

Figure 1: Extended toy experiment results: KL divergence against increasing number of categories, K with new baselines.

Figure 2: Generated molecules using Fisher-Flows on QM9.

Table 1: Updated results on the DNA datasets using an upper bound to the test perplexity and a Generated Perplexity metric which is the perplexity of generated samples as measured by an autoregressive model.

Dataset	Method	MSE	PPL (LL)	Gen-PPL
Promoter	FISHER-FLOW (ours) LINEAR FM DIRICHLET FM Random	$\begin{array}{c} 0.029 \pm 0.001 \\ 0.056 \\ 0.034 \pm 0.001 \\ \end{array}$	$\leq 1.4 \pm 2.7$ ≤ 1.381 $\leq 1.978 \pm 0.006$	$\begin{array}{c} 1.001 \pm 0.000 \\ 1.001 \\ 1.001 \pm 0.000 \\ 4.454 \pm 0.001 \end{array}$
Enhancer Melanoma	FISHER-FLOW (ours) LINEAR FM DIRICHLET FM Random		$\leq 1.4 \pm 0.1$ ≤ 1.33 $\leq 2.25 \pm 0.01$	$\begin{array}{c} 1.003 \pm 0.0 \\ 1.003 \\ 1.003 \pm 0.0 \\ 4.452 \pm 0.001 \end{array}$
Enhancer FlyBrain	FISHER-FLOW (ours) LINEAR FM DIRICHLET FM Random		$\leq 1.4 \pm 0.66$ ≤ 1.35 $\leq 2.25 \pm 0.02$	$\begin{array}{c} 1.009 \pm 0.000 \\ 1.008 \\ 1.008 \pm 0.000 \\ 4.454 \pm 0.001 \end{array}$

Table 2: Test perplexities on the LM1B dataset. All baselines are taken from concurrent work MDLM Sahoo et al. [2024]. Best diffusion or flow-matching method is in bold font.

	Method	Parameters	$\mathbf{PPL}~(\downarrow)$
Diffusion	BERT-MOUTH	110M	≤ 142.89
	D3PM (Absorb)	70M	≤ 77.50
	DIFFUSION-LM	80M	≤ 118.62
	DIFFUSIONBERT	110M	≤ 63.78
	SEDD $(33B \text{ tokens})$	110M	≤ 32.79
AR	TRANSFORMER (33B TOKENS)	110M	22.32
	TRANSFORMER (327B TOKENS)	110M	20.86
N	MDLM (33B TOKENS)	110M	≤ 27.04
1/F	FISHER-FLOW (33B TOKENS) (ours)	110M	$\leq {f 26.51}$
DN			
I/FM	MDLM (327B TOKENS)	110M	≤ 23.00
	FISHER-FLOW (327B TOKENS) (ours)	110M	$\leq {f 22.42}$
DN			

Table 3: New results on the QM9 dataset. Higher is better on all metrics. The baselines are taken from the cited papers.

Method	Atoms Stable $(\%)$	Molecules Valid $(\%)$	Molecules Stable $(\%)$
FISHER-FLOW (ours)	98.6	95.3	88.2
JODO [Huang et al., 2023]	99.4	98.9	98.7
EquiFM [Song et al., 2023]	99.4	94.4	93.2