A Background On Point-E

Point-E [39] is a diffusion-based generative model that produces 3D point clouds from text or
images. The Point-E pipeline consists of three stages: first, it generates a single synthetic view
using a text-to-image diffusion model; second, it produces a coarse, low-resolution 3D point cloud
(1024 points) using a second diffusion model which is conditioned on the generated image; third,
it upsamples/“densifies” the coarse point cloud to a high-resolution one (4096 points) with a third
diffusion model. The two diffusion models operating on point clouds use a permutation invariant
transformer architecture with different model sizes. The entire model is trained on Point-E’s curated
dataset of several million 3D models and associated metadata which captures a generic distribution
of common 3D shapes, providing a suitable and sufficiently diverse prior for robot geometry. The
diffused data is a set of points, each point possessing 6 feature dimensions: 3 for spatial coordinates
and 3 for colors. We ignore the color channels in this work. The conditioning for the synthesized
image in the first stage relies on embeddings computed from a pre-trained ViT-L/14 CLIP model;
in the embedding optimization of DiffuseBot, the variables to be optimized is exactly the same
embedding. Diffusion as co-design is only performed in the second stage (coarse point cloud
generation) since the third stage is merely an upsampling which produces only minor modifications
to robot designs. We refer the reader to the original paper [39] for more details.

B Theoretical Motivation

Online learning in embedding optimization. In Section 2.4, we discuss how to online collect a
dataset to optimize the embedding toward improved physical utility. Given a simplified version of (5)

Incin ]Epg (xo0lc) [g(XOa C)} ()

where, for notation simplicity, we drop t ~ [1,T], N(€;0,1) in the sampling distribution, and
summarize [||e — e (x¢(X0, €, 1), t,¢)||?] as g(x, ¢). We can rewrite the expectation term as,

/pg(xo)]mg(xo,c)dx 9)

which allows to sample from py(xg) (i.e., generating samples from the diffusion model) and reweight
h Relelxa).

. pole) ° o . . o
mance. Empirically, we can maintain a buffer for the online dataset and train the embedding with the
sampling distribution biased toward higher task performance; we use a list to store samples with top-k
performance in our implementation (we also tried reshaping the sampling distribution like prioritized
experience replay in reinforcement learning but we found less stability and more hyperparameters
required in training compared to our simpler top-k approach).

the loss wit the latter scaling term is essentially proportional to a normalized task perfor-

Connection to MCMC. In diffusion sampling, the simplest way to perform reverse denoising process
as in Section 2.2 follows [24],

1—ay
(x1,1)), lo‘ttlﬂtl) (10)
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Here, the denoising term can either be unconditional €y(x;,t) or conditional via classifier-free
guidance €97c]assiﬁer_free(Xt, t,c) as in (3). We use the latter to incorporate the optimized embedding.
To further leverage physics-based simulation, we aim to introduce physical utility during diffusion
sampling process. One possibility is to utilize classifier-based guidance [12],

é(9,classiﬁer—based = €p (Xt; t) —s-v1- @tvxt Ing(C|Xt) (11)

where p(c|x;) can be conceptually viewed as improving physical utility and Vy, log p(c|x:) can be
obtained using differentiable physics and the unconditional score. Note that we slightly abuse the
notation here by overloading c with conditioning from differentiable simulation during sampling
other than the classifier-free guidance using the optimized embedding. However, combining (10) and
(11) much less resembles any gradient-based optimization techniques, which are shown to be effective
in soft robot co-design with differentiable simulation [26, 2]. Fortunately, drawing a connection to
energy-based models [54, 15, 14], yet another alternative to incorporate conditioning in diffusion
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Table 4: Configuration of embedding optimization.

|| Balancing | Landing | Crawling | Hurdling | Gripping | Moving a Box

Buffer Size 600 600 60 600 60 60

Min. Buffer Size 60 60 60 60 60 60

Num. Samples / Epoch 60 60 60 60 60 60
Train Iter. / Epoch 1 1 1 1 1 1
Buffer Top-K 12 12 6 6 6 6
Batch Size 6 6 6 6 6 6

Table 5: Configuration of diffusion as co-design.

|| Balancing | Landing | Crawling | Hurdling | Gripping | Moving a Box

tmax 400 150 400 400 400 400
At 50 25 50 50 50 50
K 3 3 5 5 5 5
o 1w0*pg j1w0*-pgl10t-p]107"-5]10"8 108
K 104 10% 104 104 104 104
~ - - 0.01 0.001 0.001 0.001
Renorm Scale 10 10 10 10 10 10

models is Markov Chain Monte Carlo MCMC) sampling [14], where we use Unadjusted Langevin
Dynamics,

2
X = ng), where xgk) ~N (ng);xgkl) + %Vx logp(c|x,(5k71))7 021> (12)

where K is the number of samples in the current MCMC with k as indexing, o2 is a pre-defined

variance, and x§°) = X;_1. In the context of diffusion models, this procedure is commonly performed
within a single diffusion step to drive the sample toward higher-density regime under the intermediate
distribution p(x;) = | q(x¢|x0)p(x0)dxo at diffusion time ¢. Inspired by its resemblance to gradient
ascent with stochasticity from the added Gaussian noise of variance o2, we establish a connection
to design optimization, reformulating diffusion process as co-design optimization as in (6) and (7).

Specifically, we can apply Bayes rule to decompose the score of p(c|x§k_1) ),
Vxlog p(elx) = Vi log p(x|c) — Vi log p(x) (13)

where V, log p(x:) is simply the denoiser output €y (x;,t) and Vy log p(x;|c) is the gradient of
task performance with respect to the intermediate sample of the diffusion model from differentiable
physical simulation and robotizing process. Overall, this leads to (6).

C Implementation Details In Algorithm

In this section, we provide more implementation details and experimental configurations of Diffuse-
Bot and other baselines. In Table 4, we list the configurations of the embedding optimization. With
respect to Algorithm 1, “buffer” refers to the online dataset D.

* Buffer Size is the capacity of the dataset.

* Min. Buffer Size is the minimum of data filled in the buffer before training starts.

* Num. Samples / Epoch is number of new samples collected in each epoch, where epoch here refers
to a new round of data collection in online learning.

* Train Iter. / Epoch is number of training iterations per epoch.

* Buffer Top-K is the number of datapoints with top-k performance being retained in the Filter step
atop the most up-to-date data.

* Batch Size is the batch size in the embedding optimization.
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Figure 8: Comparison between Direct SDF and DiffuseBot on conversion to solid geometry for robotizing.

In Table 5, we list the configurations of diffusion as co-design. We follow (6)(7) for:

* K is number of MCMC sampling steps at the current diffusion time.
* ¢ is the standard deviation related to the MCMC step size.

* x is the ratio between two types of design gradients.

* ~ is the weight for trading off design and control optimization.

* tmax and ty;, are the maximal and minimal diffusion time to perform diffusion as co-design,
respectively.

» At is the diffusion time interval to perform diffusion as co-design.

For baselines, we use learning rates for control optimization following ~y in Table 5; for particle-based
and voxel-based approaches, we use learning rate 0.01 for design optimization; for implicit function
and diff-CPPN, we use learning rate 0.001 for design optimization. For the inputs of implicit function
and diff-CPPN, we use X, y, z coordinates in the local workspace, the distance to the workspace center
on the Xy, Xz, yz planes, and the radius from the center. For the network architecture of implicit
function, we use a 2-layer multilayer perceptron with hidden size 32 and Tanh activation. For the
network architecture of diff-CPPN, we use Sin, Sigmoid, Tanh, Gaussian, SELU, Softplus, Clamped
activations with 5 hidden layers and 28 graph nodes in each layer.

Hyperparameters are chosen mostly based on intuition and balancing numerical scale with very little
tuning. In the following, we briefly discuss the design choices of all hyperparameters listed in Table 5
and Table 4. For min buffer size, samples per epoch, training iteration per epoch, and batch size, we
roughly make sufficiently diverse the data used in the optimization and use the same setting for all
tasks. For buffer size, we start with 60 and if we observe instability in optimization, we increase
to 10 times, 600 (similar to online on-policy reinforcement learning); note that buffer size refers to
the maximal size and increasing this won’t affect runtime. For buffer Top-K, we start with 6 and
if we observe limited diversity of generation throughout the optimization (or lack of exploration),
we double it. For .44, tmin, and At, we roughly inspect how structured the generation in terms
of achieving the desired robotic task to determine t,,,,, and modify At accordingly to match the
similar number of performing MCMC sampling (e.g., t;qq/At: 400/50 a2 150/25). For the number
of MCMC steps K, we simply set 3 for passive tasks and 5 for active tasks by intuition. For o, we
simply follow one of the settings in [14]. For the guidance scale x and renorm scale, we check the
numerical values between e and gradient from differentiable simulation and try to make them roughly
in the similar magnitude, and set the same scale for all tasks for simplicity. For 7, we set 0.001 for
trajectory optimization and 0.01 for parameterized controllers based on our experience of working
with differentiable physics. Overall, from our empirical findings, the only hyperparameters that may
be sensitive include buffer size and buffer Top-K for optimization stability and generation diversity,
and guidance scales, which need to be tuned to match the numerical magnitude of other terms so as
to take proper effect.

D Details In Task Setup

In this section, we provide more details of all tasks setup including environment configuration and
prescribed actuator and controller if any (as mentioned in Section 2.4; it is fixed during embedding
optimization and will be co-optimize during diffusion as co-design). We select tasks that

1. can cover a wide spectrum of existing robotics tasks: we briefly categorize tasks into passive dy-
namics, locomotion, and manipulation. Note that passive dynamics tasks are explicitly considered
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here since there is no active control of robot bodies, making optimization on robot design a direct
factor toward physical utility.

2. only involve lower-level control/motion without the complications of long-term or higher-level
task planning: we select tasks that mostly involve few motor skills, e.g., in manipulation, instead
of pick and place, we simply aim at picking up/gripping an object.

3. are commonly considered in other soft robot co-design literature: all proposed active tasks are
widely used in the soft robot community, including crawling [8, 10, 47, 61], hurdling/jumping
[26, 59, 3], and manipulating objects [5, 11, 38].

4. may induce more visible difference in robot designs between the performing and the non-
performing ones to facilitate evaluation and algorithmic development: we select tasks more
based on heuristics and intuition, e.g., in crawling, we expect leg-like structures may outperform
other random designs.

We build our environments on top of SoftZoo [61] and employ the Material Point Method for
simulation. Each environment is composed of boundary conditions that include impenetrable ground,
and, in the case of fixed objects or body parts, glued particles. All tasks use units without direct
real-world physical correspondence and last for 100 steps with each step consisting of 17 simulation
substeps. In the following, when describing the size of a 3D shape without explicitly mentioning the
axis, we follow the order: length (x, in the direction when we talk about left and right), height (y,
parallel with the gravity direction), and width (z). All tasks are demonstrated in Figure 3 in the main

paper.

Balancing. The robot is initialized atop a stick-like platform of shape 0.02-unit x 0.05-unit X
0.02-unit. The robot is givenan initial upward velocity of a 0.5-unit/second and allowed to free fall
under gravity. The goal is for the robot to passively balance itself after dropping again on the platform;
the performance is measured as the intersection over union (IoU) between the space occupied by the
robot during the first simulation step and the space occupied by the robot during the last simulation
step. The robot geometry is confined to a 0.08-unit x 0.08-unit x 0.08-unit workspace. There is no
prescribed actuator placement or controller (passive dynamics).

Landing. The robot is initialized to be 0.08-unit to the right and 0.045-unit above the landing
target with size of 0.02-unit x 0.05-unit x 0.02-unit. The robot is given an initial velocity of 0.5-
unit/second to the right. The goal of the robot is to land at the target; the performance is measured
as the exponential to the power of the negative distance between the target and the robot in the last

object

frame e~1P%" —PE"Il| where D7y 1s the position of the robot or object at the last frame with horizon
H. The robot geometry is confined to a 0.08-unit x 0.08-unit x 0.08-unit workspace. There is no
prescribed actuator placement or controller (passive dynamics).

Crawling. The robot is initialized at rest on the ground. The goal of the robot is to actuate its body to

move as far away as possible from the starting position; the performance is measured as the distance

,robot ,robot Jrobot . . . .
traveled ||p3; """ — pg"* "' ||, where p™™ is the position of the robot in the x axis at a certain frame

with horizon H. The robot geometry is confined to a 0.08-unit x 0.08-unit x 0.08-unit workspace.
The actuator placement is computed by clustering the local coordinates of the robot centered at its
average position in the xz (non-vertical) plane into 4 groups. Each group contains an actuator with
its direction parallel to gravity. The prescribed controller is a composition of four sine waves with
frequency as 30hz, amplitude as 0.3, and phases as 0.57, 1.57, 0, and 7 for the four actuators.

Hurdling. An obstacle of shape 0.01-unit x 0.03-unit x 0.12-unit is placed in 0.07-unit front of
the robot. The goal of the robot is to jump as far as possible, with high distances achieved only
by bounding over the obstacle. The performance is measured as the distance traveled. The robot
geometry is confined to a 0.08-unit x 0.08-unit x 0.08-unit workspace. The actuator placement is
computed by clustering the local coordinates of the robot centered at its average position in the length
direction into 2 groups. Each group contains an actuator aligned parallel to gravity. The prescribed
controller takes the form of open-loop, per-step actuation sequences, set to linearly-increasing values
from (0.0, 0.0) to (1.0, 0.3) between the first and the thirtieth frames and zeros afterward for the two
actuators (the first value of the aforementioned actuation corresponds to the actuator closer to the
obstacle) respectively.

Gripping. An object of shape 0.03-unit x 0.03-unit x 0.03-unit is placed 0.08-unit underneath

the robot. The goal of the robot is to vertically lift the object; the performance is measured as the

vertical distance of the object being lifted |[p ™" — p¥°*!||, where p?"*™**' is the position of the

17



object in the y axis at a certain frame with horizon H. Within a 0.06-unit x 0.08-unit x 0.12-unit
workspace, we decompose the robot into a base and two attached submodules, and we set the output
of DiffuseBot or other robot design algorithms as one of the submodules and make constrain the
other submodule to be a mirror copy; conceptually we design “the finger of a parallel gripper.” The
base is clamped/glued to the upper boundary in z and given a large polyhedral volume to serve
as the attachment point of the gripper finger submodules. The actuator placement is computed by
clustering the local coordinates of the robot centered at its average position in the length direction
into 2 groups; each submodule has one pair of actuators. Each actuator is aligned parallel to gravity.
Overall, one pair of actuators comprises the "inner" part of the gripper and the other comprises the
"outer" part. Suppose the actuation of the two pairs of actuators is denoted in the format of (actuation
of the outer part, actuation of the inner part), the prescribed controller is per-frame actuation, set to (i)
linearly-increasing values from (0.0, 0.0) to (0.0, 1.0) between the first and the fiftieth frames, and (ii)
then linearly-decreasing values from (1.0, 0.0) to (0.0, 0.0) between the fiftieth and the last frames.

Moving a box. A 0.03-unit x 0.03-unit x 0.03-unit cube is placed on the right end of the robot (half
a body length of the robot to the right from the robot center). The goal of the robot is to move the
box to the left; the performance is measured as the distance that the box is moved to the right with
respect to its initial position |[p%°™*" — pi ||, where p*°*' is the position of the object in the x
axis at a certain frame with horizon . The robot geometry is confined to a 0.16-unit x 0.06-unit x
0.06-unit workspace. The actuator placement is computed by clustering the local coordinates of the
robot centered at its average position in the height direction into 2 groups. Each group contains an
actuator aligned parallel to the ground. The prescribed controller is per-frame actuation, initialized to
linearly-increasing values from (0.0, 0.0) to (1.0, 0.0) between the first and last frame for the lower
and the upper actuator respectively.

E Analysis On Robotizing

As mentioned in Section 2.3, Material Point Method simulation requires solid geometry for simulation;
thus, we need to convert the surface point cloud from Point-E [39] to a volume. The most direct
means of converting the point cloud to a solid geometry is to compute the signed distance function
(SDF), and populate the interior of the SDF using rejection sampling. We refer to this baseline as
Direct SDF. Here, we use a pretrained transformer-based model provided by Point-E as the SDF. In
Figure 8, we compare Direct SDF with our approach described in Section 2.3 Solid Geometry. We
perform robotizing on intermediate samples at t=300. We observe that Direct SDF fails to produce
well-structured solid geometry since it is trained with watertight on geometry, and thus the conversion
cannot gracefully handle generated point clouds that do not exhibit such watergith structure. This is
specifically common in the intermediate diffusion sample x; as x; is essentially a Gaussian-noise-
corrupted version of the clean surface point cloud. In contrast, the robotizing of DiffuseBot produces
a much well-structured solid geometry since it explicitly handles the noisy interior 3D points by
introducing a tailored loss as in Shape As Points optimization [40] (see Section 2.3). In addition, a
better-structured robot geometry is critical to obtain not only a more accurate evaluation of a robot
design at the forward pass of the simulation but also the gradients from differentiable physics at
the backward pass. In Figure 8, we further perform co-optimization on the two robots obtained by
Direct SDF and DiffuseBot; we observe a more stably increasing trend of task performance in our
approach, demonstrating that the gradient is usually more informative with a better-structured robot.
Empirically, while Direct SDF sometimes still provides improving trend with unstructured robots in
co-design optimization, the performance gain is not as stable as DiffuseBot.

F Additional Visualizations Of Experiments

In this section, we show more visualization for a diverse set of the experimental analysis. Please visit
our project page (https://diffusebot.github.io/) for animated videos.

Generated robots performing various tasks. In Figure 9, we display a montage of a generated
robot’s motion for each task; this is the unabridged demonstration of Figure 5 in the main paper.

Physics-guided robot generation In Figure 10, we show how DiffuseBot evolves robots throughout
the embedding optimization process; this is the full demonstration of Figure 4 in the main paper. Note
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Figure 9: Examples of robots bred by DiffuseBot to achieve the all presented tasks.

that DiffuseBot is a generative algorithm and thus results presented are for demonstration purposes
and reflect only a single fixed random seed.

Diffusion process of robot generation. In Figure 11, we show how robots evolve throughout
the diffusion process at different diffusion time via x; with ¢ from 7" to 0; not to be confused
by Figure 10 where all generations are obtained via a full diffusion sampling x¢ and different
conditioning embeddings c. This figure demonstrates the robotized samples across diffusion times,
gradually converging to the final functioning robots as ¢ approaches 0.

Comparison with baselines. In Figure 12, we present robots generated from different baselines. Note
that Point-E is essentially DiffuseBot without embedding optimization and diffusion as co-design.

Incorporating human feedback. In Figure 13, we showcase more examples of incorporating human
textual feedback to the generation process of DiffuseBot. As briefly mentioned in Section 3.4 in
the main paper, we leverage the compositionality of diffusion-based generative models [34, 14].
Specifically, this is done by combining two types of classifier-free guidance as in (3); one source
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Figure 10: Examples of DiffuseBot evolving robots to solve all presented tasks.

of guidance is derived from the task-driven embedding optimization while the other is derived
from embeddings from human-provided textual descriptions. These two conditional scores, namely
€9(X¢, 1, Cphysics) and €g(X¢, t, Chuman), can then be integrated into the diffusion as co-design framework
as in (6). We refer the reader to the original papers for more details and theoretical justification. We
demonstrate examples of: the balancing robot with additional text prompt "a ball”, the crawling robot
with additional text prompt "a star”, the hurdling robot with additional text prompt "a pair of wings",
and the moving-a-box robot with additional text prompt "thick”. Interestingly, human feedback is
introduced as an augmented "trait" to the original robot. For example, while the hurdling robot keeps
the tall, lengthy geometry that is beneficial for storing energy for jumping, a wing-like structure
appears at the top of the robot body instead of overwriting the entire geometry. This allows users to
design specific parts for composition while also embedding fabrication and aesthetic priorities and
constraints through text. We leave future explorations of these ideas for future work.
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Figure 11: Demonstrations of generations changing from noises to robots with physical utility throughout the
diffusion sampling process. We present snapshots at diffusion times ¢ = 600, 400, 200, O for all presented tasks.

G Hardware Design and Fabrication

To create a real-world counterpart of the DiffuseBot, we fabricated a proof-of-concept physical robot
gripper, as illustrated in Figure 14(a). The gripper was designed to match the shape of the digital
gripper and successfully demonstrated its ability to grasp objects, as shown in Figure 15. A video
demonstrating the grasping process can be found on our project page (https://sites.google.
com/view/diffusebot).

During the translation from the simulated design to a physical robot, we aimed to minimize differences
between the simulated and physical designs. However, due to hardware and fabrication limitations,
certain modifications were necessary.

One such challenge involved replicating the arbitrary contraction force at the particles from the
simulation in the physical world. To address this, we employed tendon transmission as the actuation
method for the real-world gripper, which was found to be suitable for emulating interaction forces
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Figure 12: Comparison of robots generated by different baselines.

from the digital world without introducing significant discrepancies. To enhance the stability of the
tendon-driven actuation, we incorporated a rigid base ("Base" in Figure 14(a)) above the gripper
itself ("Gripper" in Figure 14(a)). This base was designed to withstand the reaction force generated
by the tendon-driven actuation. Furthermore, we added four tendon routing points (represented by
small dotted circles in Figure 14(b)) on each finger to securely fix the tendon path. By utilizing four
Teflon tubes (shown in Figure 14(b)), we were able to position complex components such as motors,
batteries, and controllers away from the gripper, reducing its complexity.

The actuation strategy of the simulated gripper applies equal contraction force to both fingers simulta-
neously. To replicate this strategy, we employed underactuated tendon routing in the development
of the gripper. This approach eliminates the need for four separate actuators, thereby reducing the
complexity of the robot. We used tendon-driven actuators specifically designed for underactuated
tendon-driven robots as they solve practical issues such as size and friction issues that commonly
arise in such systems [30].
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Figure 14: (a) shows a fabricated proof-of-concept physical robot gripper; (b) describes detailed robot configura-
tion; (c¢) represents interior structure design used to soften the robot body.

The soft gripper was 3D-printed using a digital light projection (DLP) type 3D printer (Carbon M1
printer, Carbon Inc.) and commercially available elastomeric polyurethane (EPU 40, Carbon Inc.). To
enhance the softness of the robot body beyond the inherent softness of the material itself, we infilled
the finger body with a Voronoi lattice structure, a metamaterial useful for creating a soft structure
with tunable effective isotropic stiffness [20, 36]. We generated a Voronoi lattice foam with point
spacing of 2.5mm, and a beam thickness of 0.4 mm as shown in the red boundary of Fig. 14(c).
Finally, we tested the soft gripper, designed and fabricated as described above, to verify its ability to
grasp an object, as shown in Figure 15.

More discussion on fabrication. Although, at present, the compilation of the virtual robot to a
physical, digitally fabricated counterpart involves manual post-processing of algorithm’s output, most,
if not all of these steps could be automated. Our method outputs a point cloud (defining geometry),
actuator placements, and an open-loop controller, along with a prescribed stiffness. Since we can
easily convert the point cloud into a 3D triangle mesh, the geometry can be created by almost any 3D
printing method. In order to realize an effective stiffness and material behavior, stochastic lattices,
specifically Voronoi foams, have been used [36, 20] in the past and employed here in order to match
target material properties. Given the actuator placement, tendons [27, 30] can be aligned with the
prescribed (contiguous) regions. Since a lattice is used, threading tendons through the robot body is
simple, and we note that even more complex routings have been studied in detail in the literature [4].
Creating attachment points for the tendons is a relatively simple geometry processing problem [6].
Thus, converting a virtual robot to a specification that incorporates geometry, material, and actuation
can be automated in a straightforward way.
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Figure 15: Grasping motion of the real-world soft gripper from DiffuseBot. Time order from (a) to (c¢). The
demo video can be seen at our project page.

‘We note that when controlled, the physical robot may not always match the virtual robot’s motion.
This is the sim-to-real gap, and is significantly harder to overcome in our case than translating the
virtual robot to physical hardware. Significant literature has been invested in specifically tackling
the sim-to-real gap, and in our case would require its own dedicated project; however, we note that
often hardware can be adapted to work by modifying only the control policies using feedback from
real-world experiments, often even with little human intervention [21].

Quantitative analysis. In Figure 16, we provide a detailed analysis on the gap between simulation
and physical robot. In order to explore the quantitative gap between the behavior of the physical
robot and the simulated robot, we conducted an experiment with the following conditions, where
similar setups are commonly adopted in soft robot literature [ | 7]. The objective was to measure the
change in distance between two tips when we pull/release two tendons - one for closing the gripper
(flexion) and the other for opening it (extension). The tendons were pulled or released in increments
and decrements of 2mm.

When contracting the tendon to flex or extend the fingers, both simulation and real robot results show
log-shaped graphs. The pattern in the physical robot plot is a commonly observed phenomenon called
hysteresis. However, the main difference between the simulation and real-world cases can be seen
when releasing the tendon from a fully contracted state. In the real robot experiment, the tip distance
changes rapidly, while in the simulation, the opposite effect is observed.

One plausible explanation for this disparity could be attributed to the friction direction and elongation
of the tendons. During the transition from tendon contraction to tendon release, the tension of the
tendon at the end-effector may change suddenly due to the change of the friction direction. Also,
since we only control the motor position (not the tendon position) to pull/release the tendon with 2mm
step, the exact tendon length may not be exactly the same when we consider the tendon elongation.

Potential solutions. Given that the gap between simulation and real robot performance seems to
originate from the actuation/transmission method, our future work will focus on developing a tendon-
driven actuation simulation framework. This framework aims to address the differences and improve
the accuracy of our simulations. We are exploring other possible explanations for the sim-to-real gap
and will investigate any additional factors that may contribute to the observed discrepancies. Overall,
as for a high-level general solution, we believe (1) adjusting parameters based on observed sim to real
gap and repeat the design process or (2) building a more accurate physics-based simulation (which
can be straightforwardly plug-and-played in DiffuseBot) can largely bridge the sim-to-real gap of
fabricating physical robots; or more interestingly, connecting generative models to commercial-level
design and simulation softwares.

H More Discussions

H.1 Limitation
The major limitation of DiffuseBot is that we make a simplification in the parameterization of

actuators and stiffness; we make dependencies of the two design specifications on robot geometry
(check more technical details in Section 2.3 paragraph Actuators and Stiffness. This works well
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Figure 16: Quantitative analysis of behavior between simulation and physical robots.

with properly-crafted mapping from geometry to the others yet limits the potential by human prior
with little use of the generative power. While this may be reasonable as properly-set actuators and
stiffness based on geometry (hand-tuned empirically in this work) roughly reflects task performance,
a more flexible parameterization can definitely lead to improved performance. Potential remedy can
be using part-based 3D generative models for actuators and direct optimization for stiffness. Another
limitation is the gap between simulated results and real robots. While the hardware experiment has
shown as a proof-of-concept that minimally demonstrates the potential, physical robot fabrication
and real-world transfer have countless non-trivial challenges including stiffness and actuator design,
sim-to-real gap, etc. This may require studies on more high-fidelity physics-based simulation, which
can be straightforwardly plugged into DiffuseBot.

H.2 Conditioning Beyond Text

The use of textual inputs additional to the embeddings optimized toward physical utility is achieved
by both being able to be consumed by the diffusion model to produce guidance for the diffusion
process . More concretely speaking, in DiffuseBot, we use the CLIP feature extractor as in Point-E
and it allows to extract embedding for both text and image modalities, which can then be used as a
condition in the diffusion model. Thus, we can also incorporate images as inputs and perform the
exact same procedure as that of the textual inputs. Theoretically, the textual inputs are incorporated
via following the intuition in end of the paragraph Diffusion as Co-design in Section 2.4, where the
textual inputs additionally provide gradients toward following the textual specification. Similarly,
the image inputs can also be processed to provide gradients since CLIP embeddings live in a joint
space of images and languages. More interestingly, if we build DiffuseBot on models other than
Point-E, which can consume embeddings for other modalities like audio as conditioning, we can
then straightforwardly perform robot design generation guided by the other corresponding input
formats (and meanwhile, toward physical utility). Note that this critical feature of compositionality
across different sources of guidance throughout the reverse diffusion process is one of the biggest
advantages of using diffusion-based models as opposed to other types of generative models.

H.3 Connection To Text Inversion

There is some synergy between text inversion in [ 1 9] and embedding optimization in DiffuseBot. Both
of them aim at tuning the embedding toward reflecting certain properties of the output generation, i.e.,
describing the output generated images in [19] and toward improved physical utility in DiffuseBot.
The major difference lies in the nuance of the data/samples used to carry out the optimization. Text
inversion performs a direct optimization using latent diffusion model loss (Eq. (2) in [19]), which
computes losses on noisy samples/latents corrupted from the real dataset. On the other hand, it is
tricky to think about real dataset in robot design (as discussed in the second paragraph of Section |
and the paragraph Embedding Optimization in Section 2.4), embedding optimization in DiffuseBot
computes losses on noisy samples corrupted from self-generated data filtered by robot performance
(as in Algorithm 1 and Section 2.4). Conceptually, it is more like a mixture of diffusion model
training and online imitation learning like DAGGER [45].
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H.4 Connection To Diffusion Models With Physical Plausibility

A potential and interesting way to adapt DiffuseBot to other applications like motion planning
or control [28, 1] is to view a generated robot as one snapshot/frame of a motion/state sequence
and the physics prior can be the dynamics constraint across timesteps (e.g., robot dynamics or
contact dynamics that enforce non-penetration). The physics prior can be injected similarly to
diffusion as co-design that propagates the enforcement of physical plausibility of generated states
from differentiable physics-based simulation to diffusion samples. For example, considering states
in two consecutive timesteps, we can compute loss in the differentiable simulation to measure the
violation of physical constraints regarding robot dynamics or interaction with the environment. Then,
we can compute gradients with respect to either control or design variables; for gradients in control,
this will essentially augment works like [28, 1] with classifier-based guidance to achieve physical
plausibility; for gradients in design, this will much resemble optimizing toward the motion sequence
of a shape-shifting robot.

H.5 Parameterization Of Actuator And Stiffness

The goal of DiffuseBot is to demonstrate the potential of using diffusion models to generate soft robot
design and to leverage the knowledge of the pre-trained generative models learned from a large-scale
3D dataset. Under this setting, the generated output of the diffusion model can only provide the
geometry information of robot designs, leading to our design choice of having full dependency of
actuator and stiffness on the geometry. This may be a reasonable simplification as prior works [48]
have shown geometry along with properly-set actuator and stiffness (we take manual efforts to design
proper mapping from geometry to actuator and stiffness in this work) roughly reflect the performance
of a soft robot design. For better generality, one potential remedy is to optimize actuator and stiffness
independently from the geometry generated by the diffusion model, i.e., apply DiffuseBot and do
direct optimization on actuator and stiffness afterward or at the same time. Another interesting
direction may be, for actuators, to leverage part-based models [29] to decompose a holistic geometry
into parts (or different actuator regions in soft robots).
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