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ABSTRACT

Diffusion Models (DMs) have evolved into advanced image generation tools, es-
pecially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small
set of images to capture specific styles or objects. Many people upload these per-
sonalized checkpoints online, fostering communities such as Civitai and Hugging-
Face. However, model owners may overlook the potential risks of data leakage by
releasing their fine-tuned checkpoints. Moreover, concerns regarding copyright
violations arise when unauthorized data is used during fine-tuning. In this paper,
we ask: “Can training data be extracted from these fine-tuned DMs shared on-
line?” A successful extraction would present not only data leakage threats but
also offer tangible evidence of copyright infringement. To answer this, we pro-
pose FineXtract, a framework for extracting fine-tuning data. Our method approx-
imates fine-tuning as a gradual shift in the model’s learned distribution—from the
original pretrained DM toward the fine-tuning data. By extrapolating the models
before and after fine-tuning, we guide the generation toward high-probability re-
gions within the fine-tuned data distribution. We then apply a clustering algorithm
to extract the most probable images from those generated using this extrapolated
guidance. Experiments on DMs fine-tuned with datasets such as WikiArt, Dream-
Booth, and real-world checkpoints posted online validate the effectiveness of our
method, extracting approximately 20% of fine-tuning data in most cases, signif-
icantly surpassing baseline performance. The code is available at an anonymous
link1.

1 INTRODUCTION

Recent years have witnessed the advancement of Diffusion Models (DMs) in computer vision. These
models demonstrate exceptional capabilities across various tasks, including image editing (Kawar
et al., 2022), and video editing (Yang et al., 2022), among others. Particularly noteworthy is the
advent of few-shot fine-tuning methods (Hu et al., 2021; Ruiz et al., 2023; Qiu et al., 2023), in which
a pretrained model is fine-tuned to personalize generation based on a small set of training images.
These approaches have significantly reduced both memory and time costs in training. Moreover,
these techniques offer powerful tools for adaptively generating images based on specific subjects or
objects, embodying personalized AI and making AI accessible to everyone.

Building on these innovations, several communities, such as Civitai (civ) and HuggingFace (hug),
have emerged, hosting tens of thousands of fine-tuned checkpoints and attracting millions of down-
loads. Although many users willingly share their fine-tuned models, they may be unaware of the risk
of data leakage inherent in this process. This is particularly concerning when fine-tuning involves
sensitive data, such as medical images, human faces, or copyrighted material. Moreover, many of
these checkpoints are fine-tuned using unauthorized data, including artists’ work. This unauthorized
fine-tuning process raises significant concerns regarding “reputational damage, economic loss, pla-
giarism and copyright infringement” as mentioned in Jiang et al. (2023), and has prompted numerous
objections from data owners (Liang et al., 2023; Wu et al., 2024; Shan et al., 2023).

In this paper, we pose a critical question: “Is it possible to extract fine-tuning data from these fine-
tuned DM checkpoints released online?” Successfully doing so would confirm that fine-tuning

1https://anonymous.4open.science/r/FineXtract-3572
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Figure 1: Extraction results from real-world fine-tuned checkpoints on HuggingFace using our
FineXtract. Top: Extracted images. Bottom: Corresponding training images.

data is indeed leaked within these checkpoints. Moreover, the extracted images could serve as
strong evidence that specific data was used in the fine-tuning process, thereby aiding those whose
rights have been infringed to seek legal protection and take necessary legal action.

More specifically, extracting fine-tuning data can be seen as targeting specific portions of the train-
ing data, whereas previous work on extracting data from diffusion models has mainly focused on
general generative processes (Carlini et al., 2023; Somepalli et al., 2023a;b), often overlooking more
detailed or interesting data. To address this gap, we propose a new framework, called FineXtract,
for efficiently and accurately extracting training data from the extrapolated guidance between DMs
before and after fine-tuning. We begin by providing a parametric approximation of the fine-tuned
DMs distribution, modeling it as an interpolation between the pretrained DMs’ distribution and the
fine-tuned data distribution. With this approximation, we demonstrate that extrapolating the score
functions of the pretrained and fine-tuned DMs can effectively guide the denoising process toward
the high-density regions of the fine-tuned data distribution, a process we refer to as model guidance.
We then generate a set of images within such high-density regions and apply a clustering algorithm
to identify the images that are most likely to match the training data within the fine-tuning dataset.

Our method can be applied to both unconditional and conditional DMs. Specifically, when the train-
ing caption c is available, we approximate the learned distribution of DMs conditional on caption
c as an interpolation between the unconditional DM learned distribution and the conditional data
distribution. Combined with model guidance, this leads to an extrapolation from the noise predicted
by the pretrained unconditional DM to that by the fine-tuned conditional DM, guiding generation
toward the high-density region of the fine-tuned data distribution conditioned on c. Experiments
across different datasets, DM structures, and real-world checkpoints from HuggingFace demon-
strate the effectiveness of our method, which extracts around 20% of images in most cases (See Fig.
1 for visual examples).

In summary, our contributions are as follows:

• We approximate the learned distribution during the fine-tuning process of DMs and demon-
strate how this guides the model towards the high-density regions of the fine-tuned data
distribution.

• We propose a new framework, FineXtract, for extracting fine-tuning datasets using this
approximation. With a clustering algorithm, our method can extract images visually close
to fine-tuning dataset.

• Experimental results on fine-tuned checkpoints on various datasets (WikiArt, Dream-
Booth), various DMs and real-world checkpoints from HuggingFace validate the effec-
tiveness of our methods.

2 BACKGROUND AND RELATED WORKS

2.1 DIFFUSION MODELS AND FEW-SHOT FINE-TUNING

Diffusion Models and Score Matching. Diffusion Models (DMs) (Ho et al., 2020; Sohl-Dickstein
et al., 2015) are generative models that approximate data distributions by gradually denoising a vari-
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able initially sampled from a Gaussian distribution. These models consist of a forward diffusion
process and a backward denoising process. In the forward process, noise ε ∈ N (0, 1) is progres-
sively added to the input image x0 over time t, following the equation xt =

√
αtx0 +

√
1− αtε.

Conversely, in the backward process, DMs aim to estimate and remove the noise using a noise-
prediction module, ϵθ, from the noisy image xt. The difference between the actual and pre-
dicted noise forms the basis of the training loss, known as the diffusion loss, which is defined as
LDM = Eε∼N (0,1),t

[
∥ϵθ(xt, t)− ε∥22

]
.

Another series of works focus on score matching, offering insights into DMs from a different per-
spective (Vincent, 2011; Song & Ermon, 2019; Song et al., 2020). Score matching aims to learn a
score network sθ(x) trained to predict the score (i.e., the gradient of the log probability function)
∇x log q(x) of data x within real data distribution q(x) (Vincent, 2011). To improve accuracy and
stability, subsequent research proposes predicting the score of the Gaussian-perturbed data distribu-
tion q(xt) (Song & Ermon, 2019; Song et al., 2020): sθ(xt, t) ≈ ∇xt

log q(xt) = − ϵθ(xt,t)√
1−αt

, where

αt =
∏t

i=1 αi. These works show a strong alignment between the predicted noise ϵθ(xt, t) and the
score ∇x log q(x).

Few-shot Fine-tuning. Few-shot fine-tuning in DMs (Gal et al., 2022; Hu et al., 2021; Ruiz et al.,
2023) aims to personalize these models using a limited set of images, enabling the generation of
customized content. Gal et al. (2022) introduced a technique that incorporates new tokens within the
embedding space of a frozen text-to-image model to capture the concepts in the provided images.
However, this method has limitations in accurately reproducing the detailed features of the input
images (Ruiz et al., 2023). To address this, Ruiz et al. (2023) proposed DreamBooth, which fine-
tunes most parameters in DMs using a reconstruction loss to capture details and a class-specific
preservation loss to ensure alignment with textual prompts. Additionally, Hu et al. (2021) introduced
LoRA, a lightweight fine-tuning approach that inserts low-rank layers to be trained while keeping
other parameters frozen.

2.2 MEMORIZATION AND DATA EXTRACTION IN DIFFUSION MODELS

Recent studies on DMs have highlighted their tendencies toward data memorization and methods
have been proposed to extract training data based on it. Carlini et al. (2023) used a graph algorithm
to identify the generated data most likely to have been included in the training set, thereby retriev-
ing DM’s memorized training data. Further investigations (Somepalli et al., 2023a;b) explore the
underlying causes of this memorization, revealing that conditioning plays a significant role, and the
nature of training prompts notably influences the likelihood of reproducing training samples. How-
ever, these studies are primarily empirical with no parametric formulation on learned distribution
of DMs, and they do not address personalization scenarios. In contrast, our approach introduces a
parametric approximation of the learned distribution of fine-tuned DMs, enabling the design of a
pipeline that efficiently extracts training samples from fine-tuned checkpoints upload online.

3 THREAT MODEL AND METRICS

3.1 THREAT MODEL

Our threat model involves extracting training data from a fine-tuned DM alongside its corresponding
pretrained DM, with two key parties: model providers and attackers.

Model providers. Providers fine-tune a pretrained model θ using an image dataset X0. After fine-
tuning, they upload the fine-tuned model checkpoint θ′ to specific websites, including necessary
details such as the name of the pretrained model θ to make the fine-tuned model checkpoint usable.
Additional training details, such as training captions, are sometimes provided (civ; hug).

Attackers. Attackers download the checkpoints θ′ from these websites. They also acquire the pre-
trained model θ. By default, we assume that the attacker can access the training caption, following
previous work (Somepalli et al., 2023a;b; Carlini et al., 2023). (This is a reasonable assumption as
more discussed in Appendix Sec. A, where we show that even without direct access, captions can be
partially extracted using inversion on linear projection layers.) Attackers have no prior knowledge
about the image dataset X0. Their goal is to extract as much information about X0 as possible. A
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Training Caption c

Pretrained DM θ

Fine-tuned DM θ′￼
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Guided Generation
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Image Set X
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few-shot 
fine-tuning
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Extracted  
Images  ̂X

Figure 2: Our framework FineXtract, extracting training images using DMs before and after fine-
tuning.

successful attack occurs when attacker extracts an image set X̂ that is almost identical to the training
image set X0.

3.2 EVALUATION METRICS

Attacker produces an extracted dataset X̂ , which is evaluated by comparing it with the training
image set X0. Specifically, we consider the following two metrics:

Metric 1: Average Similarity (AS). Average similarity is computed between images in the ex-
tracted dataset X̂ and those in the training dataset X0. The metric is defined as:

AS(X0, X̂) =
1

|X0|

|X0|∑
i=1

max
j

sim(X
(i)
0 , X̂(j)). (1)

Here, sim(·, ·) denotes the similarity function, with output ranging from 0 to 1. Following previous
works (Somepalli et al., 2023a;b; Chen et al., 2024), we use the Self-Supervised Descriptor (SSCD)
score (Pizzi et al., 2022), designed to detect and quantify copying in DMs, for similarity computation
in this paper. Intuitively, AS measures how well the extracted dataset X̂ covers the images within
the training dataset X0.

Metric 2: Average Extraction Success Rate (A-ESR). Following previous work (Carlini et al.,
2023), when the similarity between an extracted image and a training image exceeds a given thresh-
old, the extraction of that image is considered as successful. To assess the extraction of an entire
dataset, we compute the average extraction success rate as follows:

A-ESRτ (X0, X̂) =
1

|X0|

|X0|∑
i=1

1

(
max

j
sim(X

(i)
0 , X̂(j)) > τ

)
, (2)

where 1 is the indicator function. Following previous work (Somepalli et al., 2023a;b), the threshold
τ is set to 0.7 for a strictly successful extraction. We also present results where the threshold τ
is set to 0.6, which represents a moderate similarity and can be considered a loosely successful
extraction (Chen et al., 2024).

4 FINEXTRACT: EXTRACTING FINE-TUNING DATA

In this section, we introduce FineXtract, a framework designed for robust extraction using DMs
before and after fine-tuning. As shown in Fig. 2, we first address a simplified scenario considering
unconditional DMs (Sec. 4.1). Next, we explore the case where the training caption c is provided
(Sec. 4.2). Finally, we apply a clustering algorithm to identify the images with the highest probabil-
ity of matching those in the training dataset (Sec. 4.3) from generated image set X . The output of
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the clustering algorithm serves as the extracted image set X̂ , closely resembling the training images
set X0.

4.1 MODEL GUIDANCE

We denote the the fine-tuned data distribution as q(x) for a fine-tuning dataset X0. During the
fine-tuning process, the DMs progressively shift their learned distribution from the pretrained DMs’
distribution pθ(x) toward the fine-tuned data distribution q(x). Thus, we parametrically approximate
that the learned distribution of the fine-tuned DMs, denoted as pθ′(x), satisfies:

pθ′(x) ∝ p1−λ
θ (x)qλ(x), (3)

where λ is a coefficient ranging from 0 to 1, relating to the training iterations. More training it-
erations result in larger λ, showing the fine-tuned DMs distribution pθ′(x) more closely ensemble
fine-tuned data distribution q(x).

In this case, we can derive the score of the fine-tuned model distribution pθ′(x) by:

∇x log pθ′(x) = (1− λ)∇x log pθ(x) + λ∇x log q(x), (4)

This means that we can derive the guidance towards the fine-tuning dataset X0 by using the score of
the fine-tuned data distribution and pretrained DMs distribution:

∇x log q(x) =
1

λ
∇x log pθ′(x)− 1− λ

λ
∇x log pθ(x). (5)

Recalling the equivalence between denoisers and the score function in DMs (Vincent, 2011), we
employ a time-varying noising process and represent each score as a denoising prediction, denoted
by ϵ(xt, t), similar to previous work (Gandikota et al., 2023):

ϵq(xt, t) = ϵθ′(xt, t) + (w − 1)(ϵθ′(xt, t)− ϵθ(xt, t)), (6)

where w = 1/λ. Eq. 6 demonstrates that by extrapolating from the pretrained denoising prediction
ϵθ(xt, t)) to the fine-tuned denoising prediction ϵθ′(xt, t), we can derive guidance toward the fine-
tuned data distribution. We call this process “model guidance”. The guidance scale w should be
inversely related to the number of training iterations. With model guidance, we can effectively
simulate a “pseudo-” denoiser ϵq , which can be used to steer the sampling process toward the high-
probability region within fine-tuned data distribution q(x).

4.2 GUIDANCE WITH TRAINING CAPTION PROVIDED

We further consider the scenario where DMs are fine-tuned with a given caption c. As discussed
in previous work on classifier-free guidance (CFG) (Ho & Salimans, 2022), DMs often struggle to
accurately learn the distribution conditional on a given caption c and therefore require additional
guidance from unconditional generation. We can adopt a similar approximation to the one presented
in Sec. 4.1:

pθ(x|c) ∝ p1−λ′

θ (x)qλ
′

0 (x|c), (7)
where q0(x|c) denotes the data distribution conditioned on c. The above formulation indicates that
conditional DMs learn a mixture of the conditional distribution of real data and the unconditional
distribution of DMs. To capture the score of a denoiser ϵq0(x, c), which guides sampling toward the
high-probability region of q0(x|c), we follow the transition from Eq. 5 to Eq. 6, using denoising
prediction to represent the scores:

ϵq0(xt, t, c) = ϵθ(xt, t, c) + (w′ − 1)(ϵθ(xt, t, c)− ϵθ(xt, t)), (8)
where w′ = 1/λ′. This results in CFG with guidance scale w′ (Ho & Salimans, 2022). Furthermore,
for fine-tuned DMs θ′, we similarly obtain:

5
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pθ′(x|c) ∝ p1−λ′

θ′ (x)qλ
′
(x|c), (9)

where q(x|c) denotes the fine-tuned data distribution conditioned on c. Combined with Eq. 3:

pθ′(x|c) ∝ p
(1−λ)(1−λ′)
θ (x)qλ(1−λ′)(x)qλ

′
(x|c). (10)

This implies that:

ϵθ′(xt, t, c) = (1− λ)(1− λ′)ϵθ(xt, t) + λ(1− λ′)ϵq(xt, t) + λ′ϵq(xt, t, c). (11)

Since the real-data distribution involving two modalities is expected to be more peaked than a single-
modality distribution, we assume that the conditional fine-tuned data distribution q(x|c) is also much
more concentrated than the unconditional one, q(x). This results in a significant difference in the
magnitude of their score, i.e., ∥∇x log q(x)∥ ≪ ∥∇x log q(x, c)∥. Consequently, based on the
transformation in Eq. 5 and Eq. 6, we have ϵq(x, t) ≪ ϵq(x, t, c), allowing us to approximate Eq.
11 by omitting by omitting ϵq(x, t):

ϵθ′(xt, t, c) ≈ (1− λ)(1− λ′)ϵθ(xt, t) + λ′ϵq(xt, t, c), (12)

which indicates:

ϵq(xt, t, c) ≈ ϵθ′(xt, t, c) + (w′ − 1)(ϵθ′(xt, t, c)− ϵθ(xt, t)) + kϵθ(xt, t). (13)

Here, w = 1
λ , w′ = 1

λ′ and k = w′−1
w .

This transformation demonstrates that we can guide generation within the conditional fine-tuned data
distribution, q(x|c), by extrapolating from the unconditional denoising prediction of the pretrained
DM, ϵθ(xt, t), to the conditional denoising prediction of the fine-tuned model DM, ϵθ′(xt, t, c),
using the guidance scale w′. This process also involves an additional correction term kϵθ(xt, t),
which, intuitively, compensates the mismatch between model guidance and CFG .

In practice, the training caption c may not always be available. However, we find that it is possible
to extract some information about the training caption by analyzing only the first few trainable linear
projection layers before and after fine-tuning. Details are provided in Appendix Sec. A.

4.3 CLUSTERING GENERATED IMAGES

Sections 4.1 and 4.2 explain how to sample images within high probability region of fine-tuned data
distribution. However, the randomness in the sampling process affects the images, reducing extrac-
tion accuracy. To further improve extraction accuracy, we take inspiration from previous work (Car-
lini et al., 2023), sampling N images and applying a clustering algorithm to identify the images with
the highest probability, where N ≫ N0 and N0 is the number of training images.

Specifically, inspired by Carlini et al. (2023), we compute the similarity between each pair of gen-
erated images and construct a graph where each image is represented as a vertex. We connect
two vertices when the similarity between the corresponding images exceeds a threshold ϕ, i.e., if
sim(xi, xj) ≥ ϕ, we connect vertices i and j. By default, we use SSCD (Pizzi et al., 2022) to
measure similarity, in line with previous work (Somepalli et al., 2023a;b). Instead of using a fixed
threshold (Carlini et al., 2023), we gradually increase the threshold ϕ until the number of cliques,
each denoted by A(k), within the graph identical to the proposed number of training images N0.
This approach helps us identify the generated image subset (i.e., the clique A(k) ) corresponding
to each training image (X(k)

0 ). Next, we identify the central image x̂(k) for each clique A(k). The
central image is defined as the one that maximizes the average similarity with the other images in
the clique: x̂(k) = argmax

x

1
|A(k)|

∑
xq∈A(k) sim(x, xq). The final extracted image set is represented

as X̂ = {x̂(0), x̂(1), . . . , x̂(N0)}.

Intuitively, our clustering algorithm first seeks to find the subset of extracted images corresponding
to each training image and then identifies the central image within each subset.

6
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Table 1: Comparison of FineXtract and other baseline methods in fine-tuning data extraction for
style-driven generation using WikiArt dataset (Nichol, 2016) and for object-driven generation un-
der Dreambooth dataset (Ruiz et al., 2023) under different fine-tuning methods. A-ESR0.6 and
A-ESR0.7 refer to the Average Extraction Success Rate, with the threshold τ for successful extrac-
tion set at 0.6 and 0.7, respectively. The experimental results demonstrate that FineXtract exhibits
stronger performance under all scenarios and metrics than baselines.

Style-Driven Generation: WikiArt Dataset

Metrics and Settings DreamBooth LoRA
AS↑ A-ESR0.7↑ A-ESR0.6↑ AS↑ A-ESR0.7↑ A-ESR0.6↑

Direct Text2img+Clustering 0.317 0.00 0.01 0.299 0.00 0.00
CFG+Clustering 0.396 0.03 0.11 0.357 0.00 0.01

FineXtract 0.449 0.06 0.22 0.376 0.01 0.05

Object-Driven Generation: DreamBooth Dataset

Metrics and Settings DreamBooth LoRA
AS↑ A-ESR0.7↑ A-ESR0.6↑ AS↑ A-ESR0.7↑ A-ESR0.6↑

Direct Text2img+Clustering 0.418 0.03 0.11 0.347 0.00 0.02
CFG+Clustering 0.528 0.15 0.36 0.379 0.01 0.05

FineXtract 0.557 0.25 0.45 0.466 0.04 0.18

5 EXPERIMENTS

In this section, we apply our proposed method, FineXtract, to extract training data under various
few-shot fine-tuning techniques across different types of DMs. We conduct experiments on two
common scenarios for few-shot fine-tuning: style-driven and object-driven generation. For style-
driven generation, which focuses on capturing the key style of a set of images, we randomly select
20 artists, each with 10 images, from the WikiArt dataset (Nichol, 2016). For object-driven gen-
eration, which emphasizes the details of a given object, we experiment on 30 objects from the
Dreambooth dataset (Ruiz et al., 2023), each consisting of 4-6 images. This setup aligns with the
recommended number of training samples in the aforementioned fine-tuning methods (Ruiz et al.,
2023; Hu et al., 2021). We experiment with two most widely-used few-shot fine-tuning techniques:
DreamBooth (Ruiz et al., 2023), and LoRA (Hu et al., 2021). More details for the fine-tuning setting
are available in Appendix Sec. E.

The default model used for training is Stable Diffusion (SD) V1.42. Additionally, we demonstrate
the adaptability of our method to various types and versions of DMs, larger training datasets, and
different numbers of generated images (refer to Sec. 5.2 for more details).

By default, we set the generation count N to 50×N0, where N0 represents the number of training
images. The number of extracted images is set equal to N0 to best evaluate our method’s ability to
extract the exact training dataset. For DreamBooth, the guidance scale w′ for both FineXtract and
CFG set to 3.0 by default, with the correction term scale k set to -0.02 in Equations 8 and 13. For
LoRA, w′ is set to 5.0 for FineXtract and 3.0 for CFG, respectively. For the clustering algorithm,
we by default set the maximum clustering time for each threshold to be 30s. If clustering does
not end, we simply move to the next threshold to reduce computation time. We discuss how these
hyperparameters influence extraction efficiency in Sec. 5.3. FineXtract under potential defenses and
toward real-world checkpoints on HuggingFace are discussed in Sec. 5.4 and Sec. 5.5, respectively.

5.1 COMPARISON

Previous extraction methods primarily focus on the generation capabilities of text-to-image DMs,
employing either direct text-to-image generation or classifier-free guidance (CFG) (Carlini et al.,
2023; Somepalli et al., 2023a;b). To better demonstrate the effectiveness of our framework, we
compare FineXtract with Direct Text-to-Image and CFG, both combined with the clustering algo-
rithm proposed in Section 4.3. For both CFG and FineXtract, we set the guidance scale w′ to 3.0

2https://huggingface.co/CompVis/stable-diffusion-v1-4
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Table 2: Experiments of FineXtract on different DMs. We experiment on 4 classes in WikiArt
dataset using DreamBooth for fine-tuning. The guidance scale w′ for both CFG and FineXtract is
set to the value that achieves the highest AS for each DM.

Metrics and Settings SD (V1.4) SDXL (V1.0) AltDiffusion
AS↑ A-ESR0.6↑ AS↑ A-ESR0.6↑ AS↑ A-ESR0.6↑

Direct Text2img+Clustering 0.341 0.03 0.335 0.05 0.282 0.00
CFG+Clustering 0.434 0.23 0.360 0.10 0.364 0.03

FineXtract 0.501 0.35 0.467 0.25 0.388 0.05

DirectText2img CFG FineXtract Training Img

DreamBooth 
Fine-tuning

Lora 
Fine-tuning

Lora 
Fine-tuning

DreamBooth 
Fine-tuning

Lora 
Fine-tuning

(a) Comparison on WikiArt dataset.

DirectText2img CFG FineXtract Training Img

DreamBooth 
Fine-tuning

Lora 
Fine-tuning

DreamBooth 
Fine-tuning

Lora 
Fine-tuning

(b) Comparison on DreamBooth dataset.

Figure 3: Qualitative comparison of the extracted result between FineXtract and baseline methods.
All baselines are combined with the clustering algorithm proposed in Sec. 4.3.

under DreamBooth fine-tuning. Under LoRA fine-tuning, w′ are set to 3.0 for CFG and 5.0 for
FineXtract. These hyperparameters are found to perform well (see Sec. 5.3 for details). All methods
use the same number of generation iterations, N , set to 50 × N0, and the number of extracted im-
ages set to N0 to ensure a fair comparison. The results, shown in Table 1, demonstrate a significant
advantage of FineXtract over previous methods, with an improvement of approximately 0.02 to 0.05
in AS and a doubling of the A-ESR in most cases.

5.2 GENERALIZATION

In this section, we take a step further to test whether our method can be applied to a broader range of
scenarios, including different DM structures, varying numbers of training images N0, and different
numbers of generated images N . We experiment on 4 classes in WikiArt dataset fine-tuning DMs
with DreamBooth.

Different DMs. We select three distinguishable Diffusion Models: Stable Diffusion Model (Rom-
bach et al., 2022), Stable Diffusion Model XL (Podell et al., 2023), and AltDiffusion (Ye et al.,
2023), which are representative of latent-space DMs, high-resolution DMs and multilingual DMs,
respectively. We conduct experiments using the following versions of the three models: SD (V1.4)3,
SDXL (V1.0)4, and AltDiffusion5. As shown in Tab. 2, the improvement of our method compared
to the baseline is consistent across different DMs.

Number of Training Images N0. As the number of training images increases, the learned concept
during fine-tuning becomes more intricate, thereby enhancing the difficulty of extracting training
images. To thoroughly examine how this influences performance, we conduct experiments with

3https://huggingface.co/CompVis/stable-diffusion-v1-4
4https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
5https://huggingface.co/BAAI/AltDiffusion
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=1.0w′￼ Training Image=2.0w′￼ =3.0w′￼ =4.0w′￼ =5.0w′￼ =7.5w′￼ =10.0w′￼

Figure 6: Visualization of generat using FineXtract under different w′ with fixed xT .
varying numbers of training images in 5 classes in WikiArt, the results of which are presented in
Fig. 4a, where we can observe a performance drops when the number of the training images is large.

0 10 20 30 40 50
# of training images

0.35

0.40

0.45

0.50

0.55

A
S

FineXtract
CFG

(a) Different N0

0 10 20 30 40 50
# of Generated Images per Training Image

0.30

0.35

0.40

0.45

0.50

A
S

FineXtract
CFG

(b) Different N

Figure 4: Experiment on generalization ability of FineXtract
across different number of generated images and training
images. We experiment on 4 classes of WikiArt dataset fine-
tuning on SD (V1.4) with DreamBooth. FineXtract consis-
tently outperforms baseline under different N and N0.

Different Numbers of Generated
Images N . As previously mentioned,
the clustering algorithm allows at-
tackers to leverage more generation
iterations to improve extraction ac-
curacy. We test our method with
different numbers of generated im-
ages N , ranging from N0 to 50 ×
N0. As shown in Fig. 4b, increas-
ing N significantly improves perfor-
mance. However, the time complex-
ity of finding maximal cliques can
grow exponentially with the number
of nodes (Tomita et al., 2006). Thus,
further increasing N to larger than
50 × N0 makes it considerably more
difficult for the clustering algorithm to converge.

5.3 ABLATION STUDY

2 4 6 8 10
Guidance Scale w'

0.30

0.35

0.40

0.45

0.50

A
S

FineXtract
CFG

(a) Ablation on w′

0.04 0.02 0.00 0.02 0.04
Fix Term Scale k

0.42

0.44

0.46

0.48

0.50

A
S

FineXtract

(b) Ablation on k

Figure 5: Ablation Study on hype-parameters w′ and k. We
experiment on 4 classes of WikiArt dataset fine-tuning on
SD (V1.4) with DreamBooth.

In this section, we experiment with
hyperparameters in Eq. 13, including
the guidance scale w′ and the correc-
tion term scale k. We experiment on
4 classes in WikiArt fine-tuning with
DreamBooth. Results under LoRA
are shown in Appendix Sec. D.

Guidance Scale w′. The guidance
scale w′ is the most critical hyper-
parameter influencing extraction ef-
ficiency. If w′ is too low, the guid-
ance provided by fine-tuning meth-
ods is weakened. Conversely, if w′

is too high, it often causes generation
failures, resulting in unrealistic outputs (see visual examples in Fig. 6). As shown in Fig. 5a,
w′ = 3.0 works well for both CFG and FineXtract when DMs are fine-tuned using DreamBooth.

Correction Term Scale k. In Eq. 13, we introduce a correction term kϵθ(xt, t) to address the
inconsistency between CFG and model guidance. Although Eq. 13 indicates that k should not be
less than 0, our experiments suggest that setting k = −0.02 typically yields the best results, as
illustrated in Fig. 5b. This may be due to the complex interaction between w′ and k, where k can
only be guaranteed to be greater than 0 if the true value of w′ can be identified, which is often
impractical in real-world scenarios.

5.4 FINEXTRACT UNDER DEFENSE

As highlighted in prior research (Duan et al., 2023; Kong et al., 2023; Pang et al., 2023), it is possible
to partially defend against privacy-related attacks, such as membership inference attacks (MIA).
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Table 4: Comparison of FineXtract with baseline methods towards real-world checkpoints.

Metrics and Settings DreamBooth LoRA
AS↑ A-ESR0.7↑ A-ESR0.6↑ AS↑ A-ESR0.7↑ A-ESR0.6↑

Direct Text2img+Clustering 0.362 0.00 0.00 0.270 0.00 0.00
CFG+Clustering 0.468 0.04 0.20 0.338 0.00 0.04

FineXtract 0.533 0.13 0.38 0.371 0.02 0.11

Table 3: FineXtract under defenses.

Defense Methods AS↑ A-ESR0.6↑
No Defense 0.501 0.35

Cutout 0.397 0.08
RandAugment 0.267 0.03

Naturally, this raises the question of whether these
defense methods can also protect against extrac-
tion techniques. To explore this, we conducted
experiments on FineXtract under two defenses:
Cutout (DeVries & Taylor, 2017), and RandAug-
ment (Cubuk et al., 2020). Notably, RandAugment
is recognized as a strong privacy-preserving defense
at the cost of severe decline in generation qual-
ity (Duan et al., 2023).

No Defense Cutout RandAugment

Figure 7: Images generated by SD (V1.4) fine-tuned under
various scenarios, where a noticeable decline in quality can
be observed when defenses are applied.

The results presented in Tab. 3 illus-
trate how these methods can partially
defend FineXtract, though at the cost
of generation performance. Cutout
and RandAugment indeed proves to
be quite strong at defense. However,
as shown in Fig. 7, the added trans-
formations render the output images
largely unusable, making them diffi-
cult to leverage in practice. Quan-
titative measurements of this unus-
ability are provided in Appendix Sec-
tion I. Our results highlight that while
these approaches may be partially ef-
fective in defense, there is a lack of
research on how to fine-tune models
on such transformed data while pre-
serving the defensive effects. This re-
mains an area for further investigation.

5.5 REAL-WORLD RESULTS

Finally, we test our method on fine-tuned checkpoints available in the real world. We experiment on
10 checkpoints from HuggingFace where the corresponding training datasets are provided, allowing
us to evaluate the effectiveness of our extraction method. Due to licensing restrictions, we only
provide detailed information about the checkpoints with permissive licenses in Appendix Sec. F.
Quantitative results are shown in Table 4, where FineXtract consistently outperforms the baseline
methods, increasing AS by at least 0.03 and doubling A-ESR in most cases.

6 CONCLUSION

In conclusion, our proposed framework, FineXtract, effectively addresses the challenge of extract-
ing fine-tuning data from publicly available DM fine-tuned checkpoints. By leveraging the transi-
tion from pretrained DM distributions to fine-tuning data distributions, FineXtract accurately guides
the generation process toward high-probability regions of the fine-tuned data distribution, enabling
successful data extraction. Our experiments demonstrate the method’s robustness across various
datasets and real-world checkpoints, highlighting the potential risks of data leakage and providing
strong evidence for copyright infringements.
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A CAPTION EXTRACTION ALGORITHM

While it can be argued that training captions may not always be available, we find that they can be
partially extracted. Our focus is on the first layer that is not frozen during the fine-tuning process.
We assume this layer behaves as a linear model without bias, which aligns with the common sce-
nario when fine-tuning DMs. Specifically, in the case of fine-tuning SD using LoRA, the LoRA is
typically applied to the cross-attention layers. As a result, the first layer that is fine-tuned is the linear
projection layer in the cross-attention module, which processes the text features from a CLIP model
based on the input prompt. This assumption also holds true when fine-tuning using DreamBooth
without adjusting the text encoder, which is one of the most frequently used fine-tuning settings.

The weights of this layer before and after fine-tuning are denoted as β−
k and β+

k . The output of the
layer for a given input prompt embedding e is βke

T . Unlike prior work (Bertran et al., 2024), we do
not have a clear formulation of the training target for this particular linear layer, as the downstream
signal can change frequently. Therefore, in this case, we rely on the gradient updating process.

A.1 A BASIC SCENARIO

To begin with, let’s consider a very simple case where the prompt consists of only one word, and
all the training images share the same training caption . We denote the embedding of this specific
prompt as e0. e0 has the shape [1, N ] for SD, where N is the dimension for the embedding (we
omit the positional embedding here and will discuss it later). The weight βk for the projection layer
is with shape [H,N ], where H is the hidden dimension. Then the forward loss is L(β−

k eT0 ). The
gradient can be computed with:

∇β−
k
=

∂L(β−
k eT0 )

∂β−
k

=
∂L(β−

k eT0 )

∂β−
k eT0

e0. (14)

During the jth update, we denote this as ∇β−
k
= eT0 ∇Lj(β

−
k eT0 ). Then for a basic optimizer, such

as SGD, we have:

β+
k − β−

k = (
∑
j

∇Lj(β
−
k eT0 ))e0, (15)

which means the row space for the matrix β+
k − β−

k is in fact span{e0}. With this information, we
can simply use a different embedding eTi to index this equation:

(β+
k − β−

k )eTi =
∑
j

∇Lj(β
−
k eT0 ) e0e

T
i︸︷︷︸

a scalar

. (16)

Notably, if all ei are normalized, we should have argmax
ei

eie
T
0 = e0. Therefore, we can find this ei

by simply finding the one that maximizes the norm in Eq. 16:

e0 = argmax
ei

∥(β+
k − β−

k )eTi ∥2. (17)

A.2 EXTENSION TO MULTIPLE-WORDS PROMPTS

In general cases, prompts consist of multiple words, making the inversion process tricky. In these
cases, e0 may have the shape [W, N] for SD, where W is the length of the prompts. (In fact, due
to the presence of position embedding, cases with different words actually all have W = 77, where
77 is the maximum length for input prompts). This results in e0e

T
i not being a scalar anymore

in Eq. 16. Its shape is [W,W ]. Therefore, we cannot obtain e0 by simply computing the norm.
In fact, Eq. 15 shows that the row space of β+

k − β−
k is span{e0,1, e0,2, · · · , e0,77}. Here, we

can use a transformation where we perform Principal Component Analysis (PCA) decomposition
(Abdi & Williams, 2010) on β+

k − β−
k . In other words, we approximate it using a rank-one matrix:

14
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PCA(β+
k − β−

k ) ≈ Lke0, where e0 has the shape [1, N]. This can also be regarded as finding the
main vector direction within the space span{e0,1, e0,2, · · · , e0,77}. With this decomposition, we
then have:

e0 ≈ argmax
ei

∥(PCA(β+
k − β−

k ))eTi ∥2 (18)

A.3 EXTENSION TO MORE OPTIMIZERS AND APPROXIMATION DURING TRAINING WITH
MULTIPLE LINEAR MATRICES

In more general cases, Adam is usually used instead of SGD, resulting in Eq. 15 not holding exactly
but with some error. Moreover, if we use some adaptors for fine-tuning, such equations also have
some error as we are trying to use a low-rank matrix to approximate a higher-rank matrix. Therefore,
the row space for β+

k − β−
k may now be span{e0,1 + ϵk,1, e0,2 + ϵk,2, · · · , e0,77 + ϵk,77}, where ϵ is

a small error term.

We can incorporate more information to reduce the effect brought by the error term. In
practical scenarios, we have many linear projection layers that accept the same text em-
bedding e0 as input. For example, in SD, we may have about 20 such layers. There-
fore, we can concatenate all of them together and try to find a decomposition consid-
ering them all. In other words, find a main vector for all matrices within the space
span{e0,1, e0,2, · · · , e0,77, ϵ0,1, ϵ0,2, · · · , ϵ0,77, ϵ1,1, ϵ1,2, · · · , ϵ1,77, · · · , ϵK,1, ϵK,2, · · · , ϵK,77},
which corresponds to PCA([(β+

0 − β−
0 ), (β+

1 − β−
1 ), · · · , (β+

K − β−
K)]).

However, in practice, we find that such PCA may fail in most cases, suffering from a performance
drop. This may be due to the fact that the error term ϵ is not necessarily insignificant. Therefore,
we perform PCA with β+ and β− respectively. Then we compute the difference between them, i.e.,
PCA(β+)− PCA(β−) instead of performing PCA directly on, i.e., PCA(β+ − β−):

e0 ≈ argmax
ei

F (ei) = argmax
ei

∥(PCA[β+
0 , β+

1 , · · · , β+
K ]− PCA[β−

0 , β−
1 , · · · , β−

K ])eTi ∥2. (19)

The intuition behind applying PCA to the row space is that it extracts the most significant signals
from the training prompts. For a pretrained model β−, such signals represents the principal vector
for real-world prompts. For a fine-tuned model β+, such signal should also highly align with real
prompts, but with some information about fine-tuned captions. Using PCA first in Eq. 19 can
prevent extracted embedding from diverging into unrelated or complex signals and staying within
the embedding space of real-world prompts.

A.4 OPTIMIZATION

Optimization over Eq. 19 can indeed derive some prompt embeddings, but these may not be related
to any real prompts. So the real optimization target should be finding a input prompt c0:

c0 ≈ argmax
ci

F (E(ci)), (20)

where E(·) is the frozen text feature embedding function. The challenge is that the prompt space
is discrete, which turns the optimization problem into a hard-prompt finding task. To overcome
this, we adopt the technique from Wen et al. (2024): during optimization, we project the current
embedding onto a real prompt and use the gradient of this real prompt’s embedding to update our
given embedding. Algorithm 1 illustrates this framework.

A.5 EXPERIMENT RESULT

We conduct experiments on four classes of the WikiArt dataset, where the DMs are fine-tuned using
DreamBooth. Table 5 presents comparison between the original training captions and the captions
extracted by our method. The results demonstrate that representative information can be extracted
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Algorithm 1 Hard Prompt Extraction on Fine-tuned Caption for Linear Layers

Input: Pre-trained Linear parameters β−, fine-tuned Linear parameters β+, input caption c0, text
encoder E, optimization iterations N , learning rate α, projection function E−1.
Output: Extracted caption ĉ.
Initialize embedding ê with random prompts: ê = E(c).
for i = 0 to N − 1 do
ĉ = E−1(ê)
Find gradient δ = ∇E(ĉ)F (E(ĉ)) based on this ĉ, β+ and β− using Eq. 19
Update ê→ ê+ αδ

end for
ĉ → E−1(ê)

Table 5: Experimental results of our caption extraction algorithm using the L2-PGD attack with
1000 iterations starting from a random prompt. This extraction costs approximately 1.5 to 2 minutes
per sample on a single A100 GPU. The results demonstrate that key information, such as the artist’s
name, can largely be inferred. Correctly inferred parts are shown in bold.

Training Caption Extracted Caption (≤ 3 words) Extracted Caption (≤7 words)
art style of Post Impressionism vincent attributed impressionism vincent plein impressionism vincent demonstrating! fantastic :))
art style of Fauvism henri matisse henri paintings matisse donneinarte hemingway henri matisse throughout fineart paintings
art style of High Renaissance leonardo da vinci leonardo confident paintings leonardo onda elengrembrandt pre picasso artwork
art style of Impressionism claude monet suggestions impressionism monet cassini gustave monet impressionist monet etosuggesti

to some extent, indicating a leakage of training captions information based on the DMs before and
after fine-tuning.

Experiment results under longer training prompt are discussed in Sec. J.

B COMPUTATIONAL COSTS ANALYSIS

Our method, as detailed in Sec. 4.1 and 4.2, employs guidance between two distinct models at each
generation step without slowing down the generation speed compared to traditional CFG (which
also requires guidance by forwarding the main UNet in DMs twice). However, GPU memory costs
increase due to the need to load both the pretrained and fine-tuned models. In Tab. 6, we present
a demo experiment comparing the computational costs of FineXtract and CFG, using SD (v1.4)
fine-tuned with DreamBooth and LoRA on the WikiArt dataset. The batch size is fixed at 5, and all
experiments are conducted on a single A100 GPU.

Table 6: Generation GPU memory costs and time costs for per-image generation using FineXtract and CFG.

Metrics and Settings DreamBooth LoRA
Memory Costs (MB) Time Costs (s) Memory Costs (MB) Time Costs (s)

FineXtract 15812 3.4 15894 3.6
CFG 12096 3.4 12226 3.6

C RESULTS WITH NO PROMPTS PROVIDED

2 4 6 8 10
Guidance Scale w'

0.15

0.16

0.17

0.18

0.19

A
S

FineXtract

Figure 8: Experiment result
when no training prompt pro-
vided.

We also explore how unconditional generation can be used to ex-
tract training images. We conduct experiments on four classes of the
WikiArt dataset, using various prompts and generating images with
an empty prompt. The results, shown in Fig. 8, demonstrate that
FineXtract improves performance compared to the baseline (since
no conditional information is available, CFG cannot be applied, so
the baseline corresponds to the w′ = 1 case in FineXtract). How-
ever, the AS is significantly lower than when a caption is provided,
leading to far fewer successful extractions.
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Table 7: Information about subsets of the checkpoints used for real-world experiments.

Model Name SD Version Fine-tuning Methods # of Training Image

sd-dreambooth-library/mau-cat SD (V1.5) DreamBooth 5
sd-dreambooth-library/the-witcher-game-ciri SD (V1.5) DreamBooth 5

sd-dreambooth-library/mr-potato-head SD (V1.5) DreamBooth 6
Norod78/SDXL-YarnArtStyle-LoRA SDXL (V1.0) Lora 14

Norod78/pokirl-sdxl SDXL (V1.0) Lora 22
Norod78/SDXL-PringlesTube-Lora SDXL (V1.0) Lora 138

D ABALTION STUDY OF w′ UNDER LORA FINE-TUNING

In LoRA, we find that the suitable w′ for CFG and FineXtract differs, which are 3.0 and 5.0, respec-
tively, as shown in Fig. 9. We experiment on 4 classes of WikiArt dataset fine-tuning on SD (V1.4)
with LoRA.

E FINETUNING DETAILS

1 2 3 4 5
Guidance Scale w'

0.32

0.34

0.36

0.38

0.40

A
S

FineXtract
CFG

Figure 9: Ablation Study on
hype-parameters w′.

The details of the parameters in the fine-tuning methods are pre-
sented below. We use N0 to represent the number of images utilized
for training. Our setting mostly follow the original training setting
in few-shot fine-tuning methods (Ruiz et al., 2023).

Dreambooth: We use the training script provided by Diffusers6.
Only the U-Net is fine-tuned during the training process. By default,
the number of training steps is set to 200×N0, with a learning rate
of 2×10−6. The batch size is set to 1. We set the prior loss weight as
0.0 for simplification. For the WikiArt dataset, the instance prompt
is “art style of [class name]”, where [class name] is the name of the
artist such as “Fauvism henri matisse”. For the Dreambooth dataset,
the instance prompt is “a [class name]” where [class name] is the class of the object, such as “dog”.

LoRA: We use the training script provided by Diffusers7. All default parameters remain consistent
with the case in Dreambooth (No Prior), with the exception of the learning rate, which is adjusted
to 1× 10−4. The rank is fixed to 64 to ensure the fine-tuning process capture fine-grained details of
training samples. The prompts used are the same as the case in DreamBooth.

F REAL-WORLD EXPERIMENTS SETUP

We randomly selected 10 fine-tuned DM checkpoints from Hugging Face, which include those fine-
tuned from SD (V1.5) and SDXL (V1.0) using DreamBooth and LoRA. The number of training
images ranges from 5 to 138. We compute the AS and A-ESR for each checkpoint and average
the results, which correspond to those presented in Tab. 4. Details of these checkpoints, all with
permissive licenses, are provided in Tab. 7. These checkpoints are available on Hugging Face
for result reproduction. We sincerely appreciate the checkpoint creators for sharing their work to
support both research and practical applications.

G EXPERIMENT ON MIXTURE OF DATASET

G.1 MIXTURE OF DREAMBOOTH AND WIKIART DATASETS

We constructed a new dataset with 10 classes, each containing 5 images from DreamBooth and 5
from WikiArt. As reported in Tab. 8, this mixture led to mutual decreases in the fine-tuned model’s
fidelity (measured by DINO score (Ruiz et al., 2023)), image quality (measured by CLIP-IQA (Wang

6https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train dreambooth.py
7https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train dreambooth lora.py
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Table 8: Comparison of the performance of FineXtract and the baseline in fine-tuning data extraction
under separated and mixed data scenarios using DreamBooth and WikiArt datasets. We observe
mixed data makes extraction more challenging while also making it harder for diffusion models to
learn the given data, as evidenced by lower fidelity (DINO) and reduced image quality (CLIP-IQA).

Dataset Extraction Method AS↑ A-ESR0.6↑ DINO ↑ Clip-IQA ↑

Separated Data CFG+Clustering 0.525 0.45 0.533 0.697FineXtract 0.572 0.55

Mixed Data CFG+Clustering 0.457 0.08 0.266 0.447FineXtract 0.480 0.18
Table 9: Comparison of the performance FineXtract and baseline in fine-tuning data extraction under
dataset mixed from different number of classes of WikiArt dataset. Mixed data with different classes
makes model learning poorer, causing lower fidelity (DINO) and image quality (Clip-IQA), which
in turn makes extraction more challenging.

Mixed number of Artists Per Class Extraction Method AS↑ A-ESR0.6↑ DINO ↑ Clip-IQA ↑

1 Artist Per Class CFG+Clustering 0.396 0.11 0.458 0.525FineXtract 0.449 0.22

2 Artist Per Class CFG+Clustering 0.390 0.20 0.387 0.441FineXtract 0.436 0.20

5 Artist Per Class CFG+Clustering 0.353 0.15 0.343 0.478FineXtract 0.388 0.23

et al., 2023)), and extraction rate. Therefore, extracting training images from this model becomes
more challenging. Nonetheless, FineXtract still significantly outperforms the baseline despite the
fact that its performance partially drops compared to the original cases, further verifying its gener-
ality and effectiveness.

G.2 MIXTURE OF DIFFERENT STYLES IN WIKIART DATASETS

We conducted experiments with an increasing number of classes and found that while it reduces
our method’s performance, we still significantly outperform the baseline. As shown in Tab. 9, we
observe that as the number of styles increases, the extraction success rate decreases. Additionally,
we evaluated the model’s ability to learn the input distribution and found that a higher number of
classes leads to lower fidelity (DINO) and image quality (Clip-IQA), reflecting the model’s difficulty
in learning the fine-tuning data distribution accurately.

H ABLATION STUDY ON MODEL GUIDANCE

2 4 6 8 10
Guidance Scale w'

0.30

0.35

0.40

0.45

0.50

A
S

FineXtract
CFG
Model Guidance Only

Figure 10: Ablation study on different w′

dealing with model guidance, CFG, and
FineXtract. We experiment on 4 classes of
WikiArt dataset.

We provide further discussion by comparing model
guidance using conditional DM, CFG, and a combi-
nation of CFG and model guidance (with k = 0).
As shown in Fig. 10, model guidance using condi-
tional DM achieves close performance to the com-
bination method and significantly outperforms CFG
alone, suggesting model guidance’s dominance and
a potential misalignment with CFG, affecting the pa-
rameter k.

I MORE ASSESSMENTS
FOR PRE-PROCESSING DEFENSE

We attempted to quantify usability using a no-
reference image quality score and the image fidelity
measurements. We follow previous works (Ruiz
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Table 10: Image fidelity and quality for checkpoints under different defenses. DINO measures image
fidelity with respect to the training dataset, and thus it is not applicable when dealing with source
images. We use “N.A.” to denote this scenario.

Source Images Generated Images
Defenses DINO↑ Clip-IQA↑ DINO↑ Clip-IQA↑

No Defense N.A. 0.568 0.458 0.525
CutOut N.A. 0.507 0.460 0.487

RandAugment N.A. 0.522 0.435 0.479

et al., 2023), using DINO for image fidelity measurements. For image quality measurements, we use
Clip-IQA (Wang et al., 2023). As shown in Tab. 10, we found that the CutOut and RandAugment
degraded Clip-IQA by 6.1% and 4.6% in the original dataset, and generated images experienced
around 3.8% and 4.6% degradation. These extent are close in the sense that the degration brought
by the transformation largely preserves in the generation process. For RandAugment, the image
fidelity also largely degrades. This suggests that the preprocessing steps applied to the images (re-
moving a square section or adding high contrast to the input images) largely persist in the generated
output images, hindering extraction methods from obtaining high-quality images while sacrificing
generation quality of diffusion models themselves.

In summary, there exists a trade-off between image quality and defensive effects for these pre-
processing methods. We leave the accurate modeling of this trade-off and further improvement as
an interesting future work.

J EXPERIMENT ON EXTRACTING PROMPTS UNDER DIFFERENT PROMPT
LENGTH W

We further experiment on different scenarios involving fine-tuning with longer training prompts.
Specifically, we use GPT-4 to expand the original prompts into longer versions by adding infor-
mation related to the author while avoiding overly specific details to prevent mismatches with the
input image. Tab. 11 shows our extraction results. With longer text, extracting detailed information
becomes more challenging. However, our algorithm can still identify specific details, such as the
artist’s name, even with extended text. When the text length continue to increase, certain information
becomes harder to extract, though such cases are rare in few-shot fine-tuning.
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Table 11: Experimental results of our caption extraction algorithm using the L2-PGD attack with
1000 iterations starting from a random prompt. This extraction costs approximately 1.5 to 2 minutes
per sample on a single A100 GPU. The results demonstrate that key information, such as the artist’s
name, can largely be inferred when the training caption is not too long. Correctly inferred key-word
parts are shown in bold. Related information extracted is shown in italic.

Extended Prompt
Training Caption Extracted Caption (≤ 7 words)
An insight into the Post-Impressionist
style with expressive, emotional brush-
work and rich colors, inspired by the
unique techniques of Vincent van Gogh.

vangogh impressionism class impressionist
paintings acqu

Exploring the art style of Fauvism,
characterized by vivid, bold colors and
dynamic brushstrokes, as seen in the
works of Henri Matisse.

henri matisse whose explores whose colourful
stures

An exploration of the High Renais-
sance style, marked by balance, realism,
and anatomical accuracy, capturing the
essence of Leonardo da Vinci’s art.

cws inaccurate anatomy leonardo deus aron onda

A look at Impressionism, noted for soft,
light-filled scenes and gentle brush-
strokes, inspired by the atmospheric
beauty in Claude Monet’s paintings.

impressionism wgleagues monet het commence

Excessively Extended Prompt
Training Caption Extracted Caption (≤ 7 words)
A deeper look into Post-Impressionism,
emphasizing Vincent van Gogh’s ex-
pressive, emotional brushwork and con-
trasting colors. His techniques convey
a personal, intense view of the world,
moving beyond the lighter tones of Im-
pressionism.

post impressionism vincent gogh pcdimonet op-
posite vangogh

In-depth exploration of Fauvism’s vivid
colors and bold, expressive brushstrokes
that bring emotions to life, heavily in-
spired by the renowned techniques of
Henri Matisse. His approach captures
the vibrant essence of Fauvism, using
striking colors to convey feeling.

congratulations adrian edgar forum awaits muro-
main destination

An insightful exploration into the High
Renaissance, highlighting the balance,
anatomical realism, and idealism of
Leonardo da Vinci’s creations. This
style embodies the Renaissance’s fo-
cus on perfection, with meticulously
detailed compositions and harmonious
proportions.

retains vehicles marriott alcatraspberries tues-
daythoughts shua

A detailed depiction of Impression-
ism, capturing transient beauty with
soft brushstrokes and delicate light, in-
fluenced by Claude Monet’s signature
style. His work portrays nature in har-
monious, gentle colors that evoke calm-
ness.

impressionism excellent depiction effectively ar-
ranged unexrepresented explained
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