ∈ X d, privacy budget ε, δ, Lipschitz const. L, ridge

regularization λ
Output: Privatized CATE function ĝDP(·; η̂DP)
/* Calculate calibration term r */

r ← sup(a,x)∈{0,1}×X
[
ρ(a, π̂DP(x))

]
(4L

√
2 log(2/δ))/((

√
2πh)q · λnε);

/* Sample from Gaussian process */
U ∼ N (0d, (K(xi, xj))i,j=1,...,d);
/* Return private estimates */
ĝDP(xquery; η̂DP)← ĝD(xquery; η̂DP) + r ·U;

Iterative approach: If no query has been made to the private function yet, we can employ Al-
gorithm 2 to provide a private CATE estimate ĝDP(x1; η̂DP), where x1 denotes the first query.
Specifically, Algorithm 2 samples from a Gaussian Process prior by sampling a suitable multi-
variate Gaussian noise variable. Observe that the privatization of every further iterative query
xi needs to account for the information leakage by answering former queries. Thus, sampling
from a Gaussian process now relates to sampling from the posterior distribution. To do so,
it is necessary to keep track and store former queries x1, . . . , xi−1 and the privatized outputs
Gi = (ĝDP(x1; η̂DP), . . . , ĝDP(xi−1; η̂DP))

T .

Algorithm 2: Pseudo-code of DP-CATE for functions (iterative setting)
Input: CATE meta-learner ĝD(·; η̂DP) trained on dataset D with |D| = n, Gaussian kernel matrix

conditioned on the former queries x1, . . . , xi−1, former private outputs
Gi = (ĝDP(x1; η̂DP), . . . , ĝDP(xi−1; η̂DP))

T , new query xi, privacy budget ε, δ, Lipschitz const.
L, ridge regularization λ

Output: Privatized new prediction ĝDP(xi; η̂DP)
if i=1 then

/* Apply Algorithm 1 */
end
else

/* Calculate pairwise kernel vector */

Vi ← (K(x1, xi), . . . ,K(xi−1, xi))
T ;

/* Sample from Gaussian process posterior */

Ci ← (K(xk, xl))
i−1
k,l=1;

s ∼ N (V T
i C−1

i Gi,K(xi, xi)− V T
i C−1

i Vi);
/* Return private estimate */
ĝDP(xi; η̂DP)← s;

end

A note on complexity: Algorithm 2 requires storing and iterative updating the outcome vector
Gi and the inverse matrix C−1

i . The computational complexity of Alg. 2 will thus grow with an
increasing number of queries. This poses a limitation of the above approach for settings with many
iterative queries.
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D THEORETICAL EVALUATION OF EXCESS RISK

Let ĝDP(·; η̂DP) and ĝD(·; η̂DP) denote the private and non-private CATE estimates, respectively.
Also, let g∗(·; η̂DP) denote the second-stage population minimizer. We follow the existing literature
(e.g., Bassily et al., 2014) and measure success of our method through the worst-case expected
excess empirical risk with respect to dataset D, defined as

ξD(ĝDP, η̂DP) := EA

[∥∥ĝDP(·; η̂DP)− g∗(·; η̂DP)
∥∥2
L2

−
∥∥ĝD(·; η̂DP)− g∗(·; η̂DP)

∥∥2
L2

]
, (23)

where the expectation is taken over the randomness in the second-stage privatization algorithm.

First, observe that, for a suitable calibration factor r(ε, δ, ĝD, η̂DP) and noise variable U specified in
Theorems 1 and 3, we can bound the general formula of the excess risk by

ξD(ĝDP, η̂DP) = EU

[∥∥ĝD(·; η̂DP) + r(ε, δ, ĝD, η̂DP) · U − g∗(·; η̂DP)
∥∥2
L2

(24)

−
∥∥ĝD(·; η̂DP)− g∗(·; η̂DP)

∥∥2
L2

]
≤ r(ε, δ, ĝD, η̂DP)

2 · EU [∥U∥2L2
] (25)

Finitely many queries: From Theorem 1, we have U = U ∼ N (0, Id) and, by setting d = 1, we
yield

r(ε, δ, ĝD, η̂DP) = γ(T,D) ·
5
√
2 ln(n) ln (2/δ)

ε n
, (26)

where n is the sample size of the training data D. As EU [∥U∥2L2
] = EU [U

2] = 1, the excess risk
can be bounded by

ξD(ĝDP, η̂DP) ≤ γ(T,D) · 50d ln(n) ln (2/δ)
(ε n)2

= O(n−2 ln(n)) ∈ o(n−1). (27)

Functional queries: From Theorem 3, we have

r(ε, δ, ĝD, η̂DP) = sup
(a,x)∈{0,1}×X

[
ρ(a, π̂DP(x))

] 4L√2 ln (2/δ)(√
2πh

)q
λnε

, (28)

where h denotes the kernel bandwidth and q the dimension of the covariates. Instead of per-
turbing a random variable U as above, Theorem 3 perturbs the functional output by a sample
path U = U(·) ∈ H of a zero-centered Gaussian process with covariance function K(x, x′) =

(
√
2πh)−q exp(−∥x− x′∥22/(2h2)). First, we note that

EU [EX(U(X)2)] = EX [EU (U(X)2)] = EX [K(X,X)] = (
√
2πh)−q. (29)

Therefore, we get

ξD(ĝDP, η̂DP) ≤
(

sup
(a,x)∈{0,1}×X

[
ρ(a, π̂DP(x))

])2
32L2 ln (2/δ)

(
√
2πh)3q(λnε)2

= O(n−2) ∈ o(n−1).

(30)
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E SUPPORTING LEMMAS AND DEFINITIONS

Our proofs are based on important properties of differentially private algorithms, which we introduce
below. For proofs and further details, see (Avella-Medina, 2021; Dwork & Roth, 2014; Nissim et al.,
2007).
Lemma 2 (Post-processing theorem). Let the mechanism M satisfy (ε, δ)-DP. For any function f ,
it then holds that f(M) satisfies (ε, δ)-DP as well.

Lemma 3 (Sequential composition property). Let the set of privacy mechanisms Mj , j = 1, . . . , k
satisfy (εj , δj)-DP. When applying the mechanisms Mj on the same dataset, the resulting overall
mechanism (i.e., the concatenation of all the Mj) guarantees (

∑k
j=1 εj ,

∑k
j=1 δj)-DP.

Definition 5 (ξ-smooth and local sensitivities). Let f̂D be a learned function on dataset D with
|D| = n and let x ∈ X d. Then, local sensitivity of f̂ is defined as

LS (f̂ , D) := sup
D′∼D,x∈Xd

∥f̂D(x)− f̂D′ (x)∥2. (31)

where the supremum is taken wrt. D′ (unlike ∆2, where the supremum is taken wrt. to both D and
D′). Furthermore, a ξ-smooth sensitivity of f̂ is defined as

SS ξ(f̂ , D) := sup
D′∈Zn

[
exp(−ξdH(D,D

′
))LS(f̂ , D

′
)
]
, (32)

where Zn denotes the data domain.

Lemma 4 (Differential privacy via ξ-smooth sensitivity (Avella-Medina, 2021; Nissim et al., 2007)).
Let f̂D be a learned function on dataset D with |D| = n and let x ∈ X d. Then, f̂DP(x) fulfills
(ε, δ)-differential privacy:

f̂DP(x) = f̂D(x) +
5
√

2 log(2/δ)

ε
SS ξ(f̂ , D) ·U, (33)

where U ∼ N (0, Id) and ξ = ε
4(d+2 log(2/δ)) .

Finally, we show that in our case, the ξ-smooth sensitivity can be upper-bounded by the (appropri-
ately scaled) gross-error sensitivity.

Lemma 5. (Avella-Medina, 2021) Let f̂D be a learned function on dataset D with |D| = n and let
x ∈ X d. Furthermore, let γ(T,D) denote the sample gross error sensitivity of the parameter of the
interest T (D) = f̂D(x). Under minimal regularity and boundedness conditions for the ξ-smooth
sensitivity SS ξ(f̂ , D) with ξ = ε

4(d+2 log(2/δ)) , it holds that

SS ξ(f̂ , D) ≤
√
log(n)

n
γ(T,D). (34)
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F PROOFS

F.1 PROOFS OF THEOREM 1, COROLLARIES 1, 2, THEOREM 2

Theorem 1 (DP-CATE for finite queries). Let z := (a, x, y) define a data sample following the
joint distribution Z and η̂DP = (µ̂DP, π̂DP) the nuisance functions estimated on dataset D̃ in a
(ε/2, δ/2)-differentially private manner of choice.8 Furthermore, let D be the training dataset for
the second-stage model with |D| = n. For z = (a, x, y) ∈ Z , we define

ĝDP(x; η̂DP) := ĝD(x; η̂DP) + γ
(
T,D

)
· c(ε, δ, n)︸ ︷︷ ︸

r(ε,δ,ĝD,η̂DP)

·U, T (P ) = g∗(x; η̂DP), (10)

γ
(
T, P

)
= sup

z∈Z

∥∥∥∥h(g∗,x, x, η̂DP) ρ(a, π̂DP(x))
(
ϕ(z, η̂DP, λ(π̂DP(x)))− g∗(x; η̂DP)

)∥∥∥∥
2

, (11)

where γ
(
T,D

)
is a sample gross-error sensitivity with T (D) instead of T (P ) in Eq. (9),

U ∼ N (0, Id), c(ε, δ, n) := 5
√

2 ln(n) ln (2/δ)
/
(εn), and where h(g∗,x, z, η̂DP) ∈ Rd and

g∗(·; η̂DP) depend on the machine learning model employed for the second-stage regression. Then,
ĝDP(x; η̂DP) is (ε, δ)-differentially private.

Proof. First, observe that by Lemma 3, the first-stage nuisance estimation η̂DP overall fulfills (ε, δ)-
DP. By Lemma 2, the privacy of the nuisances is not affected by the second-stage regression. Note
that we estimate both stages on disjoint subsets of the data, i.e., D̄ = D̃ ∪D.

If we had access to the ξ-smooth sensitivity SS ξ(g,D) of the meta-learner with ξ = ε
4(d+2 log(2/δ)) ,

the estimator ĝDP(x; η̂DP) with

ĝDP(x; η̂DP) = ĝD(x; η̂DP) +
5
√
2 log(2/δ)

ε
SS ξ(ĝ, D) ·U, (35)

where U ∼ N (0, Id), x ∈ Rd, would fulfill (ε, δ)-differential privacy by Lemma 4 and the parallel
composition property of DP.

However, the ξ-smooth sensitivity is highly difficult, or even impossible, to compute for general
function classes such as neural networks. Therefore, we seek an upper bound on SS ξ(g,D) to
ensure that the privacy guarantees stay valid while making it feasible to compute the calibration
function r(ε, δ, ĝD, η̂DP). By Lemma 5, we find such an upper bound through

SS ξ(ĝ, D) ≤
√

log(n)

n
γ(T,D) =

√
log(n)

n
sup
z∈Z

∥IF(z, T ;D)∥2, (36)

where γ(T,D) denotes the sample gross-error sensitivity with the parameter of interest T defined
as T (P ) = g∗(x; η̂DP) (population version) or T (D) = ĝD(x; η̂DP) (sample version).

Now, the influence function of T (P ) = g∗(x; η̂DP) where g∗(·; η̂DP) =
argming∈G RP (g, η̂DP, λ(π̂DP)) is as follows:

IF(z, T ;P ) =
d

dt

[(
argmin

g∈G
R(1−t)P+tδz (g, η̂DP, λ(π̂DP))

)
(x)

]∣∣∣∣
t=0

(37)

=
d

dt

[(
argmin

g∈G

{
(1 − t)RP (g, η̂DP, λ(π̂DP)) + tρ(a, π̂DP(x))(ϕ(z, η̂DP, λ(π̂DP) − g(x))

2})
(x)

]∣∣∣∣
t=0

.

(38)

Here, the argmin is achieved at g∗t (·; η̂DP), and, for smooth models G, the following holds:
d

dg

{
(1− t)RP (g, η̂DP, λ(π̂DP)) + tρ(a, π̂DP(x))(ϕ(z, η̂DP, λ(π̂DP)− g(x))2

}∣∣∣
g=g∗t (·;η̂DP)

= 0, (39)

if and only if

(1− t)
d

dg

{
RP (g, η̂DP, λ(π̂DP))

}
− 2tρ(a, π̂DP(x))(ϕ(z, η̂DP, λ(π̂DP))− g(x))

dg(x)

dg︸ ︷︷ ︸
F (g,t)

∣∣∣
g=g∗t (·;η̂DP)

= 0.

(40)

8As we need to query the nuisance functions multiple times, the privatization method needs to be suitable
for functions, such as gradient perturbation through DP-SGD (Abadi et al., 2016).
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Therefore, by the implicit function theorem:

d

dt

[
g∗t (x; η̂DP)

]∣∣∣∣
t=0

=

(
dF (g, t)

dg

∣∣∣∣
t=0; g=g∗(x;η̂DP)

)−1
dF (g, t)

dt

∣∣∣∣
t=0; g=g∗(x;η̂DP)

(41)

=

(
d2

d2g

{
RP (g, η̂DP, λ(π̂DP))

}∣∣∣∣
g=g∗(x;η̂DP)

)−1(
− d

dg

{
RP (g, η̂DP, λ(π̂DP))

}∣∣∣∣
g=g∗(x;η̂DP)︸ ︷︷ ︸

=0

− 2ρ(a, π̂DP(x))(ϕ(z, η̂DP, λ(π̂DP))− g∗(x; η̂DP)) ·
dg(x)

dg

∣∣∣∣
g=g∗(x;η̂DP)

)
. (42)

Now, by regrouping and setting h(g∗,x, x, η̂DP) as

h(g∗,x, x, η̂DP) = 2

(
d2

d2g

{
RP (g, η̂DP, λ(π̂DP))

}∣∣∣∣
g=g∗(x;η̂DP)

)−1

· dg(x)
dg

∣∣∣∣
g=g∗(x;η̂DP)

, (43)

we obtain the desired influence function:

IF(z, T ;P ) = −h(g∗,x, x, η) · ρ(a, π̂DP(x))(ϕ(z, η̂DP, λ(π̂DP))− g∗(x; η̂DP)). (44)

Here, h(g∗,x, x, η̂DP) ∈ Rd depends on the machine learning model employed for the second-
stage regression (see Corollaries 1 and 2). Finally, taking the supremum over the data space Z and
evaluating IF(z, T, P ) at the empirical distribution D with trained functions η̂DP and ĝD(·; η̂DP)
states the desired result.

Corollary 1 (Parametric second-stage regression). If the second-stage regression is a smooth para-
metric model, namely G = {g(x; θ) : X 7→ R, θ ∈ Θ ⊆ Rp}, then, in Theorem 1, we have

g∗(·; η̂DP) = g(·; θ∗) and h(g∗,x, x, η̂DP) = 2 Jθ

[
g∗(x; η̂DP)

]
·H−1

θ · ∇θ

[
g∗(x; η̂DP)

]
, (13)

where θ∗ = argmin
θ∈Θ

RP (g, η̂DP, λ(π̂DP)); Jθ ∈ Rd×p is a Jacobian matrix wrt. θ; Hθ =

∇2
θ

[
RP (g

∗, η̂DP, λ(π̂DP))
]
∈ Rp×p is a Hessian matrix; and ∇θ is a gradient.

Proof. First, we note, that θ∗ is an example of the M-estimator. Therefore, IF(z, T ;P ) yields an
influence function of the M-estimator. Specifically, it can be shown that(

d2

d2g

{
RP (g, η̂DP, λ(π̂DP))

}∣∣∣∣
g=g∗(x;η̂DP)

)−1

= Jθ
[
g∗(x; η̂DP)

]
·H−1

θ and (45)

dg(x)

dg

∣∣∣∣
g=g∗(x;η̂DP)

= ∇θ

[
g∗(x; η̂DP)

]
. (46)

Therefore, we yield the desired result

h(g∗,x, x, η̂DP) = 2Jθ
[
g∗(x; η̂DP)

]
·H−1

θ · ∇θ

[
g∗(x; η̂DP)

]
. (47)

Remark 1. Importantly, for the sample gross error sensitivity, γ(T,D) = supz∈Z∥IF(z, T ;D)∥2,
to be finite, we need additional regularity conditions. Specifically, we denote the score function of
Eq. (3) by

ψ(z, g, η̂DP) := ρ(a, π(x)) (ϕ(z, η̂DP, λ(π̂DP))− g(x)). (48)

First, note that ψ(z, g, η̂DP) is differentiable w.r.t. g(x) for all z ∈ Z . Since we assume that
our data stems from a bounded domain, there exist constants K and L such that ψ(z, g, η̂DP) and
the derivative ψ

′
(z, g, η̂DP) are uniformly bounded in Z by K and L. Additionally, we assume

that ∥∇θĝD(x; η̂DP)∥2 ≤ K̃. The constant K̃ can be regulated through, e.g., gradient clipping.
Furthermore, the Hessian Hθ of the loss w.r.t. θ is positive semi-definite by assumption.

IfHθ is further restricted to be positive definite, we can employ Lemmas 1 and 2 from Avella-Medina
(2021) to show the desired upper bound of the smooth sensitivity for a sufficiently large sample size
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n.9 Specifically, the minimum sample size depends inversely on the privacy budget ε and δ and
grows in the bounds L,K, K̃ and the ratio of the maximum and minimum eigenvalue of Hθ.

Note: If the Hessian does not fulfill the above criteria and has negative eigenvalues, one can employ
the “damping” trick (Martens, 2010) by approximating Hθ by H̃θ := Hθ + αI for α > 0. The
parameter α defines the conservativeness of the approximation.
Corollary 2 (Non-parametric second-stage regression). If the second-stage regression is a kernel
ridge regression with Λ(g) = λ∥g∥2H, where G = H is a reproducing kernel Hilbert space (RKHS)
induced by a kernel K(·, ·) : X × X 7→ R+, then, in Theorem 1, we have

g∗(·; η̂DP) =
(
Lρ + λI

)−1
S(·) and h(g∗,x, x, η̂DP) =

(
Lρ + λI

)−1
K(·, x)(x), (14)

where Lρ : H 7→ H is a weighted covariance operator Lρf(·) = E
[
ρ(A, π̂DP(X))K(·, X)f(X)

]
;

λIf(·) = λf(·) is a scaling operator; S ∈ H is a cross-covariance functional S(·) =
E
[
ρ(A, π̂DP(X))K(·, X)ϕ(Z, η̂DP, λ(π̂DP(X)))

]
.

Proof. By the representer theorem (population version), the optimal solution of the weighted
kernel ridge regression is given by g∗(·; η̂DP) =

(
Lρ + λI

)−1
S(·), where Lρf(·) =

E
[
ρ(A, π̂DP(X))K(·, X)f(X)

]
and S(·) = E

[
ρ(A, π̂DP(X))K(·, X)ϕ(Z, η̂DP, λ(π̂DP))

]
. For

a description, see, e.g., Berlinet & Thomas-Agnan (2004); Pillonetto et al. (2022).

We now turn to deriving the influence function of g∗(x; η̂DP) at z = (a, x, y), IF(z, T =
g∗(x; η̂DP);P ), to then receive the explicit form of h(g∗,x, x, η̂DP).

Consider the point-mass perturbation of the distribution P in the direction of z denoted as Pt =
(1− t)P + tδz . Then, the solution to the kernel ridge regression at Pt is given by

g∗t (x; η̂DP) =
(
LPt + λI

)−1
SPt(x), (49)

where LPt
= (1 − t)Lρ + tLδz and SPt

= (1 − t)S + tSδz with Lδzf(x) =
ρ(a, π̂DP(x))K(x, x)f(z) and Sδz (x) = ρ(a, π̂DP(x))K(x, x)ϕ(z, η̂DP, λ(π̂DP)).

Then we get

IF(z, T = g∗(x; η̂DP);P ) =
d

dt
g∗t (x; η̂DP)

∣∣∣
t=0

(50)

= −
(
Lρ + λI

)−1
Lδz (x)

(
Lρ + λI

)−1
S(x) +

(
Lρ + λI

)−1
Sδz (x) (51)

= −ρ(a, π̂DP(x)) ·
((

Lρ + λI
)−1

K(·, x)
)
(x) · g∗(x; η̂DP) (52)

+ ρ(a, π̂DP(x)) ·
((

Lρ + λI
)−1

K(·, x)
)
(x) · ϕ(z, η̂DP, λ(π̂DP)).

(53)

With h(g∗,x, x, η̂DP) =
((

Lρ + λI
)−1

K(·, x)
)
(x) we get

IF(z, g∗(x; η̂DP);P ) = h(g∗,x, x, η̂DP) · ρ(a, π̂DP)
(
ϕ(z, η̂DP, λ(π̂DP))− g∗(x; η̂DP)

))
, (54)

which shows the desired result.

Theorem 2 (Neyman-orthogonality and quasi-oracle efficiency of DP-CATE). The privatization of
the second-stage model asymptotically preserves the property of Neyman-orthogonality, namely

∥g∗(·; η)− ĝDP(·; η̂DP)∥2L2
≲ RP

(
g∗(·; η̂DP), η̂DP, λ(π̂DP)

)
−RP

(
g∗(·; η), η̂DP, λ(π̂DP)

)
+R2(η̂DP, η)

+ ∥g∗(·; η̂DP)− ĝD(·; η̂DP)∥2L2︸ ︷︷ ︸
depends on the model class G

+ oP (n
−1).︸ ︷︷ ︸

output perturbation

(15)

Furthermore, under additional regularity conditions on the privatization of the nuisance functions
(e.g., gradient perturbation), our DP-CATE achieves quasi-oracle efficiency. Specifically, if the orig-
inal estimation of the nuisance functions is at rate of at least oP (n−1/4), then the privatized estima-
tion preserves this rate.

9For details, we refer to Avella-Medina (2021).
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Proof. First, we show that the privatization at the second stage of learning, namely the output per-
turbation, asymptotically does not affect the Neyman-orthogonality. Specifically, we show that the
L2 error can be upper-bounded as

∥g∗(·; η)− ĝDP(·; η̂DP)∥2L2
(55)

=∥g∗(·; η)− ĝD(·; η̂DP)− r(ε, δ, ĝD, η̂DP) · U∥2L2
(56)

≤∥g∗(·; η)− ĝD(·; η̂DP)∥2L2
+ r(ε, δ, ĝD, η̂DP) · ∥U∥2L2

(57)

≤∥g∗(·; η)− g∗(·; η̂DP)∥2L2
+ ∥g∗(·; η̂DP)− ĝD(·; η̂DP)∥2L2︸ ︷︷ ︸

depends on the model class G

+ oP (n
−1)︸ ︷︷ ︸

output perturbation

, (58)

where the last inequality holds due to the excess risk of the output perturbation (see Appendix D).
Now, we can also employ the result from Morzywolek et al. (2023):

∥g∗(·; η)− g∗(·; η̂DP)∥2L2
≲ RP

(
g∗(·; η̂DP), η̂DP, λ(π̂DP)

)
−RP

(
g∗(·; η), η̂DP, λ(π̂DP)

)
+R2(η̂DP, η),

(59)

where R2(η̂DP, η) is the higher-order error of misspecifying the nuisance functions. Specifically,
the R2(η̂DP, η) takes a different form for different learners:

DR-learner: R2(η̂DP, η) =
∑

a∈{0,1}

∥µ(·, a)− µ̂DP(·, a)∥2L2
· ∥π − π̂DP∥2L2

; (60)

R-learner: R2(η̂DP, η) =
∑

a∈{0,1}

∥µ(·, a)− µ̂DP(·, a)∥2L2
· ∥π − π̂DP∥2L2

+ ∥π − π̂DP∥4L4
.

(61)

Second, we want to demonstrate when the quasi-oracle efficiency holds for our DP-CATE. Specifi-
cally, given that the non-private estimators µ̂D̃ and π̂D̃ are estimated at the rate of at least oP (n−1/4),
we need to show when the privatized nuisance functions η̂DP can also achive this rate.

We focus on the smooth parametric models for η̂D̃ and a basic gradient perturbation method for
privatization, namely DP-SGD (Bassily et al., 2014; Abadi et al., 2016). Let m denote the number
of model parameters. From the literature, (e.g., Chen et al., 2020), we know that the convergence
rate r for (ε, δ)-DP-SGD for convex and Lipschitz losses holds

rDP-SGD = OP

(√
m

nε

)
, (62)

where n denotes the sample size.

Recall that in our setup we only allocate the budget (ε/2, δ/2) to the privatization of each π̂D̃ and
µ̂D̃. We yield the following result by straightforward calculation: For π̂ and µ̂ with m ≤

√
n
3
ε2,

rDP-SGD ∈ oP (n
−1/4).

For other losses (e.g., non-Lipschitz, non-convex) as well as advanced versions of DP-SGD, an

upper bound of OP (
1√
n
+

√
m log(1/δ)

nε ) has been derived in the literature. For an overview, see
(Wang et al., 2024). In this case, we achieve

rDP-SGD ∈ oP (n
−1/4) ⇐⇒ m log(1/δ) ≤ nε2(n1/4 − 1)2. (63)

Overall, we thus face a trade-off between the model size in terms of the number of parameters,
privacy budget, and sample size. For appropriately chosen factors, the first-stage nuisances achieve
rate oP (n−1/4), rendering DP-CATE oracle-efficient.

F.2 PROOFS OF LEMMA 1, THEOREM 3

Lemma 1. Let H denote the RKHS induced by the Gaussian kernel K(x, x′) =

(
√
2πh)−q exp(−∥x − x′∥22

/
(2h2)) for x, x′ ∈ X ⊆ Rq , and let f̂D be the optimal solution to

the RKHS regression
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f̂D(·) = argmin
f∈H

1

n

n∑
i=1

w(Xi) · ℓ(f(Xi), Yi) + λ∥f∥2H, (16)

where w(·) > 0 is a weight function, D is a dataset with |D| = n, and ℓ(ŷ, y) is a convex and
Lipschitz loss function in ŷ with Lipschitz constant L. Then, for D ∼ D′, we have

||f̂D − f̂D′ ||H ≤ sup
x∈X

[w(x)]
L

λn

(√
(2π)h

)−q

. (17)

Proof. Observe that, for all x ∈ Rq , the Gaussian kernel norm is given byK(x, x) = 1
(
√
2πh)q

. Since

the loss l is convex and Lipschitz with constant L, the w(·)-weighted loss is
(
supx∈X [w(x)] · L

)
-

Lipschitz. Thus, the overall loss in Eq. (16) is
(
supx∈X [w(x)] · L

)
-admissable (see Hall et al.,

2013). Therefore, we can employ a result from Hall et al. (2013), stating that the RKHS norm of
minimizers of neighboring datasets can be bounded as

||f̂D − f̂D′ ||H ≤ sup
x∈X

[w(x)] · L
λn

√
sup
x
K(x, x). (64)

With our observation above, the result follows.

Theorem 3 (DP-CATE for functional queries). Let µ̂DP and π̂DP denote the (ε/2, δ/2)-differentially
private nuisance estimators trained in stage 1 on D̃. Let z = (a, x, y) be a data sample from
dataset D with |D| = n and x ∈ X ⊆ Rq . Let H denote the RKHS induced by the kernel
K(x, x′) = (

√
2πh)−q exp(−∥x−x′∥22

/
2h2), and let ℓ(·, ·) be a convex and Lipschitz loss function

with Lipschitz constant L. We define ĝD(·; η̂DP) as the second-stage regression solving Eq. (3) via

ĝD(·; η̂DP) = argmin
g∈H

1

n

n∑
i=1

ρ(Ai, π̂DP(Xi)) ℓ
(
g(Xi), ϕ(Zi, η̂DP, λ(π̂DP(Xi)))

)
+ λ∥g∥2H. (18)

Furthermore, let U(·) ∈ H be the sample path of a zero-centered Gaussian process with covariance
function K(x, x′). Then, (ε, δ)-differential privacy is guaranteed by

ĝDP(·; η̂DP) := ĝD(·; η̂DP) + sup
(a,x)∈{0,1}×X

[
ρ(a, π̂DP(x))

] 4L√2 ln (2/δ)(√
2πh

)q
λnε︸ ︷︷ ︸

r(ε,δ,ĝD,η̂DP)

·U(·). (19)

Proof. Let U(·) be the sample path of a zero-centered Gaussian process with covariance function
K(x, x′). For our proof, we make use of Corollary 9 from Hall et al. (2013): for f̂ ∈ H, where H is
the RKHS corresponding to the kernel K, the release of

f̃D(·) = f̂D(·) + ∆ · c(δ)
ε

· U(·) (65)

is (ε, δ)-differentially private for

c(δ) ≥
√

2 log(
2

δ
) (66)

and
∆ ≥ sup

D∼D′
∥f̂D − f̂D′∥H. (67)

Therefore, for ∆H := supD∼D′∥ĝD(·; η̂DP)− ĝD′ (·; η̂DP)∥H,

ĝDP(·; η̂DP) = ĝD(·; η̂DP) +
∆H

√
2 log(2/δ)

ε
· U(·) (68)

is (ε, δ)-differentially private. Note that here, again, we implicitly make use of Lemma 2 and
Lemma 3 in the same manner as in the proof of Theorem 1.

Finally, from Lemma 1, we know that

sup
D∼D′

∥ĝD(·; η̂DP)− ĝD′ (·; η̂DP)∥H ≤ L

λn
(
√

(2π)h)−q. (69)

Thus, the desired result follows.

27



Published as a conference paper at ICLR 2025

G EXPERIMENTS

G.1 SYNTHETIC DATASET GENERATION

We consider two different data-generation settings with different complexity. Both settings follow
the mechanism described in (Oprescu et al., 2019):

Xi ∼ U [0, 1]p, (70)

Ai = 1{(XTβ)i ≥ ηi}, (71)

Yi = θ(Xi)Ai + (XT γ)i + ϵi, (72)

where ηi, ϵi ∼ U [−1, 1] and β, γ have support with values drawn from U [0, 0.3] and U [0, 1]. The
dimension of the covariates is set to p = 2 for Dataset 1 and p = 30 for Dataset 2. In Dataset 1, the
conditional treatment effect θ(x) is defined as

θ(x) = exp(2x0) + 3 sin(4x0). (73)

In Dataset 2, θ(x) is defined as

θ(x) = exp(2x0) + 3 sin(4x1). (74)

For each setting, we draw 3000 samples, which we split into train (90%) and test (10%) sets.

G.2 MEDICAL DATASETS

MIMIC-III: We showcase DP-CATE on the MIMIC-III dataset (Johnson et al., 2016), which in-
cludes electronic health records (EHRs) from patients admitted to intensive care units. We extract
8 confounders (heart rate, sodium, red blood cell count, glucose, hematocrit, respiratory rate, age,
gender) and a binary treatment (mechanical ventilation) using an open-source preprocessing pipeline
(Wang et al., 2020). We define the outcome variable as the red blood cell count after treatment which
we adapt to be more responsive to the treatment ventilation. To extract features from the patient tra-
jectories in the EHRs, we sample random time points and average the value of each variable over the
ten hours prior to the sampled time point. All samples with missing values and outliers are removed
from the dataset. We define samples with values smaller than the 0.1st percentile or larger than the
99.9th percentile of the corresponding variable as outliers. Our final dataset contains 14719 samples,
which we split into train (90%) and test (10%) sets.

TCGA: The Cancer Genome Atlas (TCGA) dataset (Weinstein et al., 2013) contains a comprehen-
sive and diverse collection of gene expression data collected from patients with different types of
cancer. We consider the gene expression measurements of the 4,000 genes with the highest variabil-
ity which we employ as our features X . The study cohort of consisted of 9659 patients. We model
the binary treatment based on the sum of the 10 covariates with the highest variance and assign a
constant treatment effect in the sum of the covariates.

G.3 IMPLEMENTATION DETAILS

Our experiments are implemented in Python. We provide our code in our GitHub repository:
https://github.com/m-schroder/DP-CATE.

Our DP-CATE is model-agnostic and highly flexible. Therefore, we implement multiple versions of
the R- and the DR-leaner with varying base learner instantiations. For the outcome and the propen-
sity estimation, we always employ a multilayer perceptron regression and classification model, re-
spectively. The models consist of one layer of width 32 with ReLu activation function and were
optimized via Adam at a learning rate of 0.01 and batch size 128.

For our experiments with the finite-query DP-CATE, we implement the pseudo-outcome regression
in the second stage as (a) a kernel ridge regression model with a Gaussian kernel and default pa-
rameter specifications (KR) and (b) a neural network (NN) with two hidden layers of width 32 with
tanh activation function trained in the same manner as the nuisance models. In the experiments for
our functional DP-CATE, we employ a Gaussian kernel ridge regression with m = 50 basis func-
tions and default regularization parameter λ = 1. Furthermore, our functional DP-CATE requires
the specification of the Lipschitz constant L. This constant is either known based on the employed
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loss, e.g., L = 1 for the l1 loss or can be upper-bounded. In our settings, we employ the l2 loss
on a bounded domain. Therefore, although the l2 loss itself is not Lipschitz, we can calculate L
numerically as the upper bound of the domain. We did not perform hyperparameter optimization, as
our model-agnostic framework is applicable to any prediction model.

Our framework requires calculating the supremum of the influence functions. We implemented the
maximization problem through mathematical optimization using the L-BFGS-B, a limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm for solving nonlinear optimization problems with
bounded variables. The solver was run with default parameters.
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