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The appendix is organized as follows:

¢ Proofs and further explanations on the method
— Proof of part-Level equivariant property of the pose-aware point convolution module (sec.[A.2).
— Further explanations on some method components (sec. [A.3)).
» Experiments
— Data preparation (sec. [B.I).
Implementation details (sec.[B.2).
Implementation details for baselines (sec.[B.3).
Experiments on partial point clouds (sec. [B.4).
Additional comparisons and applications (sec. [B.3).
- Robustness to input data noise (sec. [B.6).
— Visualization of part-level equivariant features (sec. [B.7).
— Evaluation strategy for category-level articulated object poses (sec.[B.8).
* Discussion on part symmetry (sec. [C)

A METHOD DETAILS
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Figure 1: Overview of the proposed self-supervised articulated object pose estimation strategy. The method
takes a complete or partial point cloud of an articulated object as input, factorizes canonical shapes, object
structure, and the articulated object pose from it. The network is trained by a shape reconstruction task. Part-level
SE(3) equivariant features are learned by iterating between part pose estimation and pose-aware equivariant point
convolution. lines (<+—) denote procedures for feeding the estimated part poses back to the pose-aware
point convolution module.

A.1 OVERVIEW

We provide an detailed diagram of our self-supervised learning strategy in Figure
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A.2 PROOF OF PART-LEVEL EQUIVARIANT PROPERTY OF THE POSE-AWARE POINT
CONVOLUTION MODULE

In this section, we prove the part-level equivariant property of the designed pose-aware point convo-
lution module:

(Fxha)(2i,9) = Z F (x5, gRR; b (g(a; — PP xy)), (1
Pjilx]‘e/\/’;._lz.

q i

where P; and P; are the (estimated) pose of x; and z; from the canonical object space to the camera
space respectively, R; and R; are the (estimated) rotations of point x; and point x; from the canonical
object space to the camera space respectively, N 1‘;,1% denotes the set of point x;’s neighbours in

the canonical object space. Note that the neighbourhood set NV, in the Equation ?? represents the
neighbourhood of x; in the camera space with points in which belong to x;’s neighourhood in the
canonical object space, i.e. N}cj_lw‘. N, would vary as z;’s pose changes, while Nzcv‘lz‘ keeps the

same. {z;|z; € Ny, } = {xj|P]71wj ENg L

To prove the part-level equivariance of (F xhy)(z;, g), we need to prove 1) (Fxhq)(x;, g) is invariant
to the rigid transformation of point x;’s each neighbouring point x;; 2) (F * hq)(z;, g) is equivariant
to the rigid transformation of z; itself.

We then prove those properties for the continuous convolution operations, (F * hi)(z;,g) =
o ems F(zj, gRR; )by (g(wi — PP} y)).

Theorem 1. The continuous operation (F * h1)(z;,g) = ijeRs }'(xj,gRl-ijl)hl(g(xi —
Pin_la:j)) is invariant to each arbitrary rigid transformation AP; = (AR; € SO(3), At; € R?)
of (x;Vx; € R3, x; # x;) of x’s neighbouring point x ;.

Proof. To prove the invariance of (F * h1)(z;, g), we need to prove that Va; € R3, z; # x;, VAP; €
SE(3), R, = AR;R;, we have
Let x; = APjx;, PJ( = AP; P;, then we have,

AP;(F * hi)(zi, g) :/ ]:(x;‘agRiR;‘_l)hl(g(xi *Pipjf_lx;'))

:c_’jERS
:/z - F(AP;jz;, gRR; AR ha(g(ai — PPy AP APx;))
:/ F(AR;z;, gR;R; 'ARS hy (g(z; — PPy ' a))

x; ER3

= [ P RR o - PP )
xj ER-

= (Fxh)(zi, g)-

Theorem 2. The continuous operation (F  h1)(zi,g) = [, _ps }"(xj,gRl-ijl)hl(g(xi -
J
Pin*la:j)) is equivariant to the rigid transformation AP; = (AR, € SO(3), At; € R?) of x;.

Proof. To prove that (F * hy)(x;, g) is equivariant to the rigid transformation of z;, we need to prove
that VA P; € SE(3), we have

AP(F x ha) (i, 9) = (AR F * ha)(z, 9).
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It can be proved by
AP(F # hi)(x;, 9) = (F * hi)(APz;, gAR;)

= /IER3 .7:(93‘],gARZRle_l)hl(g(Alez — APin_lacj))

= /.eR3 F(zj, (gARi)RiRj_l)hl((gARi)(xi . P]-_ll‘j))

= (AR;F * h1)(z4, 9)-

A.3 FURTHER EXPLANATIONS ON SOME METHOD COMPONENTS

C1 €1
C2 Cy

€3 DFS Order Kinematic Chain
Figure 2: Kinematic chain prediction procedure (an example of the object containing three parts).

Kinematic Chain Prediction. The kinematic chain is predict as an invariant property from per-
part invariant features to describe part articulation transformation order. It is predicted through
the following four steps: 1) Predict an adjacency confidence value ¢; ; for each part pair (4, j); 2)
Construct an fully-connected adjacency confidence graph G = (V, £) based on predicted confidence
values, with all parts as its nodes and predicted confidence values as edge weights; 3) Find a maximum
spanning tree from the constructed graph G: T = (V, E7); 4) Calculate the DFS visiting order of 7
and take the inverse visiting order as the predicted kinematic chain. We draw the prediction procedure
in Figure 2]

Invariant/Equivariant Features for Prediction. Given per-part equivariant feature output from the
feature backbone Fj}, its equivariant feature for equivariant properties prediction is further calculated

from an SO(3)-PointNet, i.e. F; = SO(3)-PointNet(X;, F;). Its invariant feature for invariant
properties prediction is then computed through a max-pooling operation: F/"? = Max-Pooling(F}).

Joint Axis Orientation. We assume that all joints’ axis orientations in one shape are consistent.
Thus, in practice, we set the orientation of all joints to the same predicted orientation, i.e. uy <
uf V(i,j) € E,Yg € Gy, where (iy,, jm) is set to the part pair connected to the tree root. Saying
(i,7) € £, we mean a directional edge from part 4 to part j. In the node pair (¢, 7) € E7, node i is
deeper than node j in the tree 7. It indicates that node i’s subtree should rotate around the joint uf
passing through the joint between ¢ and j.

Iterative Pose Estimation. Our pose-aware equivariant point convolution module requires per-point
pose as input. Due to our self-supervised setting where input poses are not assumed, we adopt an
iterative pose estimation strategy. Through this design, we can improve the quality of part-level
equivariant features gradually by feeding back estimated poses in the last iteration to the pose-aware
point convolution module in the current iteration. It is because that more accurate input per-point
poses would lead to better “part-level” SE(3) equivariant features considering the nature of our pose-
aware point convolution. In practice, we set per-point poses to identity values in the first iteration due
to the lack of estimated poses, i.e. Py = (R, to).

Canonical Part Spaces, Canonical Object Space, Camera Space. For each part, the canonical part
space normalizes its pose. For each object, the canonical object space normalizes its object orientation,
articulation states. Camera space denotes the observation space. Each part shape in the canonical part
space is its canonical part shape. Each object shape with articulation states canonicalized is called
its canonical object shape. Canonical spaces are category-level concepts, while canonical shapes
are instance level concepts. Figure [3]draws the relationship between such three spaces mentioned
frequently in our method.
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Figure 3: The relationship between our three crucial spaces: the canonical part spaces, the canonical object
space, and the camera space.

Partial Point Clouds. The loss function used in |Li et al. (2021) for partial point clouds is the
unidirectional Chamfer Distance. Using this function can make the network aware of complete shapes
by observing partial point clouds from different viewpoints. Such expectation can be achieved for
asymmetric objects if the viewpoint could cover the full SO(3) space. However, we restrict the range
of the viewpoint when rendering partial point clouds for articulated objects to make each part visible.
Such restriction would result in relatively homogeneous occlusion patterns. Therefore, we choose to
use unidirectional Chamfer Distance only for certain categories such as Safe when tested on partial
point clouds.

Equivariant/Invariant Properties of the Designed Modules. The designed method wishes to
use part-level SE(3)-equivariance to reduce the difficulty of factorizing part pose and part shape.
Exact part-level equivariant features can make those modules meet our expectations. However, due
to the approximate SE(3)-equivariance of the employed feature backbone and the estimated part
pose that may not be very accurate, we cannot expect such invariance/equivariance for them. For
instance, if we do not consider part kinematic constraints, the part shape reconstruction module and
the part-assembling parameters prediction module should be invariant to K rigid transformations in
the quotient group (SE(3)/G 4)(SE(3))X ~! if using global equivariant features, while it should be
invariant to the rigid transformation in the quotient group SE(3)/G 4 if using part-level equivariant
features given correct part pose estimation. Similarly, the pivot point prediction module should
be invariant to two rigid transformations in the quotient group (SE(3)/G 4)? if using part-level
equivariant features. Part-level equivariance design could reduce the difficulty of a network doing
factorization, which may count as a reason for its effectiveness.

B EXPERIMENTS

B.1 DATA PREPARATION

Data Collection. We choose seven categories from three different datasets, namely Oven, Washing
Machine, Eyeglasses, Laptop (S) with revolute parts from Shape2Motion|Wang et al.|(2019), Drawer
with prismatic parts from SAPIEN [Xiang et al.|(2020), Safe and Laptop (R) with revolute parts from
HOI4D [Liu et al| (2022).

The first five datasets are selected according to previous works on articulated object pose estimation
or part decomposition |Li et al.|(2020); Kawana et al.|(2021)). To further test the effectiveness of our
method on objects collected from the real world, we choose two more categories (Safe and Laptop
(R)) from a real dataset|Liu et al.| (2022).

Data Splitting. We split our data according to the per-category data split approach introduced in L1
et al.[(2020). Note that not all shapes in a category are used for training/testing. Incomplete shapes or
instances whose canonical articulation states are inconsistent with other shapes are excluded from
experiments. Per-category train/test splits are listed in Table[I]

Data Preprocessing. For each shape, we generate 100 posed shapes in different articulation states.

Then for complete point clouds, we randomly generate 10 rotated samples from each articulated posed
object. When generating articulated posed objects, we would add restrictions on valid articulation
state ranges. For Oven, Safe, and Washing Machine, the valid degree range of their lids is [45°, 135°).
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Table 1: Per-category data splitting.

Oven ﬁiiﬂﬁ% Eyeglasses | Laptop (S) | Safe | Laptop (R) | Drawer
#Total | 32 41 42 82 30 50 30
#Train| 28 36 37 73 26 44 24
#Test 4 5 5 9 4 6 6

For Eyeglasses, the range of the degree between two legs and the frame is set to [0°, 81°). For Laptop
(S) and Laptop (R), the range of the degree between two parts is set to [9°, 99°).

For partial point clouds, we render depth images of complete object instances using the same rendering
method described in|Li et al.|(2021)). The difference is that we manually set a viewpoint range for
each category to ensure that all parts are visible in the rendered depth images. For each articulated
posed shape, we render 10 depth images for it. The dataset will be made public.

Data samples visualization. In Figure d] we provide samples of training and test shapes for some
categories for an intuitive understanding w.r.t. intra-category shape variations. Such variations mainly
come from part geomtry (e.g. Eyeglasses frames, Oven bodies, Laptop) and part size (e.g. Washing
Machine, Laptop).
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Figure 4: Samples of training and test shapes.

B.2 IMPLEMENTATION DETAILS

Architecture. For point convolution, we use a kernel-rotated version kernel point convolution
(KPConv Thomas et al.|(2019)) proposed in EPN Chen et al.|(2021). The size of the (one) convolution
kernel is determined by the number of anchor points and the feature dimension. In our implementation,
we use 24 anchor points. Feature dimensions at different convolution blocks are set to 64, 128, and
512 respectively.

Training Protocol. In the training stage, the learning rate is set to 0.0001, which is decayed by 0.7
every 1000 iterations. The model is trained for 10000 steps with batch size 8 on all datasets. We use
the self-supervised reconstruction loss to train the network, with the weight for joint regularization A
set to 1.0 empirically. We use Adam optimizer with 3 = (0.9,0.999), ¢ = 10~5.

Software and Hardware Configurations. All models are implemented by PyTorch version 1.9.1,
torch_cluster version 1.5.1, torch_scatter version 2.0.7, pyrender version 0.1.45, trimesh version 3.2.0,
and Python 3.8.8. All the experiments are conducted on a Ubuntu 20.04.3 server with 8 NVIDIA
GPUs, 504G RAM, CUDA version 11.4.

B.3 IMPLEMENTATION DETAILS FOR BASELINES

NPCS [Li et al.| (2020). The NPCS’s original version|Li et al.|(2020) trains a network for category-
level articulated object pose estimation in a supervised manner. It utilizes a PointNet++ Q1 et al.
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(2017) to regress three kinds of information and a set of pre-defined normalized part coordinate
spaces. Then in the evaluation process, the RANSAC algorithm is leveraged to calculate the rigid
transformation of each part from its predicted normalized part coordinates to the shape in the camera
space. To apply NPCS in our experiments, we make the following two modifications: 1) We change
the backbone used in NPCS from PointNet++ to EPN. We further add supervision on its rotation
mode selection process for the major rotation matrix prediction as does in|Chen et al.[(2021). 2) We
add a joint axis orientation prediction branch and a pivot point regression branch for joint parameters
estimation. Such two prediction branches act on the global shape feature corresponding to the selected
rotation mode and predict a residual rotation and a translation for estimation. By applying the major
rotation matrix of the selected mode, we could then arrive at the joint axis orientations and pivot
points in the camera space.

Oracle ICP. To apply ICP on the articulated object pose estimation, we introduce Oracle ICP. Oracle
ICP registers each ground-truth part from the template shape to the observed shape iteratively. We
randomly select 5 segmented shapes from the train set to register on each test shape. For complete
point clouds, we first centralize the part shape from both of the template shape and the observed
shape, we then iteratively register the template part shape to the observed part shape under 60 initial
hypotheses. For partial point clouds, we iteratively register the template part shape to the observed
part shape under 60 initial hypotheses together with 10 initial translation hypotheses. The one that
achieves the smallest inlier RMSE value is selected as the registration result. After each registration,
we assign per-point segmentation label as the label of the nearest part. Therefore, we also treat Oracle
ICP as one of our segmentation baseline.

BSP-Net |Chen et al.| (2020). BSP-Net reconstructs an input shape using implicit fields as the
representation by learning to partition the shape using three levels of representations, from planes
to convexes, and further to the concave. Indices of reconstructed covexes are consistent across
different shapes in the same category. Thus, we can map from each convex index to a ground-
truth segmentation label. The relationship can then help us get segmentations for test shapes. The
mapping can then help us segment each test shape by assigning each convex to its corresponding part
segment. The intra-category convex partition consistency further provide cross-instance aligned part
segmentations. However, due to the global pose variations of our data, such convex index consistency
may not be observed when directly applying BSP-Net on our data. Thus, we propose to improve the
evaluation process of BSP-Net to mitigate this problem. Specifically, for each test shape, we find a
shape from the train set that is the most similar to the current test shape. Then, we directly use its
convex-segmentation mapping relationship to get segments for the test shape. The segments are then
used to calculate the segmentation IoU for the test shape.

NSD Kawana et al.| (2020). Neural Star Domain Kawana et al.| (2020) decomposes shapes into
parameterized primitives. To test its part segmentation performance on our data with arbitrary global
pose variations, we adopt the evaluation strategy similar to that used for BSP-Net.

B.4 EXPERIMENTS ON PARTIAL POINT CLOUDS

In this section, we present the experimental results on rendered partial point clouds of our method
and baseline methods.

Articulated Object Pose Estimation. In Table [2] we present the part pose estimation and joint
parameter prediction results of our method and baseline methods. Compared to the pose estimation
results of different models achieved on complete point clouds, our model can sometimes outperform
the supervised NPCS baseline (using EPN as the backbone), such as better part pose estimations and
joint parameter prediction results on the Laptop (S) dataset.

In Figure [6] we draw some samples for a qualitative evaluation. Moreover, we also provide the
visualization of all categories for complete point clouds in Figure[5] In the figure, the point cloud
distance function used for Safe is unidirectional Chamfer Distance, while that used for others is still
bidirectional Chamfer Distance. Using unidirectional Chamfer Distance can relieve the problem of
joint regularization on partial point clouds to some extent. It is because that in this way the point cloud
completion could be naturally enforced. For instance, reconstruction results for the Safe category
are drawn in Figure[6] However, points that are not mapped to any point in the input shape will also
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affect the point-based joint regularization. For simple shapes, using bidirectional Chamfer Distance
could also sometimes make the decoder decode complete part shapes, e.g. reconstructions for Laptop
(R). As for the reconstructed reference shape in the canonical object space, better joint predictions
would lead to better global shape alignment. For instance, we can observe that the angle between two
parts of Laptop (R) and Laptop (S) is relatively consistent across shapes with different articulation
states. Joint regularization enforcing the connectivity between two adjacent parts both before and
after the articulated transformation in the canonical object space. It could then help make the joint
behave like a real joint, based on which we the “lazy” network tends to decode part shapes with
consistent orientations. However, there is a degenerated solution where the decoded rotation angle is
put near to zero. In that case, the joint regularization term could be satisfied by decoding “twisted”
part shapes. Since the decoded angle is near zero, the connectivity between two parts will not be
broken when rotating along the decoded joint. Sometimes, decoding angles near to zeros is a local
minimum that the optimization process gets stuck in. At that time, the regularization loss term is a
large one but the decoded joint parameters are not optimized in the correct direction by the network.
The reconstructed shapes in the canonical object space do not have consistent angles, e.g. Washing
Machine and Safe drawn in Figure[6]
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Figure 5: Visualization for experimental results on complete point clouds. Shapes drawn for every three shapes
from the left side to the right side are the input point cloud, reconstructions, and the predicted canonical object
shape. We put drawers in an aligned space just for better visualization. Their global pose may vary when
feeding into the network. Please zoom in for details.

Part Segmentation. In Table 3] we evaluate the segmentation performance of our method. BSP-Net
is not compared here since it requires mesh data for pre-processing, which is not compatible with the
rendered partial point clouds. Oracle ICP uses real segmentation labels to register each part from
the example shape to the observed shape. Despite this, it can still not achieve satisfactory estimation
results due to shape occlusions and part-symmetry-related pose ambiguity issues.

Shape Reconstruction. In Table @] we evaluate the shape reconstruction performance of our method.
The part-by-part reconstruction strategy used by our method can outperform the EPN-based whole
shape reconstruction strategy in most of those categories except for Washing Machine. One possible
reason is the poor segmentation performance of our model on shapes in the Washing Machine

category.
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Figure 6: Visualization for experimental results on partial point clouds. Shapes drawn for every three shapes
from the left side to the right side are the input point cloud, reconstructions, and the predicted canonical object
shape. Please zoom in for details.

B.5 ADDITIONAL COMPARISONS AND APPLICATIONS

Comparison with Other Baselines. We compare our method with other two baselines that are not
discussed in the main body in Table 5]

Firstly, we use KPConv [Thomas et al.| (2019) as NPCS’s feature backbone (denoted as “NPCS-
KPConv”) and test its performance on our data with arbitrary global pose variation. We can see that
NPCS of this version performs terribly compared to our unsupervised method. NPCS estimates part
poses by estimating the transformation from estimated NPCS coordinates and the observed shape.
It therefore requires invariant NPCS predictions to estimate category-level part poses. However,
such prediction consistency may not be easily achieved for input shapes with various global pose
variations.

The second one is Oracle EPN, where we assume ground-truth part segmentation labels and use EPN
to estimate the pose for each individual part. Despite in such oracle setting, EPN cannot infer joint
parameters since it estimates per-part poses individually. Besides, the part symmetry problem will
also hinder such strategy from getting good performance to some extent, which will be discussed in
the next section[Cl
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Figure 7: Reconstruction for shapes in different articulation states and manipulations to change their states.
Shapes (in blue and orange) drawn on the two sides are manipulated shapes from their nearest reconstructions.
Others are reconstructions (in purple and green). Please zoom in for details.
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Table 2: Comparison between the part pose estimation performance of different methods on all test categories
(partial point clouds). “R” denotes rotation errors with the value format “Mean R.,./Median Re,,”. “T”
denotes translation errors with the value format “Mean 7.,./Median T.,,”. “J” denotes joint parameters
estimation results with the value format “Mean 0.,./Mean d.,,”. ICP could not predict joint parameters.
Therefore, only the results of supervised NPCS and our method on joint prediction are presented. For all metrics,
the smaller, the better. Bold numbers for best values, while blue values represent second best ones.

Washing

Method Oven Machine

Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.

21.74710.80,
7.2606.08. | 514002356, | 6.64/5.76, | 9.39/8.75, | 22.92/10.18,

NPCS-EPN 2.51/2.27, 4.7113.84,

(supervised) | 293/2.64 | 8567746 | 503170 | 20003271 | 543509 | 675604 | 2500146, | 133VI0T3
-86/18. 7.34/6.83
R . 82.93/82.64,
Oracle [cp | 215371080, | 3242178, | 280 | 67487301, | 38.72/34.44, | 30.T828.674, | 6131/5951. | 4o oo
racle 20682050 | 193971699 | 03747409 1 3 026823 | 52.28/42.16 | 42.06/39.25 | 543975282, | 485547
69.23/74.53
26.88/29.66
oo 2.6001.79,
ure 1177787, | 1L6ULs2 | oSBT | w0830, | 1s3siade, | ssoess, | 260079, | oo
urs 10830915 | 12811251 | 0336 | yraesa2 | 20901904 | 692566 | 200179, | S
53/6.12
2.06/1.79
0.085/0.075. 0.441/0.365,

NPCS-EPN | 0.028/0.030, | 0.034/0.030,

0.263/0.253, | 0.022/0.021, | 0.048/0.043, | 0.367/0.343,
(supervised) | 0.028/0.023 | 0.033/0.028 | :056/0.052,

0.145/0.117
0.057/0.049 0.286/0.236 | 0.034/0.034 | 0.047/0.044 | 0.549/0.299,

0.081/0.065
T 009210097, 0.193/0.197,
Oracle 1Cp | 0-324/0.321, | 03220311, | e 0% | 0.265/0.278, | 0.281/0.280, | 0.280/0.289, | 0.161/0.170, | 1 51¢10 55y
racle 0.169/0.171 | 0.136/0.144 | - 22| 0.267/0.277 | 0.246/0.248 | 0.305/0.306 | 0.159/0.164, | - :
0.185/0.193
0.129/0.132
0.219/0.226 0.046/0.046,
o 0.07110.065, | 017900164, | ("0 | 0.044/0.034, | 0.030/0.030, | 0.088/0.082, | 0.047/0.050, | ;) 1o0 110
urs 0.204/0.120 | 0.253/0.254 | 0% 1 0.031/0.025 | 0.100/0.104 | 0.070/0.067 | 0.122/0.131, | " -
0.17710.171
0.172/0.142
NPCS-EPN 20.11/0.221,
1| (supervised) | 28:62/0.092 | 8050194 | 50700050 | 109100155 | 11230084 | 12.25/0.134 1121~ | 15.31/0.160
26.96/0.087,
Ours 5.24/0.105 | 223000212 | Hrgl oD | 10.83/0.142 | 55.16/0.170 | 18.02/0.170 7.43/- 21.61/0.164

Table 3: Comparison between the part segmentation performance of different methods (partial point clouds).
The metric used for this task is Segmentation MIoU, calculated on 4096 points for each shape. Values presented
in the table are scaled by 100. Larger values indicate better performance.

Oven xizmﬁi Eyeglasses | Laptop (S) | Safe | Laptop (R) | Drawer
Oracle ICP | 75.83 73.07 68.92 54.01 66.90 59.96 58.38
Ours 87.07 | 51.73 56.80 84.94 44.64 86.04 45.45

Shape Reconstruction and Manipulation. The predicted joints can enable us to manipulate the
reconstruction by changing the value of predicted rotation angles. We then arrive at shapes in new
sarticulation states different from input shapes. In Figure[7, we draw some examples for Laptop (S)
and Oven.

B.6 ROBUSTNESS TO INPUT DATA NOISE

uoAQ
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Figure 8: Visualization for the model performance on input data with random noise. Shapes for each three
drawn from left to the right are input data corrupted by random normal noise, segmentation, and reconstruction,

respectively. We align shapes here just for a better visualization, while they may be put into arbitrary poses for
input.

Besides testing the performance of the proposed method on partial point clouds with occlusion
patterns caused by viewpoint changes, we also test its effectiveness on noisy data. Specifically,
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Table 4: Comparison between the shape reconstruction performance of different methods (partial point clouds).
The metric used in this task is unidirectional Chamfer L1 from the original input shape to the reconstructed
shape. The smaller, the better.

Metho({ Oven I\V/ﬁi}ﬁiﬁi Eyeglasses | Laptop (S) | Safe | Laptop (R) | Drawer
EPN|Li et al.|(2021)| 0.040 | 0.043 0.044 0.032 0.020 0.026 0.079
Ours 0.035 0.062 0.041 0.025 0.019 0.024 0.061

Table 5: Comparison between the part pose estimation performance of different methods. Backbone used for
NPCS is KPConv. “R” denotes rotation errors with the value format “Mean R.,-/Median R..”. “T” denotes
translation errors with the value format “Mean T.,./Median T.,,”. “J” denotes joint parameters estimation
results with the value format “Mean 0.,-»./Mean d.,”. For all metrics, the smaller, the better. Bold numbers for
best values.

Method Oven ﬁizﬁ?ﬁ Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.
51.99/53.97 62.73/69.42,
NPCS-KPConv | 44.16/43.09, | 56.20/56.22, | ) jcc’oc” | 55.67/66.44, | 1L68/11.10, | 49.98/68.43, | 56.16/60.34, | oo oo
(supervised) | 60.58/63.35 | 50.16/51.38 : % | 55.63/61.33 | 43.48/42.22 | 73.40/83.55 | 57.23/63.90, | "'
42.29/38.11
48.76/46.82
R S101/13.00 47.88/47.03,
7.07/6.88, | 7.97/7.60, S | 18.33/9.73, | 45.85/48.59, | 20.46/14.03, | 30.84/25.23,
Oracle EPN | 16331917 | 33.56/2049 | SOL2/0507 | 19081275 | 38.03/27.67 | 21.08/19.30 | 35.79/37.17, | 31-81/30.73
116.56/119.23
43.83/39.46
5.16/8.21 3.18/2.73,
Ours 77417135, | 749137, | Sogite | 7.34/506, | 9.03/9.09, | STIB6L | 38273, | o000
urs 4.07/3.97 | 19.27/19.19 ey | 10.41/9.34 | 13.83/13.59 | 3.64/2.84 | 3.18/2.71, SO
12.53/9.88
3.18/2.71
0.401/0.326 0.791/0.742,
NPCS-KPConv | 0.133/0.121, | 0.146/0.142, | /'3 | 0.233/0.203, | 0.055/0.052, | 0.179/0.226, | 0.694/0.640, | (3o
(supervised) | 0.104/0.091 | 0.066/0.065 | - 20 10.217/0.169 | 0.098/0.091 | 0.161/0.174 | 1.005/0.942, | -
0.396/0.263
0.271/0.240
T 0.197/0.129 0.204/0.187,
Oracle EpN | 0-031/0.030, | 0.046/0.044, | (o011 | 0.132/0.128, | 0.157/0.157, | 0.092/0.086, | 0.177/0.166, | (112 oo
racle 0.058/0.052 | 0.059/0.053 | o0 10.117/0.090 | 0.158/0.151 | 0.094/0.082 | 0.161/0.146, | :
0.334/0.292
0.290/0.282
0.054/0.039 0.096/0.096,
o 0.054/0.052, | 0.082/0.083, | ("ciel | 0.040/0.037, | 0.066/0.069, | 0.021/0.019, | 0.097/0.092, | o oo oo
urs 0.067/0.046 | 0.042/0.034 | o7 00% | 0,046/0.042 | 0.037/0.035 | 0.027/0.026 | 0.108/0.105, | 00>
0.070/0.055
0.109/0.100
NPCS-KPConv 60.58/0.329,
3| (supervisedy | 56210194 | SS0U0.149 | (00300 | 41400259 | 54.07/0.055 | 57.04/0.070 5248/- | 54.60/0.205
Ours 20.30/0.089 | 28.40/0.118 11777755//?)‘;‘;59 30.31/0.122 | 4.36/0.031 | 17.17/0.169 38.86/- | 21.86/0.100

we add noise for each point in the shape by sampling offsets for its x/y/z coordinates from normal
distributions, e.g. Az ~ N(0,0?), where we set ¢ = 0.02 here. Results on Oven and Laptop (S)
are presented in Table [f] From the table, we can see the degenerated segmentation IoU on Oven’s
noisy data, while still relatively good part pose estimation performance. Another discovery is the
even better joint axis orientation prediction, but larger offset prediction perhaps due to the poor
segmentation. Besides, the shape reconstruction quality also drops a lot, probably due to the randomly
shifted point coordinates. We can observe a similar phenomenon on Laptop (S). In Figure[§] we draw
some examples for a qualitative understanding w.r.t. model’s performance on noise data.

B.7 VISUALIZATION OF PART-LEVEL EQUIVARIANT FEATURES

Aiming for an intuitive understanding w.r.t. the property output by the designed part-level equivariant
network, we draw features output by the global equivariant network and part-level equivariant network
for some laptop samples in Figure[9] From the figure, we can see that the point features of the non-
motion part (base) do not change a lot when the moving part (display) rotates an angle. That echoes
the wish for the part-level equivariance design to disentangle other parts’ rigid transformation from
the current part’s feature learning.

B.8 EVALUATION STRATEGY FOR CATEGORY-LEVEL ARTICULATED OBJECT POSES

To evaluate the category-level part pose estimation performance of our model, we adopt the evaluation
strategy used in|Li et al.| (2021}).
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Table 6: Performance comparison of the proposed method on clean data and data corrupted by random normal
noise.

Category Method Seg. IoU | Mean R.,.(°) | Median R.,(°) | MeanT.,, | MedianT,,, | Joint Error | Chamfer L1
Oven Without noise 76.22 7.74, 4.07 7.35,3.97 0.054,0.067 | 0.052,0.046 | 20.30/0.089 0.025
With noise 55.35 9.84, 11.05 9.94,9.99 0.073,0.063 | 0.073,0.057 | 9.28/0.310 0.049
Laptop (S) Without noise 82.97 7.34,10.41 5.16,9.34 0.040, 0.046 | 0.037,0.042 | 30.31/0.122 0.024
With noise 70.04 16.01, 13.27 11.47,9.52 0.082, 0.067 | 0.075,0.065 | 32.84/0.029 0.044

Figure 9: Visualization for an intuitive understanding w.r.t. the difference between the part-level equivariant
feature and globa equivariant feature of a specific part. Visualized features are obtained by using the PCA
algorithm to reduce the feature dimension to 3, which are further normalized to the range of [0, 1]. We only draw
point features of the non-motion part with the moving part in gray. Features drawn on the left global equivariant
features while those on the right are from the part-level equivariant network.

For part-based metrics, we first feed a set of train shapes in the canonical articulation states and
canonical object pose state to get a set of per-part pose predictions { P;}. Then we can calculate the
residual pose P, for each part ¢ from the canonical part space defined by human to the canonical part
space defined by the network from the pose prediction set (via RANSAC). After that, predicted pose
from the canonical part space defined by human can be computed by applying the inverse residual
pose estimation on the estimated per-part pose, e.g. P; < Pi_lPi. When calculating the rotation
and translation from part shape X; to X5, we first centralize their bounding boxes (X; and X,

respectively). Then, the transformation from X; to X, is taken as the transformation from X; to Xo.

For joint parameters, we take the angle error between the predicted joint axis orientation and the
ground-truth axis orientation as the metric for joint axis orientation prediction. Metric for joint
position prediction is set to the minimum line-to-line distance, following [Li et al.| (2020). Only joint
axis orientation prediction error is computed for prismatic joints.

C DISCUSSION ON PART SYMMETRY

In this section, we discuss the part-symmetry-related problem that one would encounter in the part
pose estimation problem. For rigid objects, the pose of a shape is ambiguous for symmetric shapes.
To say a shape X is symmetric, we mean that there is a non-trivial SE(3) transformation S 4, such that
X = S4,[X]. In those cases, the performance of the pose estimation algorithm may degenerate due to
ambiguous poses. It is a reasonable phenomenon, however. But for articulated objects, we may have
symmetric parts even if the whole shape is not a symmetric one. For those shapes, we still expect for
accurate part pose estimation. It indicates that estimating part poses for each part individually is not
reasonable due to part pose ambiguity. That’s why we choose to model the relationship between parts,
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or specifically, the kinematic chain, joint parameters. Without such object-level inter-part modeling,
we cannot get accurate part poses by estimating their pose individually, even using ground-truth
segmentation. The comparison between Oracle EPN and our method in Table [5|can demonstrate this
point to some extent.
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