
Supplementary Material for “Robustifying `∞
Adversarial Training to the Union of Perturbation

Models”

Anonymous Author(s)
Affiliation
Address
email

Contents1

1 Robustness Stress Tests 22

1.1 Sweeping norm-bounds and number of attack steps 23

1.2 Evaluating robustness against new attacks . 24

2 Additional Results 35

2.1 Comparison with Randomized Smoothing (RS) 36

2.2 Comparison with Madaan et al. [10] . 47

2.3 SVHN results . 48

2.4 Impact of SNAP on prediction complexity . 59

2.5 Subspace analysis of adversarial perturbations for TRADES+SNAP model 510

2.6 Impact of noise shaping in the image basis . 611

2.7 Understanding the effectiveness of SNAP[L] for `∞ AT 612

2.8 Evaluating common corruptions and functional attack 713

2.9 Error bars . 814

3 Additional Details 815

3.1 Details of Hyperparameters . 816

3.2 Details about SNAP . 1017

4 Accompanying Code and Pretrained Models 1018

4.1 Code and models are available at link: https://drive.google.com/drive/19

folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing 1020

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

https://drive.google.com/drive/folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing
https://drive.google.com/drive/folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing
https://drive.google.com/drive/folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing

!
!"
#

(ℓ
!)

(%
)

!
!"
#

(ℓ
"
) (%

)

!
!"
#

(ℓ
#)

(%
)

norm bound " norm bound " norm bound "
(a)

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

!
!"
#

(ℓ
!)

(%
)

!
!"
#

(ℓ
"
) (%

)

!
!"
#

(ℓ
#)

(%
)

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

(b) (c)

attack steps # attack steps # attack steps #
(d) (e) (f)

Figure I: ResNet-18 CIFAR-10 results: Adversarial accuracy vs. norm bound ε for: (a) `∞, (b) `2, (c)
`1 PGD-100 attack. Adversarial accuracy vs. attack steps K for (d) `∞ (ε = 0.031), (e) `2 (ε = 0.5),
(f) `1 (ε = 12) PGD-100 attacks.

1 Robustness Stress Tests21

We conduct robustness stress tests to confirm that the benefits of SNAP are sustained for a range of22

attack norm-bounds, larger number of attack steps, and even for “gradient-free” attacks. For these23

experiments, we consider networks trained using TRADES and TRADES+SNAP (rows in Table 2 of24

the main paper), since they achieve the highest A(U)
adv among the four SOTA AT frameworks.25

1.1 Sweeping norm-bounds and number of attack steps26

We sweep the number of PGD attack steps (K) and norm-bounds (ε) for all three perturbations27

(`∞, `2, `1) to confirm that the robustness gains from SNAP are achieved for a wider range of attack28

norm bounds, and are sustained even after increasing attack steps.29

Fig. I(a)-(c) validates the main text Table 2 conclusion that TRADES+SNAP achieves large gains30

(∼ 20%) in A(`1)
adv and A(`2)

adv with a small (∼ 4%) drop in A(`∞)
adv . Furthermore, this conclusion holds31

for a large range of ε values for all three perturbations. Additionally, the gain in A(`2)
adv due to SNAP32

at ε = 1.2 is greater than the one reported in Table 2 for ε = 0.5.33

Now we increase the attack steps K to 500 and observe the impact on adversarial accuracy against34

(`∞, `2, `1) perturbations in Fig. I(d,e,f), respectively. In all cases, we observe hardly any change35

of the adversarial accuracy beyond K = 100. Hence, as noted in the main text, we have chosen36

K = 100 for all our experiments in the main text and in this supplementary.37

Recall we employ 10 random restarts as recommended by Maini et al. [12] for all our adversarial38

accuracy evaluations on CIFAR-10 data.39

1.2 Evaluating robustness against new attacks40

We evaluate adversarial accuracy against the recent DDN [15], Boundary [3], and Square [1] attacks.41

The DDN attack was shown to be one of the SOTA gradient-based attacks, while boundary attack is42

one of the strongest “gradient-free” attacks. Of all the attacks considered in Maini et al. [12], PGD43

turns out to be the strongest for `∞ and `1 perturbations. Hence, in this section, we evaluate against44

`2 norm-bounded DDN, boundary, and Square attacks.45

Following Maini et al. [12], we use the FoolBox [13] implementation of the boundary attack, which46

uses 25 trials per iteration. For the DDN attack, we use 100 attack steps with appropriate logit47

averaging for N0 = 8 noise samples before computing the gradient in each step (similar to our PGD48

attack implementations). As mentioned in the main text, it eliminates any gradient obfuscation due to49

the presence of noise.50

2

TRADES TRADES+SNAP
Natural Accuracy 82.1 80.9
DDN [15] (ε = 0.5) 59.7 65.8

Boundary [3] (ε = 0.5) 63.5 67.0
Square [1] (ε = 0.5) 68.2 72.7

Table I: ResNet-18 CIFAR-10 results showing natural accuracy (%) and adversarial accuracy (%)
against `2 norm bounded DDN attack [15], boundary attack [3], and Square [1] for TRADES and
TRADES+SNAP networks from Table 2 in the main text.

(b)
!
!"
#(

%
)

PGD+SNAP

PGD+Iso[L] ∼ #%

!"$%
(') (%)

!
!"
#(

%
)

!"$%
(') (%)

PGD+SNAP

SmoothAdv
[Salman et al., 2019]

RandSmooth
[Cohen et al., 2019]

12%

Desired

Desired

(a)

Comparison with Random Smoothing (RS) Comparison with Isotropic Laplace Noise

Figure II: ResNet-18 CIFAR-10 results: (a) Anat vs. A(U)
adv for RandSmooth [4], SmoothAdv [16], and

PGD+SNAP; (b) Anat vs. A(U)
adv for PGD+SNAP and PGD+Iso[L], where Iso[L] denotes a baseline

SNAP alternative employing isotropic Laplace noise augmentation, i.e., without noise shaping.
PGD+SNAP achieves better Anat vs. A(U)

adv trade-off due to noise shaping.

Table I shows that SNAP improves adversarial accuracy against the DDN attack by ∼ 6%. This51

is similar to improvements seen against `2-PGD attack in Table 2 in the main text. Similarly,52

TRADES+SNAP achieves 3.5% (4.5%) higher adversarial accuracy than TRADES against the53

Boundary [3] (Square [1]) attack.54

2 Additional Results55

2.1 Comparison with Randomized Smoothing (RS)56

In this subsection, we compare with two SOTA randomized smoothing (RS) works, namely,57

RandSmooth [4], and SmoothAdv [16]. They employ isotropic Gaussian noise. In Fig. II(a), we find58

that PGD+SNAP achieves a better Anat vs. A(U)
adv trade-off compared to both RandSmooth [4], and59

SmoothAdv [16]. Specifically, note that SmoothAdv [16] can also be viewed as isotropic Gaussian60

augmentation of `2-PGD AT. Importantly, PGD+SNAP achieves a 12% higher A(U)
adv for the same61

Anat. This demonstrates the efficacy of shaped noise in SNAP, which enhances the robustness to the62

union of (`∞, `2, `1) perturbations.63

In order to further quantify importance of noise shaping, we also compare `∞-PGD+SNAP with64

`∞-PGD+Iso[L], a stronger baseline alternative consisting of isotropic Laplace noise augmentation,65

i.e., without any noise shaping. Specifically, in Iso[L], the noise standard deviation is identical in66

each direction, i.e., Σ = Diag
[√

Pnoise
D , . . . ,

√
Pnoise
D

]
. Note that such distributions have recently been67

explored for RS [21].68

Fig. II(b) plots theAnat vs.A(U)
adv trade-off for PGD+SNAP (red curve) and PGD+Iso[L] (black curve)69

by sweeping Pnoise. We find that PGD+SNAP achieves a better Anat vs. A(U)
adv trade-off compared70

to PGD+Iso[L] by making more efficient use of noise power via noise shaping. Specifically, for71

A(U)
adv ≈ 38, PGD+SNAP achieves a ∼ 4% higher Anat.72

3

Method Anat
A(`∞)

adv
ε = 0.03

A(`2)
adv

ε = 0.31

A(`1)
adv

ε = 8

Time per Epoch
(seconds)

MNG [10] 79.8 43.9 75.8 53.8 354†

PGD+SNAP 83.1 45.9 74.1 58.3 240
Table II: ResNet-18 CIFAR-10 results showing a comparison between MNG [10] and PGD+SNAP
(from Table 2 in the main text). All MNG numbers are exactly as reported in their paper. We
reevaluate PGD+SNAP with our PGD attacks using the new ε values used by Madaan et al. [10].
PGD+SNAP achieves 3%, 2%, 4.5% higher Anat, A(`∞)

adv , A(`1)
adv , respectively, while being at least

∼ 40% faster in terms of epoch time. †: Note that MNG time is measured on NVIDIA GeForce RTX
2080Ti (by Madaan et al. [10]), while PGD+SNAP is measured on NVIDIA Tesla P100. An RTX
2080Ti has 20% more CUDA cores than a Tesla P100.

Method Anat
A(`∞)

adv
ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 8
A(U)

adv

PGD 89.9 45.3 34.9 4.8 4.8
PGD+SNAP 89.3 44.0 67.4 48.3 36.3

Table III: ResNet-18 SVHN results showing the impact of SNAP augmentation of `∞-PGD [11] AT
frameworks. Adding SNAP improves A(U)

adv by ∼ 30% while having only a small impact on Anat and
A(`∞)

adv .

2.2 Comparison with Madaan et al. [10]73

The meta-noise generator (MNG) [10] employs a multi-layer deep-net to generate noise samples74

during AT. Importantly, MNG still employs multiple attacks during training, but samples only one of75

the attacks randomly at a time to reduce the training cost.76

However, they have yet to release their code or pretrained models even though their work was posted77

on arXiv a year ago. Absence of public codes from Madaan et al. [10] makes it difficult to clearly78

compare with their work, especially in terms of training time. Nonetheless, in this subsection, we79

try our best to ensure that the comparison is fair. Table II reports natural and adversarial accuracy80

of MNG against (`∞, `2, `1) attacks as reported by Madaan et al. [10]. We find that PGD+SNAP81

achieves 3%, 2%, 4.5% higher Anat, A(`∞)
adv , and A(`1)

adv , respectively. Note that Madaan et al. [10]82

evaluate A(`∞)
adv and A(`2)

adv against PGD-50 attacks, whereas here we employ PGD-100 attacks and,83

following their protocol, evaluate on the entire CIFAR-10 dataset with a single restart. Furthermore,84

epoch time for PGD+SNAP is 1.4× smaller than that of MNG [10] even though MNG time was85

measured on a more recent NVIDIA RTX 2080Ti, which has 20% more CUDA cores than the Tesla86

P100 GPU that we used for PGD+SNAP.87

Importantly, a key advantage of SNAP is its scalability. We are able to report robust ResNet-50 and88

ResNet-101 networks on ImageNet (Table 4 in the main text), whereas Madaan et al. [10] report89

results only up to 64× 64 TinyImageNet.90

2.3 SVHN results91

Table III shows PGD and PGD+SNAP results on SVHN data. We train both PGD and PGD+SNAP92

models for 100 epochs using a piece-wise LR schedule. We start with an initial LR of 0.01 and decay93

it once at the 95th epoch.94

In Table III, we observe a trend that is similar to our observations for CIFAR-10 and ImageNet results.95

In particular, for SVHN, SNAP turns out to be even more effective, with ∼ 30% improvement in96

A(U)
adv while almost preserving both Anat and A(`∞)

adv .97

4

Method Anat (%)

TRADES 81.7
TRADES+SNAP

N0 = 1 80.1±0.22

N0 = 2 80.3±0.14

N0 = 4 80.7±0.12

N0 = 8 80.9±0.10

N0 = 16 80.9±0.08

Table IV: ResNet-18 CIFAR-10 results showing SNAP’s impact on the prediction complexity, where
N0 denotes the number of noise samples employed to estimate E[·] in Eq. (2) in the main text. We
find that for mere accuracy estimation, even a single forward pass (N0 = 1) suffices. ±xx denotes the
standard deviation over 10 independent test runs.

! !
∈#

",
$ $%

&'
_)
*
+

"
++

after TRADES+SNAP

! = #!"#_%&
! = $!"#_%&

! = %!"#_%&

!'()

0.1)'()

Index * of singular vectors +*!"#_%&

130-D

Figure III: Normalized mean squared projections of three perturbation types on the singular vector
basis Pκ of `2 perturbations of ResNet18 on CIFAR-10 after TRADES+SNAP training (κ ≡ rob sn).
The singular vectors pκi comprising Pκ = {pκ1 , . . . ,pκD} are ordered in descending order of their
singular values.

2.4 Impact of SNAP on prediction complexity98

While SNAP augmentation has a modest impact on the training time (Table 3 in the main text), here99

we check whether it could potentially increase the model prediction complexity due to the need to100

estimate the expectation E[·] in Eq. (2) in the main text.101

As expected, by increasing N0, the deviation of the Anat estimate reduces (see Table IV). However,102

we find that for accuracy estimation, a single forward pass (N0 = 1) suffices. Specifically, an Anat103

estimate with N0 = 1 is within 1% of the Anat estimate with N0 = 16. Furthermore, even with104

N0 = 1, the standard deviation of Anat is as low as ∼ 0.2%. Thus, the impact of SNAP on prediction105

complexity can be very small.106

2.5 Subspace analysis of adversarial perturbations for TRADES+SNAP model107

In this subsection, we carry out a subspace analysis of adversarial perturbations (Section 3 in the108

main text) for TRADES+SNAP. We confirm that our hypothesis in Section 3 holds even after SNAP109

augmentation of TRADES. Following the same experimental setup and the notation from Section 3 in110

the main text, we compute perturbations αi, βi, and γi for each xi ∈ X for ResNet-18 trained using111

TRADES+SNAP, i.e., κ ≡ rob sn. We compute the singular vector basis Pκ for the set of `2 bounded112

perturbations ∆κ = {βκ1 , . . . ,βκ|X|}. Fig. III plots the normalized mean squared projections of the113

three types of perturbation vectors on the singular vector basis Pκ of a TRADES+SNAP trained114

ResNet-18. We find that the projections generally follow the same trend as those for a TRADES-115

trained network which are shown in Fig. 3(b) of the main text. However, we also notice that after116

SNAP augmentation, the three perturbation types get squeezed into an even smaller 130-dimensional117

subspace, i.e., projections are < 10% of the maximum projection value for all dimensions beyond the118

first 130 dimensions.119

5

Method Anat
A(`∞)

adv
ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

PGD 84.6 48.8 62.3 15.0 15.0
Noise shaping basis V = ID×D

+SNAP[G] 80.7 45.7 66.9 34.6 31.9
+SNAP[U] 85.1 42.7 66.7 28.6 26.6
+SNAP[L] 83.0 44.8 68.6 40.1 35.6

Noise shaping basis V = Uimg

+SNAP[G] 81.7 48.9 67.5 29.8 28.7
+SNAP[U] 82.0 46.6 67.8 27.8 25.7
+SNAP[L] 81.7 46.8 65.9 28.5 27.4

Table V: ResNet-18 CIFAR-10 results showing the impact of noise shaping basis V for `∞-PGD [11]
AT framework with SNAP. In this table, SNAP[G], SNAP[U], and SNAP[L] denote shaped noise
augmentations with Gaussian, Uniform, and Laplace noise distributions, respectively, and Uimg refers
to the singular vector basis of the training images.

2.6 Impact of noise shaping in the image basis120

Recall that, for all experiments in the main text, we chose the noise shaping basis V = ID×D, i.e.,121

the noise was shaped and added in the standard basis in RD, where ID×D denotes the identity matrix122

(see Eq. (1) and Alg. 1 in the main text).123

In this section, we explore the shaped noise augmentation in the image basis, i.e., singular vector124

basis of the training set images. Specifically, we choose V = Uimg = [u1, . . . ,uD], where Uimg125

denotes the singular vector basis of the images in the training set. Thus, the sampled noise vector n0126

(see Eq. (1) in the main text) is scaled by direction-wise standard deviation matrix Σ and rotated by127

Uimg before being added to the input image x.128

The rationale for choosing V = Uimg is as follows: Recent works [7, 18, 17] have demonstrated129

the generative behavior of adversarial perturbations of networks trained with single-attack AT, i.e.,130

adversarial perturbations of robust networks exhibit semantics similar to the input images. Thus, the131

perturbation basis (see section 3 in the main text) of the robust networks trained with single-attack132

AT seems to be aligned with the image basis.133

We repeat the experiments in Table 1 of the main text while keeping all the settings identical except134

for choosing V = Uimg instead of V = ID×D. Table V shows the results. The first three rows135

correspond to V = ID×D and are reproduced from Table 1 of the main text. Note that, in order136

to preserve Anat > 81%, we need to reduce Pnoise = 60 when V = Uimg, since the noise is now137

pixel-wise correlated.138

In Table V, we notice that A(`1)
adv is significantly reduced when V = Uimg as compared to the case139

V = ID×D. More interestingly, all three types of noise distributions result in similar values for A(`1)
adv140

when V = Uimg. We discuss this phenomenon in the next section, i.e., Sec. 2.7 below.141

Table V shows that the orientation of a noise vector is as important as its distribution. The simpler142

choice of V = ID×D turns out to be more effective.143

2.7 Understanding the effectiveness of SNAP[L] for `∞ AT144

In this subsection, we conduct additional studies to further understand the following two observations145

in SNAP: (i) shaped Laplace noise is particularly effective (Table 1 in the main text), and (ii) rotating146

noise vectors (V = Uimg) reduces their effectiveness (Table V in this Supplementary). We study the147

properties of the noise vector n for different noise distributions.148

We conjecture that the Laplace distribution is most effective because of its heavier tail compared to149

Gaussian and Uniform distributions of the same variance. A long-tailed distribution will generate150

more large magnitude elements in a vector drawn from it and hence is more effective in emulating a151

6

SNAP[U]
SNAP[G]
SNAP[L]

Fraction of noise vector dimensions
with magnitude > 0.5

(a)

! = #!×!

Fraction of noise vector dimensions
with magnitude > 0.4

(b)

no
. o

f s
am

pl
es

! = $#$% SNAP[U]
SNAP[G]
SNAP[L]

no
. o

f s
am

pl
es

Figure IV: ResNet18 CIFAR-10 results: histograms of the fraction of noise vector dimensions with
magnitude (a) > 0.5 when V = ID×D, and (b) > 0.4 when V = Uimg. Histograms are plotted for
5000 random noise samples n. The three shaped noise distributions are from the corresponding
networks in Table V.

Method Anat A(U)
adv

Acc
A(f)

adv
ReColorAdv

Vanilla 94.5 0.0 72.0 0.9
`∞-PGD 84.6 15.0 75.6 53.5

Noise shaping basis V = ID×D
+SNAP[G] 80.7 31.9 72.8 55.1
+SNAP[U] 85.1 26.6 75.0 46.9
+SNAP[L] 83.0 35.6 75.3 51.3

Noise shaping basis V = Uimg

+SNAP[G] 81.7 28.7 73.6 54.5
+SNAP[U] 82.0 25.7 73.1 54.0
+SNAP[L] 81.7 27.4 73.4 55.3

Table VI: ResNet-18 CIFAR-10 results showing natural accuracy Anat, adversarial accuracy A(U)
adv

against the union of (`∞, `2, `1) perturbations, accuracy Acc in the presence of common corrup-
tions [6], and adversarial accuracy A(f)

adv against a functional adversarial attack ReColorAdv [8]. All
accuracy numbers are in %. In this table, ID×D denotes D-dimensional identity matrix, while Uimg
denotes singular vector basis of the training images. We find that SNAP augmentations of `∞-PGD
significantly (≈ 20%) improve A(U)

adv while preserving both Acc and A(f)
adv.

strong `1-norm bounded perturbation. Furthermore, the standard (un-rotated) basis preserves this152

unique attribute of samples drawn from such distributions.153

This conjecture is validated by Fig. IV(a) which shows that noise samples drawn from the Laplace154

distribution in the standard basis have the highest average number of dimensions with large (> 0.5)155

magnitudes, followed by Gaussian and Uniform distributions. This correlates well with the results156

in Table 1 in the main text and Table III (first three rows), in that A(`1)
adv is the highest for Laplace157

followed by those for Gaussian and Uniform. Additionally, the use of V = Uimg dissolves this158

distinction between the three distributions as shown in Fig. IV(b) which explains the similar (and159

lower) A(`1)
adv values for all three distributions in Table III.160

Thus, we confirm that the type of noise plays an important role in robustifying single-attack `∞ AT161

frameworks to the union of multiple perturbation models. Specifically, the noise vectors with higher162

fraction of noise dimensions with larger magnitudes are better at complementing `∞ AT frameworks.163

2.8 Evaluating common corruptions and functional attack164

In this subsection, we check if there are any other downsides of SNAP when it improves robustness165

against the union of (`∞, `2, `1) perturbations. In particular, we check if SNAP improvements are166

achieved at the cost of a drop in accuracy against common corruptions [6] or functional adversarial167

attacks [8].168

7

Method Anat
A(`∞)

adv
ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

PGD+SNAP 82.5±0.27 43.1±0.61 66.9±0.57 39.0±0.41 33.7±0.29
FreeAdv+SNAP 83.4±0.25 39.2±0.74 65.7±0.55 36.5±0.60 30.4±0.83

Table VII: ResNet-18 CIFAR-10 results showing the mean and standard deviation for all accuracies
over four different training runs of PGD+SNAP (with superconvergence) and FreeAdv+SNAP. As
observed, the standard deviation in accuracy is ≈ 0.5% in almost all cases, demonstrating the ease of
replicating SNAP results.

We use corrupted images provided by Hendrycks & Dietterich [6] to estimate accuracy in the169

presence of common corruptions (Acc). We average the accuracy numbers across different corruption170

strengths and types. Also, we use the ReColorAdv setup of Laidlaw et al. [9] to estimate accuracy171

against functional adversarial attacks (A(f)
adv). We also make it adaptive to our defense framework172

via appropriate noise averaging (similar to our adaptive PGD attacks [16] discussed in the main173

text) to eliminate any gradient obfuscations. As observed in Table VI, SNAP augmentations of174

PGD AT generally preserve both Acc and A(f)
adv. In particular, 20.6% improvement in A(U)

adv via175

PGD+SNAP[L] (with V = ID×D) is accompanied with the same Acc and only a 2.2% lower A(f)
adv176

(= 51.3%) compared to PGD AT. In contrast, vanilla training achieves an A(f)
adv of only 0.9%. Even177

with V = Uimg, PGD+SNAP[L] achieves a 1.8% higher A(f)
adv along with a 12.4% improvement in178

A(U)
adv . Note that all A(U)

adv numbers are idential to the ones reported in Sec. 2.6.179

We conclude that SNAP augmentation of PGD AT improves A(U)
adv by up to 20% while preserving180

its robustness against common corruptions and functional adversarial attacks. Thus, SNAP expands181

the capabilities of `∞ AT frameworks without any significant downside. However, further work is182

required to improve robustness to a larger class adversarial attacks, such as rotation [5], texture [2],183

etc., simultaneously.184

2.9 Error bars185

In this subsection, we confirm that benefits of SNAP are not specific to any particular choice of186

random seed. Specifically, we run both PGD+SNAP (with superconvergence) and FreeAdv+SNAP187

(see Table 3 in the main text) training four times with different random seeds. Table VII shows188

the mean accuracy and its standard deviation for each of Anat, A(`∞)
adv , A(`2)

adv , A(`1)
adv , and A(U)

adv with189

ResNet-18 on CIFAR-10. We find that the standard deviation of accuracy is ≈ 0.5% in almost all190

cases. This demonstrates the ease of replicating SNAP results.191

3 Additional Details192

3.1 Details of Hyperparameters193

3.1.1 Attack hyperparameters194

As mentioned in the main text, we follow basic PGD attack formulations of Maini et al. [12]. We195

further enhance them to target the full defense – SN layer – since SNAPnet is end-to-end differentiable.196

Specifically, we backpropagate to the primary input x through the SN layer (see Fig. 4(b) in the197

main text). Thus, the final shaped noise distribution is exposed to the adversary. We also account198

for the En[·] (see Eq. (2) in the main text) by explicitly averaging deep net logits over N0 noise199

samples before computing the gradient, which eliminates any gradient obfuscation, and was shown to200

be the strongest attack against noise augmented models [16]. We choose N0 = 8 for all our attack201

evaluations.202

For `2 and `∞ PGD attacks, we choose steps size α = 0.1ε. For `1 PGD attacks, we choose the exact203

same configuration as Maini et al. [12].204

8

3.1.2 Training hyperparameters205

As mentioned in the main text, we introduce SNAP without changing any hyperparameters of BASE()206

AT. All BASE() and BASE()+SNAP training runs on CIFAR-10 employ an SGD optimizer with a207

fixed momentum of 0.9, batch size of 250, and weight decay of 2× 10−4. Also, while accounting208

for the En[·] (see Eq. (2) in the main text), note that N0 = 1 suffices during BASE()+SNAP training.209

Below we provide specific details for each SOTA AT framework:210

BASE() ≡ PGD [11] on CIFAR-10:211

`∞-PGD AT employed `∞-bounded PGD-K attack with ε = 0.031, step size α = 0.008, and212

K = 10. For `2-PGD AT, we used an `2-bounded PGD-K attack with ε = 0.5, step size α = 0.125213

and K = 10. Following Rice et al. [14], we employed 100 epochs for PGD AT with step learning214

rate (LR) schedule, where LR was decayed from 0.1 to 0.01 at epoch 96. Following Maini et al. [12],215

we also employed their cyclic LR schedule to achieve superconvergence in 50 epochs. Following216

Maini et al. [12], we set weight decay to 5× 10−4 in PGD AT.217

In PGD+SNAP, the noise variances were updated every Uf = 10 epochs and we use Pnoise = 160 in218

Tables 1,2, and 3 in the main text.219

BASE() ≡ TRADES [22] on CIFAR-10:220

Following Zhang et al. [22], TRADES AT employed `∞-bounded perturbations with ε = 0.031, step221

size α = 0.007, and attack steps K = 10. We set TRADES parameter 1/λ = 5, which controls the222

weighing of its robustness regularizer. It was trained for 100 epochs with a step LR schedule, where223

LR was decayed to {0.01,0.001,0.0001} at the epochs {75, 90, 100}, respectively. Following Maini224

et al. [12], we also employed their cyclic LR schedule to achieve superconvergence in 50 epochs,225

while keeping all other settings identical.226

In TRADES+SNAP, the noise variances were updated every Uf = 10 epochs and we use Pnoise = 120227

in Tables 2 and 3 in the main text.228

BASE() ≡ FreeAdv [18] on CIFAR-10:229

Following Shafahi et al. [18], FreeAdv AT was trained for 25 epochs, each consisting of a replay of 8.230

It employed `∞ perturbations with ε = 0.031. The learning rate was decayed to {0.01, 0.001, 0.0001}231

at epochs {13, 19, 23}, respectively.232

In FreeAdv+SNAP, the noise variances were updated every Uf = 5 epochs, since the replay of 8233

scales down the total number of epochs. Also, we use Pnoise = 160 in Tables 2 and 3 in the main text.234

BASE() ≡ FastAdv [20] on CIFAR-10:235

Following Wong et al. [20], FastAdv AT employed a single-step `∞ norm bounded FGSM attack236

with ε = 8/255, step size α = 10/255, and random noise initialization. It was trained for 50 epochs237

with the same cyclic LR schedule used by Wong et al. [20]. We used a weight decay of 5× 10−4.238

In FastAdv+SNAP, the noise variances were updated every Uf = 10 epochs and we use Pnoise = 200239

in Tables 2 and 3 in the main text.240

BASE() ≡ FreeAdv [18] on ImageNet:241

Following Shafahi et al. [18], FreeAdv AT was trained for 25 epochs, each consisting of a replay of 4.242

It employed `∞ perturbations with ε = 4/255, identical to the authors’ original setup. The LR was243

decayed by 0.1 every 8 epochs, starting with the initial LR of 0.1. We used weight decay of 1× 10−4.244

In FreeAdv+SNAP, the noise variances were updated every Uf = 5 epochs, since the replay of 4245

scales down the total number of epochs. Also, we use Pnoise = 4500 in Table 4 in the main text,246

which corresponds to noise standard deviation of ∼ 0.17 per pixel on average.247

MSD-K [12] experiments for K ∈ {30, 20, 10, 5}:248

Maini et al. [12] report results for only MSD-50 in their paper. We produce MSD-K results using their249

publicly available code. While reducing the number of steps in MSD, we appropriately increase the250

step size α for the attack. For MSD-50, Maini et al. [12] used α = (0.003, 0.05, 1.0) for (`∞, `2, `1)251

perturbations, respectively. We proportionately increase the step size to α = (0.005, 0.084, 1.68) and252

α = (0.0075, 0.125, 2.5) for MSD-30 and MSD-20, respectively.253

9

For MSD-10 and MSD-5, we choose α = (0.0075, 0.125, 2.5), since we found that further increasing254

the step size α lead to lower final adversarial accuracy.255

Other than the step-size, we do not make any change to the original code by Maini et al. [12].256

AVG-K [19] experiments for K ∈ {30, 20, 10, 5}:257

For AVG-50, we use the publicly available model provided by Maini et al. [12]. We produce AVG-K258

results using the Maini et al. [12] code. When reducing the number of steps, we appropriately259

increase the step size α for `∞ and `2 perturbations. Increasing the step size for `1 perturbations260

resulted in significantly lowerA(U)
adv , and thus α for `1 perturbations was kept constant while reducing261

the number of steps. For AVG-50, Maini et al. [12] used α = (0.003, 0.05, 1.0) for (`∞, `2, `1)262

perturbations, respectively. We increase the `∞ and `2 step sizes to set α = (0.005, 0.084, 1.0) and263

α = (0.0075, 0.125, 1.0) for AVG-30 and AVG-20 respectively.264

As with MSD, we do not further increase the step size α for AVG-10, AVG-5, and instead choose265

α = (0.0075, 0.125, 1.0). Even here, we found that increasing the step size for `1 perturbations results266

in lower A(U)
adv . For AVG-2, we increase the step size for all perturbations to α = (0.024, 0.4, 8).267

PAT [9] on CIFAR-10:268

For comparisons with Laidlaw et al. [9], we evaluate their publicly available self-bounded ResNet-50269

model.270

3.2 Details about SNAP271

3.2.1 Distribution Update Epoch272

In the SNAP distribution update epoch (see Algorithm 1 in the main text), we employ `2 norm-273

bounded PGD attack to compute perturbation vectors η. We use only 20% of the training data, which274

is randomly selected during every SNAP update epoch. Recall that normalized root mean squared275

projections of η dictate the updated noise variances (Eq. (3) in the main text). In the following we276

provide more details specific to CIFAR-10 and ImageNet data:277

CIFAR-10: we employ 10 step `2-PGD attack with ε = 1.8 and N0 = 4.278

ImageNet: we employ 4 step `2-PGD attack with ε = 4.0 and N0 = 1.279

Note that `2 norm bound ε for the PGD attack here does not play any role, since η perturbation280

projections are normalized.281

3.2.2 Noise variance initialization in SNAP282

In SNAP, we initialize the noise variances to be uniform across all dimensions. Specifically, in283

Algorithm 1 in the main text, Σ0 = Diag
[√

Pnoise
D , . . . ,

√
Pnoise
D

]
for a given value of Pnoise.284

4 Accompanying Code and Pretrained Models285

As a part of this supplementary material, we share our code to reproduce PGD+SNAP and286

TRADES+SNAP results on CIFAR-10 (Table 2 in the main text) and FreeAdv+SNAP results on287

ImageNet (Table 4 in the main text). We also share corresponding pretrained models to facilitate288

quick reproduction of our results.289

4.1 Code and models are available at link: https://drive.google.com/drive/folders/290

1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing291

References292

[1] Andriushchenko, M., Croce, F., Flammarion, N., and Hein, M. Square attack: a query-efficient293

black-box adversarial attack via random search. In European Conference on Computer Vision,294

pp. 484–501. Springer, 2020. 2, 3295

10

https://drive.google.com/drive/folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing
https://drive.google.com/drive/folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing
https://drive.google.com/drive/folders/1yBsLkpjAEw_U2dP0P3lgO92Yah7wZsQ6?usp=sharing

[2] Bhattad, A., Chong, M. J., Liang, K., Li, B., and Forsyth, D. A. Unrestricted adversarial296

examples via semantic manipulation. arXiv preprint arXiv:1904.06347, 2019. 8297

[3] Brendel, W., Rauber, J., and Bethge, M. Decision-based adversarial attacks: Reliable at-298

tacks against black-box machine learning models. In International Conference on Learning299

Representations, 2018. 2, 3300

[4] Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robustness via randomized301

smoothing. In International Conference on Machine Learning (ICML), 2019. 3302

[5] Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A. Exploring the landscape of303

spatial robustness. In International Conference on Machine Learning, pp. 1802–1811. PMLR,304

2019. 8305

[6] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corrup-306

tions and perturbations. In International Conference on Learning Representations, 2018. 7,307

8308

[7] Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. Adversarial examples309

are not bugs, they are features. arXiv preprint arXiv:1905.02175, 2019. 6310

[8] Laidlaw, C. and Feizi, S. Functional adversarial attacks. Advances in Neural Information311

Processing Systems, 2019. 7312

[9] Laidlaw, C., Singla, S., and Feizi, S. Perceptual adversarial robustness: Defense against unseen313

threat models. International Conference on Learning Representations (ICLR), 2018. 8, 10314

[10] Madaan, D., Shin, J., and Hwang, S. J. Learning to generate noise for robustness against315

multiple perturbations. arXiv preprint arXiv:2006.12135, 2020. 1, 4316

[11] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models317

resistant to adversarial attacks. International Conference on Learning Representations (ICLR),318

2018. 4, 6, 9319

[12] Maini, P., Wong, E., and Kolter, J. Z. Adversarial robustness against the union of multiple320

perturbation models. In International Conference on Machine Learning (ICML), 2020. 2, 8, 9,321

10322

[13] Rauber, J., Zimmermann, R., Bethge, M., and Brendel, W. Foolbox native: Fast adversarial323

attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and324

jax. Journal of Open Source Software, 5(53):2607, 2020. doi: 10.21105/joss.02607. URL325

https://doi.org/10.21105/joss.02607. 2326

[14] Rice, L., Wong, E., and Kolter, Z. Overfitting in adversarially robust deep learning. In327

International Conference on Machine Learning, pp. 8093–8104. PMLR, 2020. 9328

[15] Rony, J., Hafemann, L. G., Oliveira, L. S., Ayed, I. B., Sabourin, R., and Granger, E. Decou-329

pling direction and norm for efficient gradient-based l2 adversarial attacks and defenses. In330

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.331

4322–4330, 2019. 2, 3332

[16] Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H., Bubeck, S., and Yang, G. Provably333

robust deep learning via adversarially trained smoothed classifiers. In Advances in Neural334

Information Processing Systems, pp. 11289–11300, 2019. 3, 8335

[17] Santurkar, S., Ilyas, A., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. Image synthesis336

with a single (robust) classifier. In Advances in Neural Information Processing Systems, pp.337

1262–1273, 2019. 6338

[18] Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J., Studer, C., Davis, L. S., Taylor, G.,339

and Goldstein, T. Adversarial training for free! Advances in Neural Information Processing340

Systems (NeurIPS), 2019. 6, 9341

[19] Tramèr, F. and Boneh, D. Adversarial training and robustness for multiple perturbations. In342

Advances in Neural Information Processing Systems, pp. 5858–5868, 2019. 10343

11

https://doi.org/10.21105/joss.02607

[20] Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free: Revisiting adversarial training. In344

International Conference on Machine Learning (ICLR), 2020. 9345

[21] Yang, G., Duan, T., Hu, E., Salman, H., Razenshteyn, I., and Li, J. Randomized smoothing of346

all shapes and sizes. International Conference on Machine Learning (ICML), 2020. 3347

[22] Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. Theoretically principled348

trade-off between robustness and accuracy. In International Conference on Machine Learning349

(ICML), 2019. 9350

12

