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A Policy-Induced Joint Measure

We introduce policy-induced joint measure as a useful tool to help prove Theorems 1 and 2. Specif-
ically, for any h, h′, we define pπ(s1:h, a1:h′) as the joint distribution of (s1:h, a1:h′) induced by
policy π. Based on the underlying Markov decision process, it can be easily verified that pπ takes the
following forms.

pπ(s1) = ρ(s1), (16)
pπ(s1:h, a1:h−1) = pπ(s1:h−1, a1:h−1)P(sh|sh−1, ah−1), (17)

pπ(s1:h, a1:h) = ρ(s1)π1(a1|s1)
h∏

h′=2

P(sh′ |sh′−1, ah′−1)πh′(ah′ |s1:h′ , a1:h′−1). (18)

Eqs. (17) and (18) further imply that
pπ(s1:h, a1:h) = pπ(s1:h, a1:h−1)π(ah|s1:h, a1:h−1). (19)

Conversely, given a proper joint probability measure p, we can infer its corresponding inducing policy
π as follows.
Lemma A.1. Consider any joint probability measure p that satisfies eqs. (16) and (17) (replace all
pπ with p). Then, the following policy π induces p.

πh(ah|s1:h, a1:h−1) =


p(s1:h, a1:h)

p(s1:h, a1:h−1)
, if p(s1:h, a1:h−1) > 0

arbitrary distribution, if p(s1:h, a1:h−1) = 0

. (20)

Proof. It suffices to prove that pπ(s1:h, a1:h) = p(s1:h, a1:h) for any s1:h, a1:h, i.e., p is exactly the
joint measure pπ induced by π. We consider the following two cases.

Case 1: p(s1:h, a1:h−1) > 0. In this case, we must have that p(s1:h′ , a1:h′−1) > 0 for any 1 ≤ h′ ≤ h.
Therefore, by eq. (20) we have πh′(ah′ |s1:h′ , a1:h′−1) = p(s1:h′ ,a1:h′ )

p(s1:h′ ,a1:h′−1)
for any 1 ≤ h′ ≤ h.

Substitute this policy π into eq. (18) and note that ρ(s1) = p(s1), we obtain that

pπ(s1:h, a1:h) =p(s1)
p(s1, a1)

p(s1)

h∏
h′=2

P(sh′ |sh′−1, ah′−1)
p(s1:h′ , a1:h′)

p(s1:h′ , a1:h′−1)
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(i)
=p(s1, a1)

h∏
h′=2

p(s1:h′ , a1:h′)

p(s1:h′−1, a1:h′−1)
= p(s1:h, a1:h),

where (i) follows from eq. (17) (replace all pπ with p).

Case 2: p(s1:h, a1:h−1) = 0. In this case, we have that p(s1:h, a1:h) = 0. Hence, it suffices to prove
that pπ(s1:h, a1:h) = 0 as well. We further consider the following two subcases.

(Case 2.1) If p(s1) = ρ(s1) = 0, then pπ(s1:h, a1:h) = 0 by substituting ρ(s1) = 0 into eq. (18).

(Case 2.2) If p(s1) = ρ(s1) > 0 and because Case 2 assumes that p(s1:h, a1:h−1) = 0, then there
must exist 1 ≤ h′ ≤ h − 1 such that p(s1:h′ , a1:h′−1) > 0 and p(s1:h′+1, a1:h′) = 0. On the other
hand, note that eq. (18) implies that pπ(s1:h, a1:h) contains the following multiplicative factor

πh′(ah′ |s1:h′ , a1:h′−1)P(sh′+1|sh′ , ah′)

= P(sh′+1|sh′ , ah′)
p(s1:h′ , a1:h′)

p(s1:h′ , a1:h′−1)

(i)
=

p(s1:h′+1, a1:h′)

p(s1:h′ , a1:h′−1)
= 0 (21)

where (i) uses eq. (17). Thus we conclude that pπ(s1:h, a1:h) = 0.

With the policy-induced joint measure pπ, we can rewrite the value function V
(m)
j (π) :=

Eπ

[∑H
h=1 r

(m)
j,h

∣∣s1 ∼ ρ
]

and the Lagrangian function eq. (6) as follows.

V
(m)
j (π) = Ṽ

(m)
j (pπ) :=

∑
s1:H ,a1:H

pπ(s1:H , a1:H)

H∑
h=1

r
(m)
j,h (sh, ah), (22)

L(m)(π, λ(m)) = L̃(m)(pπ, λ
(m)) := Ṽ

(m)
0 (pπ) +

dm∑
j=1

λj

(
Ṽ

(m)
j (pπ)− c

(m)
j

)
. (23)

Thus, both the value function V
(m)
j (π) and the Lagrangian function L(m)(π, λ(m)) can be rewritten

as linear functions of pπ . Such a linear form helps simplify the problem and prove the key Theorems
1 and 2.

B Properties of Modification

In this section, we present some useful properties of the modification operator. Recall that for any
policy π and any modification operator ϕ(m), the modified policy ϕ

(m)
h ◦ πh at time step h is defined

as follows: we first generate joint action ah = [a
(m)
h , a

(\m)
h ] ∼ πh(·|s1:h, a1:h−1). Then, ϕ(m)

h

randomly modifies a(m)
h to ã

(m)
h ∼ ϕ

(m)
h (·|s1:h, a1:h−1, a

(m)
h ). To summarize, the modified policy

ϕ
(m)
h ◦ πh takes the following form.

(ϕ
(m)
h ◦ πh)

([
ã
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
=

∑
a
(m)
h

ϕ
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )πh(ah|s1:h, a1:h−1). (24)

Next, let pϕ(m)◦π and pϕ̃(m)◦π be the joint measures induced by the modified policies ϕ(m) ◦ π and

ϕ̃(m) ◦ π, respectively, for any ϕ(m), ϕ̃(m). In the proof of Theorems 1 and 2, we introduce the
following linear combination of these two joint measures.

pλ := λpϕ(m)◦π + (1− λ)pϕ̃(m)◦π, λ ∈ R. (25)

We note that
∑

s1:h,a1:h
pλ(s1:h, a1:h) = 1 for any λ ∈ R, so pλ is also a proper probability measure

if λ is selected such that pλ(s1:h, a1:h) ≥ 0 for any s1:h, a1:h. In this case, since the joint measures
pϕ(m)◦π and pϕ̃(m)◦π satisfy eqs. (16) and (17) by definition, it is easy to verify that pλ also satisfies
eqs. (16) and (17) and hence is a proper joint measure. Therefore, by Lemma A.1 we can find its
inducing policy πλ using eq. (20). Next, we show that such an inducing policy πλ can actually be
viewed as the policy π modified by a certain stochastic modification.
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Lemma B.1. Regarding the pλ defined in eq. (25), if λ ∈ R is selected such that the following two
conditions hold for any s1:h, a1:h−1, a

(m)
h , ã

(m)
h :

pλ(s1:h, a1:h−1) ≥ 0 (26)

λpϕ(m)◦π(s1:h, a1:h−1)ϕ
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )

+ (1− λ)pϕ̃(m)◦π(s1:h, a1:h−1)ϕ̃
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) ≥ 0, (27)

then its inducing policy (defined by eq. (20)) can be written as πλ = ϕ
(m)
λ ◦ π, where the stochastic

modification ϕ
(m)
λ takes the following form.

ϕ
(m)
λ,h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) =

1
pλ(s1:h,a1:h−1)

[
λpϕ(m)◦π(s1:h, a1:h−1)ϕ

(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )

+(1− λ)pϕ̃(m)◦π(s1:h, a1:h−1)ϕ̃
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )

]
, if pλ(s1:h, a1:h−1) > 0

Arbitrary distribution, if pλ(s1:h, a1:h−1) = 0

(28)

Proof. We first show that ϕ(m)
λ,h (·|s1:h, a1:h−1, a

(m)
h )) is a proper stochastic modification. By eq. (28),

we only need to consider the case pλ(s1:h, a1:h−1) > 0. In this case, based on the condition in
eq. (27), we conclude that ϕ(m)

λ,h (ã
(m)
h |s1:h, a1:h−1, a

(m)
h ) ≥ 0. In addition,∑

ã
(m)
h ∈A(m)

ϕ
(m)
λ,h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )

=
1

pλ(s1:h, a1:h−1)

(
λpϕ(m)◦π(s1:h, a1:h−1)

∑
ã
(m)
h ∈A(m)

ϕ
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )

+ (1− λ)pϕ̃(m)◦π(s1:h, a1:h−1)
∑

ã
(m)
h ∈A(m)

ϕ̃
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h )

)
=

1

pλ(s1:h, a1:h−1)

(
λpϕ(m)◦π(s1:h, a1:h−1) + (1− λ)pϕ̃(m)◦π(s1:h, a1:h−1)

)
= 1.

Therefore, ϕλ is a proper stochastic modification.

Next, we prove that the policy that induces pλ takes the form πλ = ϕ
(m)
λ ◦ π. We consider two cases.

Case 1: pλ(s1:h, a1:h−1) > 0. In this case, we obtain that

πλ,h(ah|s1:h, a1:h−1)

(i)
=

1

pλ(s1:h, a1:h−1)

(
λpϕ(m)◦π(s1:h, a1:h) + (1− λ)pϕ̃(m)◦π(s1:h, a1:h)

)
(ii)
=

1

pλ(s1:h, a1:h−1)

(
λpϕ(m)◦π(s1:h, a1:h−1)(ϕ

(m)
h ◦ πh)(ah|s1:h, a1:h−1)

+ (1− λ)pϕ̃(m)◦π(s1:h, a1:h−1)(ϕ̃
(m)
h ◦ πh)(ah|s1:h, a1:h−1)

)
(iii)
=

1

pλ(s1:h, a1:h−1)

∑
ã
(m)
h

(
λpϕ(m)◦π(s1:h, a1:h−1)π

(m)
h ([ã

(m)
h , a

(\m)
h ]|s1:h, a1:h−1)

ϕ
(m)
h (a

(m)
h |s1:h, a1:h−1, ã

(m)
h ) + (1− λ)pϕ̃(m)◦π(s1:h, a1:h−1)

π
(m)
h ([ã

(m)
h , a

(\m)
h ]|s1:h, a1:h−1)ϕ̃

(m)
h (a

(m)
h |s1:h, a1:h−1, ã

(m)
h )

)
(iv)
=

∑
ã
(m)
h

π
(m)
h ([ã

(m)
h , a

(\m)
h ]|s1:h, a1:h−1)ϕ

(m)
λ,h (a

(m)
h |s1:h, a1:h−1, ã

(m)
h )
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where (i) uses eqs. (20) and (25), (ii) uses eq. (19), (iii) uses eq. (24), and (iv) uses eq. (28). This
proves the claim due to eq. (24).

Case 2: pλ(s1:h, a1:h−1) = 0. In this case, both ϕ
(m)
λ,h and πλ can be arbitrarily defined. Hence, we

can simply define πλ by eq. (24).

C Proof of Theorem 1

C.1 Proof of item 1 for unconstrained Markov game

Throughout the proof, for any policy π, we denote ϕ̃(m) as the optimal stochastic modification
associated with π, i.e., V (m)

0 (ϕ̃(m) ◦π) achieves the maximum value over all stochastic modifications.
In order for π to be a CE, it must satisfy V

(m)
0 (π) ≥ V

(m)
0 (ϕ̃(m) ◦ π).

If for any optimal stochastic modification ϕ̃(m) associated with π, we can construct a corresponding
deterministic modification ϕ(m) such that V (m)

0 (ϕ(m) ◦ π) = V
(m)
0 (ϕ̃(m) ◦ π), then the condition of

item 1 guarantees that π is a CE and then item 1 is proved.

Next, for any policy π and any associated optimal stochastic modification ϕ̃(m), we construct
a deterministic modification ϕ(m) as follows: for any s1:h, a1:h−1, a

(m)
h , select an arbitrary

ã
(m)
h such that ϕ̃(m)(ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) > 0 (this always exists) and then simply define

ϕ(m)(ã
(m)
h |s1:h, a1:h−1, a

(m)
h ) = 1, and 0 otherwise. It suffices to prove that V (m)

0 (ϕ(m) ◦ π) =

V
(m)
0 (ϕ̃(m) ◦ π) for any π satisfying the condition of item 1.

To proceed, we claim that one can find λ < 0 such that the joint measure pλ := λpϕ(m)◦π + (1 −
λ)pϕ̃(m)◦π satisfies eqs. (26) and (27). We will prove the validity of this claim later. Suppose this

claim holds. Then based on Lemma B.1, the inducing policy of pλ takes the form πλ = ϕ
(m)
λ ◦ π,

where ϕ
(m)
λ is defined by eq. (28). Then, we obtain that

V
(m)
0 (ϕ̃(m) ◦ π)

(i)

≥ V
(m)
0 (ϕ

(m)
λ ◦ π) (ii)

= Ṽ
(m)
0 (pλ)

= Ṽ
(m)
0

(
λpϕ(m)◦π + (1− λ)pϕ̃(m)◦π

)
(iii)
= λṼ

(m)
0 (pϕ(m)◦π) + (1− λ)Ṽ

(m)
0 (pϕ̃(m)◦π)

(iv)
= λV

(m)
0 (ϕ(m) ◦ π) + (1− λ)V

(m)
0 (ϕ̃(m) ◦ π),

where (i) uses the optimality of ϕ̃(m), (ii)-(iv) use the linear form of Ṽ (m)
0 (pπ) defined in eq. (22).

The above inequality along with λ < 0 implies that V (m)
0 (ϕ(m) ◦ π) ≥ V

(m)
0 (ϕ̃(m) ◦ π). On the

other hand, V (m)
0 (ϕ̃(m) ◦π) ≥ V

(m)
0 (ϕ(m) ◦π) based on the optimality of the stochastic modification

ϕ̃(m). Hence, V (m)
0 (ϕ(m) ◦ π) = V

(m)
0 (ϕ̃(m) ◦ π) as desired. All left is to find λ < 0 such that the

joint measure pλ satisfies eqs. (26) and (27). We prove them as follows.

Proof of eq. (26): Recall that pλ = λpϕ(m)◦π+(1−λ)pϕ̃(m)◦π and λ < 0. If pϕ(m)◦π(s1:h, a1:h−1) =

0, it is clear that eq. (26) holds. So we just need to consider the other case where
pϕ(m)◦π(s1:h, a1:h−1) > 0. In this case and by eq. (18), we must have that ρ(s1), (ϕ

(m)
1 ◦

π1)(a1|s1),P(sh|sh−1, ah−1), (ϕ
(m)
h ◦ πh)(ah|s1:h, a1:h−1) > 0 for any h = 2, . . . ,H . Then,

eq. (24) implies that for any h = 2, . . . ,H ,

0 < (ϕ
(m)
h ◦ πh)

(
ah|s1:h, a1:h−1

)
=

∑
ã
(m)
h

ϕ
(m)
h (a

(m)
h |s1:h, a1:h−1, ã

(m)
h )πh

([
ã
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
.

Hence, there must exist â(m)
h such that ϕ(m)

h (a
(m)
h |s1:h, a1:h−1, â

(m)
h )πh

([
â
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
>

0. As ϕ(m)
h is the deterministic modification constructed at the beginning of this proof, we must have
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ϕ
(m)
h (a

(m)
h |s1:h, a1:h−1, â

(m)
h ) = 1 and therefore the corresponding stochastic modification satisfies

ϕ̃
(m)
h (a

(m)
h |s1:h, a1:h−1, â

(m)
h ) > 0. Then, eq. (24) implies that

(ϕ̃
(m)
h ◦ πh)

(
ah|s1:h, a1:h−1

)
=

∑
ã
(m)
h

ϕ̃
(m)
h (a

(m)
h |s1:h, a1:h−1, ã

(m)
h )πh

([
ã
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
≥ ϕ̃

(m)
h (a

(m)
h |s1:h, a1:h−1, â

(m)
h )πh

([
â
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
> 0.

Similarly, we can prove that (ϕ̃(m)
1 ◦ π1)(a1|s1) > 0 from (ϕ

(m)
1 ◦ π1)(a1|s1) > 0. Therefore, based

on eq. (18), it is proved that whenever pϕ(m)◦π(s1:h, a1:h−1) > 0, we have

pϕ̃(m)◦π(s1:h, a1:h)

= ρ(s1)(ϕ̃
(m)
1 ◦ π1)(a1|s1)

h∏
h′=2

P(sh′ |sh′−1, ah′−1)(ϕ̃
(m)
h′ ◦ πh′)(ah′ |s1:h′ , a1:h′−1) > 0. (29)

Therefore, eq. (26) holds for

0 > λ ≥ −
pϕ̃(m)◦π(s1:h, a1:h)

pϕ(m)◦π(s1:h, a1:h)− pϕ̃(m)◦π(s1:h, a1:h)
:= w(s1:h, a1:h),

for any s1:h, a1:h whenever pϕ(m)◦π(s1:h, a1:h) > pϕ̃(m)◦π(s1:h, a1:h), which implies that
pϕ(m)◦π(s1:h, a1:h) > 0 and therefore pϕ̃(m)◦π(s1:h, a1:h) > 0 based on eq. (29). Thus, we con-
clude that w(s1:h, a1:h) < 0. Consider the finite (and possibly empty) set A1 := {w(s1:h, a1:h) :
1 ≤ h ≤ H, pϕ(m)◦π(s1:h, a1:h) > pϕ̃(m)◦π(s1:h, a1:h)}. If it is non-empty, eq. (26) holds for all
0 > λ ≥ maxA1 for constant maxA1 < 0; Otherwise, eq. (26) holds for all λ < 0.

Proof of eq. (27): If pϕ(m)◦π(s1:h, a1:h−1)ϕ
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) = 0 and λ < 0, then

eq. (27) holds. Consider the other case pϕ(m)◦π(s1:h, a1:h−1)ϕ
(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) > 0 and

λ < 0. In this case, we have pϕ̃(m)◦π(s1:h, a1:h−1) > 0 as proved in the proof of eq. (26), and we

also have ϕ(m)
h (ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) = 1 > 0 and thus ϕ̃(m)

h (ã
(m)
h |s1:h, a1:h−1, a

(m)
h ) > 0 based

on the construction of ϕ(m)
h . Following the same proof logic as that of eq. (26), we can find a constant

A2 < 0 such that eq. (27) holds for all 0 > λ ≥ A2.

In summary, we have proved that there exists λ < 0 that guarantees both eqs. (26) and (27).

C.2 Proof of item 2 for constrained Markov game

Here we construct a counter example to prove item 2. Consider a constrained Markov game with
only one state S = {s}, two agents with action spaces A1 = A2 = {0, 1} and horizon H = 1. For
simplicity, we drop the time step index h = 1 and state s in all notations throughout this example.
Specifically, we denote π(a(1), a(2)), π(m)(a(m)), ϕ(m)(ã(m)|a(m)), m = 1, 2, as the joint policy,
marginal policy and stochastic modification, respectively.

For both agents m = 1, 2, we define rewards r(m)
0 = a(m), r(m)

1 = a(0) + a(1), r(m)
2 = 2− a(0) −

a(1) and constraint thresholds c
(m)
1 = c

(m)
2 = 0.6. Therefore, V (m)

0 (π) = Eπr
(m)
0 = π(m)(1),

V
(m)
1 (π) = Eπr

(m)
1 = π(1)(1) + π(2)(1) and V

(m)
2 (π) = Eπr

(m)
2 = 2 − π(1)(1) − π(2)(1) =

π(1)(0) + π(2)(0). Therefore, for both agents m = 1, 2, their value function constraints V (m)
1 (π) ≥

0.6, V
(m)
2 (π) ≥ 0.6 are equivalent to the following condition

0.6 ≤ π(1)(1) + π(2)(1) ≤ 1.4. (30)

Now consider a uniform policy π where π(a(1), a(2)) = 0.25 for all a(1), a(2) ∈ {0, 1}. This is a
product policy which generates independent uniformly distributed actions a(1), a(2) with π(1)(1) =

π(2)(1) = 0.5 that satisfy the constraints in eq. (30). Note thatA(1) only includes two actions. Hence,
the set of all possible deterministic modifications ϕ(1) includes the following three cases.
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(i) ϕ(1) ◦ π = π: either ϕ(1) modifies any a(1) to a(1) or modifies any a(1) to 1− a(1);
(ii) ϕ(1) ◦ π = π′ that always generates a(1) = 0 and generates a(2) uniformly at random: ϕ(1)

modifies any a(1) to 0;
(iii) ϕ(1) ◦ π = π′′ that always generates a(1) = 1 and generates a(2) uniformly at random: ϕ(1)

modifies any a(1) to 1.

However, π′ and π′′ do not satisfy the constraint (30) since π′(1)(1) + π′(2)(1) = 0.5 and π′′(1)(1) +
π′′(2)(1) = 1.5. Hence, the only feasible deterministic modifications ϕ(1) are the two ones in (i) with
ϕ(1) ◦ π = π, which implies that V (1)

0 (ϕ(1) ◦ π) = V
(1)
0 (π) = π(1)(1) = 0.5. Therefore, such a π

satisfies the assumption of item 2.

Now consider a stochastic modification ϕ(1) defined by ϕ(1)(1|a1) = 0.9 and ϕ(1)(0|a1) = 0.1 for
a1 ∈ {0, 1}. Then ϕ(1) ◦ π independently generates Bernoulli distributed actions a(1) ∼ Bern(0.9)
and a(2) ∼ Bern(0.5). Hence, (ϕ(1) ◦π)(1)(1)+(ϕ(1) ◦π)(2)(1) = 1.4, which means ϕ(1) is feasible
based on eq. (30). In addition, V (1)

0 (ϕ(1) ◦ π) = (ϕ(1) ◦ π)(1)(1) = 0.9, which is strictly larger than
V

(1)
0 (π) = 0.5. Therefore, π is not a CE as defined in Definition 3.2.

D Proof of Theorem 2

For any policy π and its associated joint measure pπ, recall the following equivalent Lagrangian
functions defined in eq. (23).

L(m)(π, λ(m)) = L̃(m)(pπ, λ
(m)).

Then, the desired strong duality result shown in eq. (7) is equivalent to the following equation.

max
p∈X

min
λ(m)∈Rdm

+

L̃(m)(p, λ(m)) = min
λ(m)∈Rdm

+

max
p∈X

L̃(m)(p, λ(m)),

where the set X := {pϕ(m)◦π : ϕ(m) is a stochastic modification} is defined for the fixed π. The nice
property of the Lagrangian function L̃(m)(p, λ(m)) is that it is a linear function in p, which has an
advantage toward establishing strong duality.

Based on the minimax theorem (Lemma 9.2 of [2]), it suffices to prove the following properties:

(I). L̃(m)(p, ·) is convex and lower semi-continuous, and L̃(m)(·, p) is concave. These properties
directly follow from the definition of L̃ in eq. (23).

(II). Rdm
+ is a convex set, which holds obviously.

(III). X is a convex set, which follows from Lemma B.1 since eqs. (26) and (27) always hold for
λ ∈ [0, 1].

(IV). X is a compact set.

Hence, it remains to prove (IV).

As the state space S, action apace A and the horizon H are finite, we can represent pπ as a vector
with entries pπ(s1:H , a1:H) for every s1:H , a1:H ∈ SH × AH . Hence, the set X ⊂ [0, 1](|S||A|)H

is bounded. Then, it suffices to prove that X is a closed set, i.e., p ∈ X if p
ϕ
(m)

[k]
◦π(s1:H , a1:H)

k→

p(s1:H , a1:H),∀s1:H , a1:H for some p
ϕ
(m)

[k]
◦π ∈ X (Note that the notation ϕ

(m)
[k] indexed by k differs

from ϕ
(m)
h where h denotes time step).

Similar toX , any stochastic modification ϕ(m) can also be seen as a bounded finite-dimensional vector
with entries ϕ(m)(ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) ∈ [0, 1]. Hence, {ϕ(m)

[k] : k ∈ N+} has a convergent sub-

sequence {ϕ(m)
[ki]

: i ∈ N+} such that ϕ(m)
[ki]

(ã
(m)
h |s1:h, a1:h−1, a

(m)
h )

i→ ϕ∗(ã
(m)
h |s1:h, a1:h−1, a

(m)
h )

for any s1:h, a1:h−1, a
(m)
h , ã

(m)
h , which implies that ϕ∗(ã

(m)
h |s1:h, a1:h−1, a

(m)
h ) ≥ 0 and∑

ã
(m)
h

ϕ∗(ã
(m)
h |s1:h, a1:h−1, a

(m)
h ) = 1. Therefore, ϕ∗ is a proper stochastic modification.
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Then based on eq. (24), it holds for any s1:h, a1:h that

(ϕ
(m)
[ki],h

◦ πh)
(
ah|s1:h, a1:h−1

)
=

∑
ã
(m)
h

ϕ
(m)
[ki],h

(a
(m)
h |s1:h, a1:h−1, ã

(m)
h )πh

([
ã
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
i→

∑
ã
(m)
h

ϕ∗
h(a

(m)
h |s1:h, a1:h−1, ã

(m)
h )πh

([
ã
(m)
h , a

(\m)
h

]
|s1:h, a1:h−1

)
= (ϕ∗

h ◦ πh)(ah|s1:h, a1:h−1). (31)

On one hand, the above inequality and eq. (18) imply that for any s1:h, a1:h, p
ϕ
(m)

[ki]
◦π(s1:h, a1:h)

i→

pϕ∗◦π(s1:h, a1:h). On the other hand, p
ϕ
(m)

[ki]
◦π(s1:h, a1:h)

i→ p(s1:h, a1:h). Therefore, p = pϕ∗◦π for

ϕ∗ being a stochastic modification, and thus p ∈ X .

E The Range of the Optimal Dual Variable

Before proving Theorem 3 and Corollary 5.1 on the non-asymptotic convergence of Algorithm 1,
we first consider the optimal dual variable λ

(m)
∗ of the minimax optimization problem in eq. (7) and

derive its range below, which is important for the selection of the projection set Λ(m) in Algorithm 1.

Lemma E.1. The optimal dual variable λ
(m)
∗ satisfies the following range.

λ
(m)
∗,j ≤

Hr
(m)
0,max

ξ
(m)
j

, j = 1, . . . , dm. (32)

Proof. Given π, denote ϕ
(m)
∗ as the optimal solution to the constrained optimization problem in

eq. (4) and denote ϕ̃(m) as the stochastic modification that satisfies Assumption 1, i.e., V (m)(ϕ̃(m) ◦
π)− c(m) ≥ ξ(m). Then we have

Hr
(m)
0,max

(i)

≥ V
(m)
0

(
ϕ
(m)
∗ ◦ π

)
(ii)
= max

ϕ(m)
L(m)

(
ϕ(m) ◦ π, λ(m)

∗
)

≥ L(m)
(
ϕ̃(m) ◦ π, λ(m)

∗
)

= V
(m)
0 (ϕ̃(m) ◦ π) +

dm∑
j=1

λ
(m)
∗,j

(
V

(m)
j (ϕ̃(m) ◦ π)− c

(m)
j

)
(iii)

≥
dm∑
j=1

λ
(m)
∗,j ξ

(m)
j ,

where (i) and (iii) use V
(m)
0 (π) ∈ [0, Hr

(m)
0,max],∀j = 0, 1, . . . , dm which is directly implied by As-

sumption 2, (ii) uses Theorem 2 which implies the equivalence between the constrained optimization
problem in eq. (4) and the minimax optimization problem in eq. (7), and (iii) also uses λ(m)

∗,j ≥ 0 and

V
(m)
j (π)− c

(m)
j ≥ ξ

(m)
j . Since ξ

(m)
j > 0, the above inequality implies eq. (32)

F Proof of Theorem 3

Assumption 2 and the value functions defined in eq. (4) imply that for any m = 1, . . . ,M , j =
0, 1, . . . , dm and joint policy π, we have

0 ≤ V
(m)
j (π) = Eπ

[ H∑
h=1

r
(m)
j,h (sh, ah)

∣∣∣s1 ∼ ρ
]
≤ Hr

(m)
j,max. (33)
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Hence, for any m = 1, . . . ,M and joint policy π

∥V (m)(π)∥ =

√√√√ dm∑
j=1

V
(m)
j (π)2 ≤ H

√√√√ dm∑
j=1

(r
(m)
j,max)

2 = HR(m)
max (34)

Furthermore, Assumption 1 implies that there is a joint policy π′ such that 0 ≤ c(m) ≤ V (m)(π′), so

∥c(m)∥ ≤ ∥V (m)(π′)∥ ≤ HR(m)
max. (35)

Then,

0 ≤ ∥λ(m)
T ∥2

(i)
=

T−1∑
t=0

(
∥λ(m)

t+1∥2 − ∥λ
(m)
t ∥2

)
(ii)

≤
T−1∑
t=0

(∥∥λ(m)
t − η

(
V (m)(πt)− c(m)

)∥∥2 − ∥λ(m)
t ∥2

)
(iii)

≤ 2η

T−1∑
t=0

λ
(m)⊤
t

(
c(m) − V (m)(πt)

)
+ η2

T−1∑
t=0

(∥∥V (m)(πt)
∥∥+ ∥c(m)∥

)2
(iv)

≤ 2η

T−1∑
t=0

λ
(m)⊤
t

(
V (m)(ϕ

(m)
t∗ ◦ πt)− V (m)(πt)

)
+ 4T (ηHR(m)

max)
2,

where (i) uses the initialization λ
(m)
0 = 0, (ii) uses eq. (12) and 0 ∈ Λ(m), (iii) uses triangular

inequality, and (iv) uses eqs. (34) and (35) and the constraint that V (m)(ϕ
(m)
t∗ ◦ π) ≥ c(m) satisfied

by the optimal modification ϕ
(m)
t∗ of the constrained optimization problem in eq. (4) for π = πt.

Rearranging the above inequality yields that

T−1∑
t=0

λ
(m)⊤
t

(
V (m)(πt)− V (m)(ϕ

(m)
t ◦ πt)

)
≤ 2ηT (HR(m)

max)
2. (36)

Note that

0 ≤
T−1∑
t=0

(
max
ϕ(m)

L(m)
(
ϕ(m) ◦ πt, λ

(m)
t

)
− L(m)

(
ϕ
(m)
t∗ ◦ πt, λ

(m)
t

))
(i)
=

T−1∑
t=0

(
max
ϕ(m)

V
(m)
λt

(
ϕ(m) ◦ πt

)
− V

(m)
λt

(
ϕ
(m)
t∗ ◦ πt

))
(ii)

≤
T−1∑
t=0

(
ϵ+ V

(m)
λt

(
πt

)
− V

(m)
λt

(
ϕ
(m)
t∗ ◦ πt

))
(iii)
=

T−1∑
t=0

(
ϵ+ V

(m)
0 (πt)− V

(m)
0 (ϕ

(m)
t∗ ◦ πt) + λ

(m)⊤
t

(
V (m)(πt)− V (m)(ϕ

(m)
t∗ ◦ πt)

))
(37)

(iv)

≤
T−1∑
t=0

(
ϵ−D(m)(πt)

)
+ 2ηT (HR(m)

max)
2,

where (i) uses the rewritten Lagrangian function L(m)(ϕ(m) ◦ π, λ(m)) = V
(m)
λ (ϕ(m) ◦ π) −

λ(m)⊤c(m), (ii) uses eq. (11), (iii) uses V
(m)
λ (π) = V

(m)
0 (π) + λ(m)⊤V (m)(π),∀π implies by

eqs. (2) and (9), and (iv) uses eqs. (5) and (36). Rearranging the above inequality yields that

Et̃

[
D(m)(πt)

]
=

1

T

T−1∑
t=0

D(m)(πt)
)
≤ 2η(HR(m)

max)
2 + ϵ,
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which proves the duality gap in eq. (14) by substituting η = 1√
T

.

Next, we prove the constraint violation in eq. (15).

For any λ(m) ∈ Λ(m), it holds that

∥λ(m)
t+1 − λ(m)∥2

(i)

≤
∥∥λ(m)

t − η
(
V (m)(πt)− c(m)

)
− λ(m)

∥∥2
(ii)

≤ ∥λ(m)
t − λ(m)∥2 − 2η(λ

(m)
t − λ(m))⊤

(
V (m)(πt)− c(m)

)
+ η2

(
∥V (m)(πt)∥+ ∥c(m)∥

)2
(iii)

≤ ∥λ(m)
t − λ(m)∥2 − 2η(λ

(m)
t − λ(m))⊤

(
V (m)(πt)− c(m)

)
+ 4(ηHR(m)

max)
2

where (i) uses eq. (12) and λ(m) ∈ Λ(m), (ii) uses triangular inequality, (iii) uses eqs. (34) and (35).
Telescoping the above inequality over t = 0, 1, . . . , T − 1 and using λ

(m)
0 = 0 yields that

η

T−1∑
t=0

(λ
(m)
t − λ(m))⊤

(
V (m)(πt)− c(m)

)
≤ 1

2

∥∥λ(m)
∥∥2 + 2T (ηHR(m)

max)
2. (38)

Since V (m)(ϕ
(m)
t∗ ◦ πt) ≥ c(m) and λ

(m)
t ∈ Rdm

+ , eq. (37) implies that

η

T−1∑
t=0

λ
(m)⊤
t

(
c(m) − V (m)(πt)

)
≤ η

T−1∑
t=0

(
ϵ+ V

(m)
0 (πt)− V

(m)
0 (ϕ

(m)
t∗ ◦ π)

)
(39)

Summing up eqs. (38) and (39) yields that

η

T−1∑
t=0

λ(m)⊤(c(m) − V (m)(πt)
)
≤η

T−1∑
t=0

(
ϵ+ V

(m)
0 (πt)− V

(m)
0 (ϕ

(m)
t∗ ◦ π)

)
+

1

2

∥∥λ(m)
∥∥2 + 2T (ηHR(m)

max)
2. (40)

Denote Φ(m)
t :=

{
ϕ(m) : V (m)(ϕ(m) ◦ πt) ≥ min

(
c(m), V (m)(πt)

)}
, which is a non-empty set that

includes identity modification ϕ(m) such that I(m) ◦ πt = πt. Hence,

V
(m)
0 (ϕ

(m)
t∗ ◦ πt) = max

ϕ(m)
min

λ(m)∈Rdm
+

L(m)(ϕ(m) ◦ πt, λ
(m))

(i)
= min

λ(m)∈Rdm
+

max
ϕ(m)

L(m)(ϕ(m) ◦ πt, λ
(m))

(ii)

≥ max
ϕ(m)∈Φ

(m)
t

L(m)
(
ϕ(m) ◦ πt, λ

(m)
t∗

)
= max

ϕ(m)∈Φ
(m)
t

(
V

(m)
0

(
ϕ(m) ◦ πt

)
+ (λ

(m)
t∗ )⊤

[
V (m)

(
ϕ(m) ◦ πt

)
− c(m)

])
(iii)

≥ max
ϕ(m)∈Φ

(m)
t

V
(m)
0

(
ϕ(m) ◦ πt

)
+ (λ

(m)
t∗ )⊤ min

(
0, V (m)(πt)− c(m)

)
(iv)

≥ V
(m)
0 (πt)− (λ

(m)
t∗ )⊤

(
c(m) − V (m)(πt)

)
+

where (i) uses Theorem 2, (ii) uses the fact that Φ(m)
t is only a subset of stochastic modifications and

denotes that λ(m)
t∗ = argminλ(m)∈Rdm

+
maxϕ(m) L(m)(ϕ(m) ◦ πt, λ

(m)), (iii) uses λ(m)
t∗ ∈ Rdm

+ and

the definition of Φ(m)
t , and (iv) uses the fact that the identity modification ϕ(m) ∈ Φ

(m)
t . Substituting

the above inequality into eq. (40) and rearranging it, we obtain that

η

T−1∑
t=0

(
λ(m)⊤(c(m) − V (m)(πt)

)
− (λ

(m)
t∗ )⊤

(
c(m) − V (m)(πt)

)
+

)
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≤ 1

2

∥∥λ(m)
∥∥2 + 2T (ηHR(m)

max)
2 + ηTϵ. (41)

Using eq. (32) and selecting λ
(m)
j =

2Hr
(m)
0,max

ξ
(m)
j

1{V (m)
j (πt) ≤ c

(m)
j } (this satisfies λ(m) ∈ Λ(m)), we

obtain that

λ(m)⊤(c(m) − V (m)(πt)
)
− (λ

(m)
t∗ )⊤

(
c(m) − V (m)(πt)

)
+

≥
dm∑
j=1

Hr
(m)
0,max

ξ
(m)
j

(
c
(m)
j − V

(m)
j (πt)

)
+
,

where the last inequality uses eq. (32). Substituting the above inequality into eq. (41) yields that

ηHr
(m)
0,max

T−1∑
t=0

dm∑
j=1

(ξ
(m)
j )−1

(
c
(m)
j − V

(m)
j (πt)

)
+

≤ 1

2

∥∥λ(m)
∥∥2 + 2T (ηHR(m)

max)
2 + ηTϵ

(i)

≤ 2(Hr
(m)
0,max)

2
dm∑
j=1

(ξ
(m)
j )−2 + 2T (ηHR(m)

max)
2 + ηTϵ,

where (i) uses ∥λ(m)∥ ≤ 2Hr
(m)
0,max

√∑dm

j=1(ξ
(m)
j )−2 for our choice λ

(m)
j =

2Hr
(m)
0,max

ξ
(m)
j

1{V (m)
j (πt) ≤ c

(m)
j }. Dividing both sides of the above inequality by ηTHr

(m)
0,max and substituting

η = 1√
T

, we prove the constraint violation in eq. (15).

G Proof of Corollary 5.1

The surrogate rewards defined in eq. (8) has the following bound

0 ≤ R
(m)
λt,h

(sh, ah) = r
(m)
0,h (sh, ah) + λ

(m)⊤
t r

(m)
h (sh, ah)

≤ r
(m)
0,h (sh, ah) + ∥λ(m)

t ∥∥r(m)
h (sh, ah)∥

(i)

≤ r
(m)
0,max + 2Hr

(m)
0,maxR

(m)
max

√√√√ dm∑
j=1

(ξ
(m)
j )−2 := R̃(m)

max (42)

where (i) uses Assumption 2 and λ
(m)
t,j ∈

[
0,

2Hr
(m)
0,max

ξ
(m)
j

]
(since λ(m)

t ∈ Λ(m) based on eq. (12)). Note

that the V-learning in [31] assumes the rewards to range in [0, 1]. To adjust to this assumption, we
apply V-learning to the scaled rewards 1

R̃
(m)
max

R
(m)
λt,h

(sh, ah) ∈ [0, 1] with corresponding value function
1

R̃
(m)
max

V
(m)
λt

. Then based on Theorem 7 of [31], it takes Õ(H5SA2(ϵ/R̃
(m)
max)−2) = Õ(H5SA2ϵ−2)

samples to reach the ϵ/R̃
(m)
max-CE of this scaled Markov game with probability at least 1− δ/T for

any δ ∈ (0, 1) (we replace δ with δ/T which only changes the hidden logarithm factor in Õ), that is,

max
ϕ(m)

1

R̃
(m)
max

V
(m)
λ (ϕ(m) ◦ πt)−

1

R̃
(m)
max

V
(m)
λ (πt) ≤

ϵ

R̃
(m)
max

,

which is equivalent to eq. (11). Applying union bound over the T iterations yields that eq. (11) holds
for all iterations t = 0, 1, . . . , T − 1 with probability at least 1− δ. In that case, the convergence rates
in eqs. (14) and (15) hold. Substituting T = maxm 4ϵ−2(HR

(m)
max)2

(∑dm

j=1(ξ
(m)
j )−2 +HR

(m)
max

)2
and r

(m)
0,max ≥ 1

H into these convergence rates yields that

Et̃

(
D(m)(πt̃)

)
≤ 2(HR

(m)
max)2√
T

+ ϵ ≤ 2ϵ,
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Et̃

(
W (m)(πt̃)

)
≤ 2HR

(m)
max√
T

dm∑
j=1

(ξ
(m)
j )−2 +

2H(R
(m)
max)2

r
(m)
0,max

√
T

+
ϵ

Hr
(m)
0,max

≤ 1√
T

(
2HR(m)

max

dm∑
j=1

(ξ
(m)
j )−2 + 2(HR(m)

max)
2
)
+ ϵ ≤ 2ϵ.

The above two inequalities prove that max
(
Et̃D

(m)(πt̃),Et̃W
(m)(πt̃)

)
≤ 2ϵ.

Since each of the T = O(H4ϵ−2) iterations takes Õ(H5SA2ϵ−2) samples, the required sample
complexity is T Õ(H5SA2ϵ−2) = Õ(H9SA2ϵ−4).
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