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ABSTRACT

The loss of plasticity in learning agents, analogous to the solidification of neu-
ral pathways in biological brains, significantly impedes learning and adaptation
in reinforcement learning due to its non-stationary nature. To address this fun-
damental challenge, we propose a novel approach, Neuroplastic Expansion (NE),
inspired by cortical expansion in cognitive science. NE maintains learnability and
adaptability throughout the entire training process by dynamically growing the
network from a smaller initial size to its full dimension. Our method is designed
with three key components: (1) elastic topology generation based on potential
gradients, (2) dormant neuron pruning to optimize network expressivity, and (3)
neuron consolidation via experience review to strike a balance in the plasticity-
stability dilemma. Extensive experiments demonstrate that NE effectively miti-
gates plasticity loss and outperforms state-of-the-art methods across various tasks
in MuJoCo and DeepMind Control Suite environments. NE enables more adap-
tive learning in complex, dynamic environments, which represents a crucial step
towards transitioning deep reinforcement learning from static, one-time training
paradigms to more flexible, continually adapting models. We make our code
publicly available.

1 INTRODUCTION

In the realm of neuroscience, it has been observed that biological agents often experience a di-
minishing ability to adapt over time, analogous to the gradual solidification of neural pathways in
the brain (Livingston, 1966). This phenomenon, typically known as the loss of plasticity (Mateos-
Aparicio & Rodrı́guez-Moreno, 2019), significantly affects an agent’s capacity to learn continually,
especially when agents learn by trial and error in deep reinforcement learning (deep RL) due to the
non-stationarity nature. The declining adaptability throughout the learning process can severely hin-
der the agent’s ability to effectively learn and respond to complex or non-stationary scenarios (Ab-
bas et al., 2023). This limitation presents a fundamental obstacle to achieving sustained learning and
adaptability in artificial agents, which echoes the plasticity-stability dilemma (Abraham & Robins,
2005) observed in biological neural networks.

There have been several recent studies highlighting a significant loss of plasticity in deep RL (Ku-
mar et al., 2021; Lyle et al., 2022), which substantially restricts the agent’s ability to learn from
subsequent experiences (Lyle et al., 2023; Ma et al., 2024). The identification of primacy bias (Nik-
ishin et al., 2022) further illustrates how agents may become overfitted to early experiences, which
inhibits learning from subsequent new data. The consequences of plasticity loss further impede deep
RL in continual learning scenarios, where the agent struggles to sequentially learn across a series of
different tasks (Dohare et al., 2024).

Research on addressing plasticity loss in deep RL is still in its early stages, with recent approaches
including parameter resetting (Nikishin et al., 2022; Sokar et al., 2023) (or its advancement with ran-
dom head copies (Nikishin et al., 2024)), and several implementation-level techniques like normal-
ization, activation functions, weight clipping, and batch size adjustments (Obando Ceron et al., 2023;
Nauman et al., 2024; Elsayed et al., 2024). However, reset-based methods often lead to performance
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instability and training inefficiency due to the need for period re-training, while implementation-
level modifications lack generalizability and do not directly target the plasticity issue. The field
currently lacks a unified methodology that can effectively address plasticity loss while maintaining
training stability and efficiency across varying environments.

Humans adapt to environmental changes and novel experiences through cortical cortex expansion in
cognitive science (Welker, 1990; Hill et al., 2010). This process involves the gradual activation of
additional neurons and the formation of new connections to facilitate the ability to learn continually.
Drawing inspiration from this biological mechanism, we propose a novel perspective – Neuroplastic
Expansion, which can help maintain plasticity in deep RL. The key insight is that an agent starting
learning with a smaller network and dynamically growing to a larger size (ultimately reaching the
original static network dimension) can effectively tackle plasticity loss by maintaining a high level of
elastic neurons throughout training (Figure 1). Elastic neurons means neurons that have plasticity. In
this paper, the words elastic and plastic are interchangeably. We first provide empirical evidence in
(§3.1) validating its potential for mitigating plasticity loss and improving final performance in certain
cases, even with a naive incremental expansion. We provide a detailed description of plasticity loss
and pruning for RL in Appendix A.

Figure 1: High-level illustration of Neuroplastic Ex-
pansion RL. The network regenerates elastic neurons
based on gradient potential, recycles dormant neurons,
and undergoes progressive topology growth to mitigate
plasticity loss. The agent consolidates neurons through
experience review, preserving prior helpful knowledge
and ensuring policy stability.

Building upon this insight, we systemat-
ically introduce Neuroplastic Expansion
(NE), a simple yet effective mechanism
to maximize the benefits of incremental
growth training (§3.2). NE adds high-
quality elastic candidates based on poten-
tial gradients (Evci et al., 2020). How-
ever, this will lead to increased compu-
tation costs for always enlarging the net-
work, and cannot fully leverage its expres-
sivity as elastic neurons, which are acti-
vated and can be updated to fit the new
data, may turn dormant during the course
of training. As visualized in Appendix F.6,
dormant neurons can diminish representa-
tional capacity and lead to suboptimal be-
havior.

To address this challenge, NE introduces
a reactivation process for dormant neu-
rons, pruning them and potentially reintro-
ducing them as candidates in subsequent
growth stages; thereby better utilizing the
network expressivity and enhancing the
policy’s sustainable learning ability.

Unlike previous reset-based approaches (such as resetting the last layers, introducing copies of heads
or reinitializing parts of the network) that risk forgetting and require periodic re-training, NE main-
tains learning continuity in a smoother way. To further mitigate potential instability from continu-
ous topology adjustments, we introduce an effective Experience Review technique that consolidates
neurons by adaptively reviewing prior knowledge during the later training stages, ensuring policy
stability and balancing the stability-plasticity dilemma. Extensive experiments on long-term train-
ing, continual adaptation, and vision RL tasks demonstrate the effectiveness of our method across
various scenarios, showcasing its ability to maintain plasticity while ensuring policy stability.

The main contributions are summarized as follows:

• We introduce a novel mechanism, Neuroplastic Expansion (NE), to mitigate the loss of plasticity
in deep RL.

• We develop effective activated neuron generation and dormant neuron pruning mechanism for
better network capacity utilization, and a neuron consolidation technique for preventing forgetting
helpful reusable knowledge.
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• We conduct extensive experiments in standard RL tasks, which demonstrate the effectiveness of
NE across various tasks including MuJoCo (Todorov et al., 2012) and DeepMind Control Suite
(DMC) (Tassa et al., 2018a) tasks that outperform previous strong baselines by a large margin,
and can be effectively adapted to continual learning scenarios.

2 BACKGROUND

Deep Reinforcement Learning The reinforcement learning problem can be typically formulated
by a Markov decision process (MDP) represented as a tuple (S,A,P,R, γ), with S denoting the
state space, A the action space, P the transition dynamics: S × A × S → [0, 1], R the reward
function: S × A → R, and γ ∈ [0, 1) the discount factor. The agent interacts with the unknown
environment with its policy π, which is a mapping from states to actions, and aims to learn an
optimal policy that maximizes the expected discounted long-term reward. The state-action value of
s and a under policy π is defined as Qπ(s, a) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a].

In actor-critic methods, the actor πϕ and the critic Qθ are represented using neural networks as
function approximators with parameters ϕ and θ (Fujimoto et al., 2018; Haarnoja et al., 2018). The
critic network is updated by minimizing the temporal difference loss, i.e., LQ(θ) = ED

[
(Qθ(s, a)−

QT
θ (s, a))

2
]
, where QT (s, a) denotes the bootstrapping targetR(s, a)+γQθ̄(s′, πϕ̄(s′)) computed

using target network parameterized by ϕ̄ and θ̄ based on data sampled from a replay buffer D.
The actor network ϕ is typically updated to maximize the Q-function approximation according to
∇ϕJ(ϕ) = ED

[
∇aQθ(s, a)|a=πϕ(s)

∇ϕπϕ(s)
]
.

Activated Neuron Ratio Activated neurons are easily updated by new data. Therefore, the pro-
portion of activated neurons in the network, i.e. activated neuron ratio is often considered positively
correlated with plasticity Ma et al. (2024). It is defined as the proportion of neurons whose output
exceeds a certain threshold τ in the neural network, effectively counting all neurons except dormant
ones (Xu et al., 2024). Formally, a neuron i in layer l is considered activated when output hi(x) > 0
(in contrast to dormant neurons (Sokar et al., 2023)):

f(li) =

∑
i∈l,x∈Id 1(hi(x) > 0)

N
, (1)

where Id denotes the input distribution. The relationship between the Activated Neuron Ratio curve
and plasticity is as follows: The primary cause behind an agent’s plasticity loss is the rapid dor-
mancy of numerous neurons as training progresses, which diminishes the model’s representational
capacity (Sokar et al., 2023; Qin et al.). Consequently, delaying the reduction in activated neurons
is commonly considered as a way to mitigate plasticity loss, i.e, slowing the downward trend of the
curve. The Activated Neuron Ratio is widely used for plasticity visualization (Ma et al., 2024) due
to its intuitive interpretability.

3 NEUROPLASTIC EXPANSION RL

In this section, we begin by discussing the insights of Neuroplastic Expansion RL empirically, and
analyze its effect on mitigating the loss of plasticity in Section 3.1. Then, we systematically present
the details of our method in Section 3.2.

3.1 ILLUSTRATION OF INSIGHTS OF DYNAMIC GROWING RL

There have been several recent studies investigating loss of plasticity in supervised learning (Lyle
et al., 2023; Lewandowski et al., 2024), which corresponds to the phenomenon where neural net-
works gradually lose the ability to adapt and learn from new experiences (Lin et al., 2022). This is
further exacerbated in RL (Sokar et al., 2023; Nikishin et al., 2024), due to the non-stationary nature
and the tendency to overfit prior knowledge, resulting in suboptimal policies. A predominant ap-
proach to tackle plasticity loss is based on resetting (Nikishin et al., 2022), where the agent resets the
last few layers of its neural network periodically throughout training. However, although effective,
this kind of approach typically forgets helpful and reusable knowledge which is critical for learning,
and thus the agent experiences a drop in performance once resetting is applied.
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A major cause for agents to adapt to novel circumstances is the growth of the human cortex (Hill
et al., 2010). Motivated by this insight, we propose a novel perspective that RL agents can maintain
high plasticity through dynamic neural expansion mechanisms, sustaining the policy’s continual
adaptation ability based on new experiences. Initially, data collected by a random policy may be of
lower quality and therefore require less network expressivity to fit (Burda et al., 2019; Zhelo et al.,
2018). As the agent improves, it tends to require a more expressive network for fitting the more
complex value estimates and policies. Maintaining neuronal vitality and regeneration during training
can significantly mitigate plasticity loss, as it allows for ongoing adaptation to new information.
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Figure 2: Comparison of normalized performance
(left) and the ratio of active neurons (right) for
vanilla TD3 (Fujimoto et al., 2018) and its variants:
with a naive random growth network and our NE
method, across varying network capacities.

Motivated by this insight, we propose
a novel angle, Neuroplastic Expansion,
where the agent starts with a smaller net-
work that gradually evolves into a larger
one throughout the learning process. We
first present a naive implementation of
this idea and then systematically discuss
our methodology in Section 3.2.

Concretely, we adopt a small-to-large
neural expansion approach, where the ini-
tial network capacity is 20% of the size of
a typical full TD3 (Fujimoto et al., 2018)
network (i.e., uniformly selected 20% of
neurons from each layer of the full TD3
architecture). To validate the potential of
this novel perspective, we first consider the simplest approach for growing the network by uni-
formly adding k new connections to the current critic topology θ̆ ⊂ θ and the current actor topol-
ogy ϕ̆ ⊂ ϕ for each layer l ∈ N , which then participate in gradient propagation according to
Igrow = Randomi/∈θ̆l(θl, k) ∪ Randomi/∈ϕ̆l

(ϕl, k).

We build this idea upon TD3 and conduct fair comparisons with vanilla TD3 (i.e., with static actor
and critic networks) using different network capacities. We compare the performance of our dynam-
ically growing network against a naive topology growth strategy and static networks in standard TD3
(Fujimoto et al., 2018) using the HalfCheetah environment. To ensure fairness in comparison, the
final network size of NE is set to be identical to that of the other methods. Therefore, the comparison
with the vanilla TD3 algorithm is fair given the same network capacity at the end of training.

From the left side of Figure 2, we observe that even a naive incremental network growth strategy
leads to noticeable performance improvements, particularly as network capacity increases. The
right side of Figure 2 demonstrates the ratio of active neurons (Sokar et al., 2023) for each algorithm
during training. This metric evaluates whether RL agents maintain their expressive capacity, which
is positively correlated with plasticity retention. As shown, topology growth effectively reduces
neuron deactivation, thereby preserving the agent’s ability to learn policies, mitigating plasticity
loss, and alleviating primacy bias.

3.2 METHOD: NEUROPLASTIC EXPANSION

Hill et al. (2010) demonstrated that the cerebral cortex expands in response to environmental stim-
uli, learning, and novel experiences. This dynamic growth and reorganization enhance cognitive and
decision-making abilities, fostering adaptability to changing situations. Motivated by our prelimi-
nary results and inspired by this biological mechanism, we present Neuroplastic Expansion (NE), a
training framework for RL agents that employs a dynamically expanding network to retain learning
capacity and adaptability throughout the entire learning process.

Elastic Topology Generation While incremental random topology growth has contributed to
maintaining plasticity, we aim to elucidate the underlying mechanisms that drive its effectiveness.
To this end, we explore the dormant neuron theory (Sokar et al., 2023), a prevalent explanation
for plasticity loss. This theory posits that neurons within a network become inactive during train-
ing, typically when their activation values approach zero (Lu et al., 2019). When this occurs, these
neurons lose their ability to learn, reducing the network’s overall capacity to efficiently process
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new situations. Their outputs gradually diminish, ultimately falling below the activation function
threshold (Lu et al., 2019). Meanwhile, prior research has shown that parameters that lack prompt
exposure to high-gradient stimuli are more prone to dormancy. Drawing on these findings, we derive
the following observation:

Naive random topology growth sporadically introduces new connections that can generate
significant gradients for neurons nearing dormancy, thereby supplying them with strong
backpropagation signals and allowing them to continue learning.

Figure 3: Performance comparison and plasticity evaluation
of random growth, our proposed growth method, and pruning
mechanisms. All experiments were conducted with seven inde-
pendent seeds.

If the above conjecture holds in
deep RL, then selecting topol-
ogy candidates based on gra-
dient magnitude may mitigate
plasticity loss more effectively
than randomly expanding net-
work connections. To this end,
we follow the sparse network
training framework in Tan et al.
(2022). Before each topology
expansion, we sample a batch
of transitions from buffer D to
compute the gradient magnitude
across all model parameters, for-
malized as |∇θL|. Then, we select k connections that yield the highest gradient magnitudes to aug-
ment the topology: Igrow = ArgTopki/∈θl(|∇lθL|). The topology growing process Gk adaptively
starts every ∆T step. We try several growing schedules to achieve warm topology growth to prevent
training instability caused by significant network modifications. We chose cosine annealing through
practice (see Appendix F.5 for experiments): at timestep t the k is decayed in a cosine annealing
manner: α

2 (1 + cos( tπ
Tend

)), where α denotes the discount factor and Tend is the shut down step.
Finally, we restrict the weights of the newly included neurons (which are randomly initialized) to
a specific range for training stabilization (Nauman et al., 2024) via weight clipping (Elsayed et al.,
2024). Following standard practice (Liu et al., 2022), we start applying weight clipping on both the
input and output weights of a neuron once it is incorporated into the topology.

The results in Figure 3 indicate that substituting random growth with gradient-based selection of
new connections enhances agent performance and mitigates dormant neuron issues. Additionally,
we compare two commonly used topology initialization strategies: uniform and Erdos-Rrenyi (Evci
et al., 2020), and we find that initializing the network using the Erdos-Rrenyi type is slightly more
effective for RL. This is because Erdos-Rrenyi enables the number of connections in a sparse layer to
scale with the sum of the input and output channels, leading to more stable computations in smaller
networks. Consequently, the agent can achieve more efficient learning in the early stages of training.

Dormant Neuron Pruning After replacing the naive growth strategy with our gradient-guided
growth process Gk, a new challenge emerges, i.e., dormant neurons experience a significant decline
in representational potency while continuing to occupy network capacity. These inactive neurons
may be inherent from initialization or introduced into the network topology through the growth
schedule. This situation can lead to a topology that saturates quickly, resulting in disproportionately
low computational power. Moreover, Lu et al. (2019); Liu et al. (2019) demonstrated that parameters
exclusively forward-linked to dormant neurons are omitted from the gradient calculation process. As
a result, they become ineffective, as they fail to receive meaningful guidance signals. We hypothesize
that pruning and resetting dormant neurons following topology expansion can address this issue.

This process aims to free up space for new connections, allowing dormant neurons to be reactivated
as new candidates. According to Ceron et al. (2024a;b); Sokar et al. (2025), sparsifying the value-
based agents’ network can often enhance performance, which empirically supports our real-time
pruning approach. Consequently, we introduce a synchronous prune-and-reset mechanism into the
topology growth schedule Gk. Here, we adopt the calculation method f(·) shown in Eq. 1 and set
τ to be 0, which means only considering fully dormant neurons: Iprune = {index(θi)|f(θi) = 0}.
To facilitate the topology’s gradual growth and avoid over-pruning, we employ the Truncate process
(that operates on the pruning set Ilprune) which drops excess elements randomly from the set when
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its size exceeds a predefined upper bound. The new truncated set is then used for pruning (Refer
to Appendix D.2 for the detailed pseudo-code of our Truncate Process). In practice, we define the
pruning upper bound in each layer l as ω×|Ilgrow|, where |Ilgrow| represents the number of elements
in the current grow set. The parameter ω ∈ [0, 1) acts as a “discount” factor, moderating the pruning
relative to the total network growth in layer l. Thus, the two final parameters controlling topology
evolution are k and ω. We denote our grow-prune schedule as Gk,ω . The complete growth-pruning
schedule for each layer l in actor ϕ and critic θ networks is defined as:

Gk,ω :

{
1. Ilgrow = ArgTopki/∈ϕ̆l(|∇lϕL

ϕ
t |) ∪ArgTopki/∈θ̆l(|∇

l
θL

θ
t |)

2. Ilprune =
{

Index(ϕ̆li)|f(ϕ̆li) = 0
}
∪
{

Index(θ̆li)|f(θ̆li) = 0
}
;
. (2)

We then use Ilgrow, Ilprune to generate {0, 1}, which are dot-multiplied with the network parameters
to achieve the evolution of the actor topology ϕ̆ and critic topology θ̆. The results in Figure 3
demonstrate that introducing the pruning mechanism after each growth round further preserves the
plasticity of the RL network and enhances overall performance. NE is inspired by plasticity injection
(PI) (Nikishin et al., 2024). While both NE and PI maintain plasticity by extending networks, PI
focuses on one-time large-scale network growth, whereas our method achieves continuous real-time
adaptation.

Notably, our sparse network training framework for maintaining stable learning is summarized as
follows: (i) Inspired by Evci et al. (2020), we use Erdos-Rrenyi initialization to ensure that the num-
ber of connections in a sparse layer scales with the sum of the output and input channels, thereby
enhancing initial stability. (ii) We employ cosine annealing to guide gradual network growth, re-
ducing noise caused by network changes. (iii) Following sparse training practices in RL (Tan et al.,
2022), we keep the first and last layers dense to ensure the stability of the encoding and decoding.

Learn Balance

Run in normal style

Fall: gravity center change & forget balance  

Figure 4: Instability of NE in the later stage without neuron
consolidation via experience review.

Neuron Consolidation via Experi-
ence Review As discussed above,
the proposed elastic topology gener-
ation and dormant neuron pruning-
based dynamic growth approach ef-
fectively mitigate plasticity loss.
This method maintains a higher pro-
portion of active neurons, leading
to improved performance. How-
ever, a closer examination of the re-
sults, i.e. Tab. 8, reveals that NE
demonstrates a high standard devi-
ation across seeds in the later stage
of training, suggesting a potential risk of performance oscillation near convergence. We hypothe-
size that frequent network topology changes may introduce slight probabilistic errors in the network
structure. Consequently, as the activated neuron ratio decreases, some agents may risk forgetting
previously learned skills from the early training stages (e.g., standing in the HalfCheetah task). This
phenomenon leads to suboptimal behavior post-convergence and increases variance between seeds.

We examined the behaviors on the HalfCheetah task and found that there are multiple runs in which
the agent no longer could stand after a fall (Figure 4). This observation strengthens our confidence in
the above conjecture. To address this, we seek a topology-agnostic and simple mechanism to further
enhance the stability of NE by mitigating catastrophic forgetting. Meanwhile, prior studies (Rolnick
et al., 2019; Zhou et al., 2020) show that experience replay (ER) helps mitigate forgetting and sup-
ports network plasticity in both RL and supervised learning. Inspired by these findings, we aim to
develop an ER mechanism sensitive to both the training stage and the activated neuron ratio.

In practice, we define the absolute slope of the activated neuron ratio curve as: ∆(f(θ)) :=∑
i∈θ |∆f(θi)| as the threshold ϵ. Specifically, ϵ measures the slope of changes in the number

of activated neurons (within the critic network) during the recent c steps, i.e., [150, 450]. A larger
positive value of ϵ corresponds to a greater reduction in dormant neurons, indicating active plasticity
improvements in our dynamically growing network. In contrast, a small ϵ (close to zero) suggests a
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Figure 6: Performance comparisons on OpenAI MuJoCo environments (Todorov et al., 2012):
(a) Hopper, (b) Walker2D, (c) HalfCheetah, (d) Ant, (e) Humanoid. (f) Results of the activated
neuron ratio. NE outperforms the baselines in four tasks and maintains a high activated neuron ratio.

bottleneck in plasticity gains, meaning limited capacity for further topology expansion and marking
the later stage of policy learning (see Figure 5).

During training, we observe that ϵ generally decreases over time, since elastic neuron generation and
dormant neuron pruning significantly impact the number of dormant neurons in the early training
stage. However, due to limited network capacity, they cannot indefinitely increase the proportion
of active neurons. To counteract this effect, we encourage the agent to review earlier experiences
from the buffer when dormant neurons are more prevalent. At each training step, a random number
m ∈ [0, 1] is selected, if m > ϵ, the sampling is conducted from the initial quarter of the buffer;
otherwise, the conventional sampling method is employed. We provide pseudocode outlining the
full algorithmic process in Appendix D.1.

4 EXPERIMENTS

Figure 5: How ϵ changes with plastic-
ity measurement. In practice, we set a
lower bound for ϵ.

In this section, we conduct comprehensive experiments
to evaluate whether NE can alleviate the loss of plastic-
ity. We investigate the following key questions: (i (§4.1))
In a long-term training setting, can NE effectively combat
early data overfitting, enhance performance, and attenu-
ate the decline in activation neuron ratio? (ii (§4.2)) In
continuous adaptation task, can NE enable agents to ef-
ficiently adapt to new tasks while slowing the dormancy
rate of activated neurons, without being constrained by
prior learning limitations?

(iii (§4.3)) What are the effects of NE on the policy and
value networks, and what is the importance of its different
components? (iv (§4.4)) Can our method be applied to
other deep RL methods with more complex image inputs?

4.1 LONG-TERM TRAINING TASKS

Experimental Setup We conduct a series of experiments based on the standard continuous con-
trol tasks from OpenAI Gym (Brockman, 2016) simulated by MuJoCo (Todorov et al., 2012) with
long-term training setting, i.e. 3M steps → 6M. We compare NE against strong baselines includ-
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ing Reset (Nikishin et al., 2022), ReDo (Sokar et al., 2023), Layer Normalization (LN) (Lyle et al.,
2024b), and Plasticity Injection (PI) (Nikishin et al., 2024). To ensure a fair comparison and mit-
igate implementation bias, we base all baselines on official implementations (Sokar et al., 2023;
Nikishin et al., 2024; 2022), with the same architecture (See Appendix C.1). All baselines are im-
plemented using the TD3 (Fujimoto et al., 2018) algorithm (where results based on other backbone
deep RL methods are discussed in Section 4.4). To ensure a fair comparison and reproducibility
of the expected performance of all baselines, we follow the recommended hyperparameter setting
from Elsayed et al. (2024) (see Appendix C) for all baselines. The clipping parameter κ is set to 3.
Each algorithm is trained with 7 random seeds, and we report the mean and standard deviation. A
detailed description of hyperparameters and experimental setup is in Appendix C.2. For all tasks,
NE initializes agents at 25% of total capacity and grows asymptotically. The growth termination
scale is aligned with baselines. The score denotes undiscounted episodic return.

Results As shown in Figure 6, the Reset method suffers from periodic performance drops due to
resetting a large portion of layer parameters. This leads to the loss of reusable knowledge, requir-
ing relearning, which impedes overall progress. LN and ReDo demonstrate more stable performance
than Reset, but result in a lower proportion of active neurons. PI maintains the highest level of neuron
activation, but performs well only in the relatively simpler Hopper environment. NE achieves signif-
icant and consistent improvements in learning efficiency and final performance, with a larger margin
in more complex environments. Furthermore, NE effectively mitigates plasticity loss, maintaining
higher active neuron ratios throughout training compared to the most competitive LN method. Ad-
ditionally, NE achieves a superior trade-off between performance and neuron utilization. It performs
more stably and outperforms PI, which, despite achieving the highest neuron activation, exhibits
suboptimal performance in most tasks.

4.2 CONTINUAL ADAPTATION

In this section, we investigate the continual ability to learn and adapt to changing environments,
which is an essential capability of deep RL agents (Willi* et al., 2024; Elsayed & Mahmood, 2024).

Experimental Setup We follow the experimental paradigm of Abbas et al. (2023) and evaluate our
method on a variant of MuJoCo tasks that introduce non-stationarity due to changing environments
over time. Specifically, the agent is trained to master a sequence of 4 environments (HalfCheetah
→ Humanoid→ Ant→Hopper), starting with HalfCheetah for 1000 episodes of training, followed
by the next task for the same number of episodes. A cycle is completed when training on Hopper is
finished. The agent repeats this sequence three times, forming a long-term training schedule. Each
task maintains an output head (1 layer MLP), which is trained in conjunction with the backbone
network. Our method is applied to all layers except the output head. We compare our approach
against the vanilla TD3 agent and the most competitive baseline, Reset.
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Figure 7: Activated neuron ratio,
recorded for three agents with different
settings during cyclic training.

Results The performance of each method in a single en-
vironment, when repeatedly learning across a sequence of
environments as described above, is summarized in Fig-
ure 8. We aim to evaluate (i) the efficiency of the policy in
quickly learning a new task after mastering the previous
one within a single cycle; (ii) the agent’s ability to retain
the benefits of initial learning for the same task across
multiple cycles. As shown, Resetting, which involves ini-
tializing the parameters after each task, is currently con-
sidered the most effective approach.

According to results in Figure 8, NE effectively handles
each task without being negatively influenced by prior
training. It significantly outperforms the original TD3,
reinforcing that standard RL algorithms suffer from catastrophic forgetting in a continual learning
setting. We attribute this success to NE’s ability to introduce real-time topology adjustments, which
facilitate storing new knowledge and ensuring continuous learning capabilities.
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Notably, in certain environments, such as Ant, NE-TD3 retains prior knowledge and seamlessly
continues learning. This could be attributed to the experience review module and the preservation of
old neurons within the topology, which store critical information essential for successful continual
learning. When analyzing column-wise comparisons, NE performs comparably to Reset in most
tasks, yet it significantly outperforms Reset in the challenging Humanoid task. The comparison of
active neurons for each baseline is shown in Figure 7, which illustrates that even during extended
training, NE effectively mitigates neuron dormancy while maintaining efficient learning. In fact, it
even outperforms Reset in the early stages of training, despite Reset reinitializing all parameters.

The spike phenomenon in Figure 7 is related to research examining the relationship between input
distribution and plasticity. Lu et al. (2019) observed that neurons failing to activate due to the
activation function can be reactivated when the input distribution to the network changes. A similar
phenomenon has been reported in Ma et al. (2024), where data augmentation was found to alleviate
the decline in activated neurons. In the continuous adaptation task we tested, a sudden change in
the environment may have altered the input data distribution, leading to a temporary increase in the
activated neuron rate. However, after a short training period, the neurons returned to a dormant state.
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Figure 8: Learning curves of three methods (NE, Reset, Vanilla) on continuous adaptation tasks.

4.3 ABLATION STUDY

In this section, we conduct an additional ablation study to investigate the effectiveness of neuron con-
solidation in Neuroplastic Expansion, while the importance of elastic neural generation and dormant
neuron pruning has already been demonstrated in Figure 3. Additionally, we examine the experience
review (ER) module and assess the impact of our method on the policy and value networks.

(a) Validation of ER (b) Performance (c) Critic plasticity (d) Actor plasticity

Figure 9: Ablation study: (a) presents the validity verification of ER, while (b) to (d) illustrate the
impact of NE on the actor and critic from the perspectives of plasticity and performance.

As illustrated in Figure 9a, the results on HalfCheetah show ER improves the training stability, par-
ticularly in the later stage. Additionally, we select 4 tasks with image input and sparse reward setting
to further verify the effectiveness of ER. The results in Appendix F.4 indicate that when assisted with
ER, our training framework consistently stabilizes the convergent policy at a high level across differ-
ent seeds (i.e., lower standard deviation). In contrast, the absence of this critical component makes
the model more vulnerable to policy collapse in later stages (albeit to a lesser extend than Reset).
This demonstrates the importance of reviewing historical knowledge in maintaining policy stability
and preventing the loss of early valuable information, as discussed in Section 3.2.

Figure 9b illustrates a comparative analysis of our method and its variants, isolating the effects of NE
on the actor and critic networks separately. We observe that NE plays a particularly crucial role in
the critic network. Removing NE from the critic results in significant performance degradation and
substantial plasticity loss compared to the full version of NE (Figure 9c, 9d). In contrast, limiting
expansion to only the critic leads to a less pronounced drop in performance. This asymmetry in
impact may be attributed to the greater challenge faced by the critic, as it must provide accurate value
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estimates for various state-action pairs (Meng et al., 2021) under a non-stationary data distribution.
In addition, the critic provides guidance signals for actor optimization, which requires a high level
of adaptability (Fujimoto et al., 2024).

4.4 VERSATILITY

In this section, we demonstrate the generality of our proposed method by applying it to another
popular deep RL algorithm and evaluating its performance on more complex tasks with image inputs.

Experimental Setup We evaluate four image-based motion control tasks from the DeepMind
Control Suite (DMC) (Tassa et al., 2018b): Reacher Hard, Reacher Easy, Walker Walk, and Cart-
pole Swingup Sparse, to demonstrate the generalization of NE across deep RL algorithms and its
robustness across diverse tasks. For the backbone algorithm, we use DrQ (Yarats et al., 2022), a
well-known variant of SAC (Haarnoja et al., 2018) specifically designed for processing image in-
puts. We compare our approach against the same baselines used in Section 4.1. The weight clipping
parameter κ is set to 2.

Reacher Hard Reacher easy Cartpole Swing up Sparse Walker Run

Figure 10: performance of five methods on DMC tasks

Reacher Hard Cartpole Swingup Sparse Reacher Easy Walker Run

Figure 10: The first row shows the performance of five methods. The second row corresponds to the
percentage of activated neurons. All experiments were run with seven independent seeds.

Results The first row of Figure 10 shows that NE can be effectively combined with DrQ to achieve
stable performance on image-input tasks, outperforming all baselines and demonstrating its ver-
satility across different algorithms. Additionally, the second row of Figure 10 (activated neuron
ratio) indicates that although NE does not reach the peak activation levels of Reset, it delays neuron
dormancy more effectively than other warm mitigation strategies, ensuring stable performance.

5 CONCLUSION

Inspired by the cortical growth in biological agents that triggers neuronal topology expansion to
enhance plasticity and adaptability to new situations, we introduce a novel perspective for deep
RL agents to mitigate the loss of plasticity through a dynamic growing network. Building on this
insight, we present a comprehensive topology growth framework, Neuroplastic Expansion (NE),
which addresses both growth and pruning mechanisms to maximize the performance benefits of
topology expansion. NE adds high-quality elastic neurons and connections based on the gradient
signals to improve the network’s learning ability; prunes dormant neurons in a timely manner for
better utilizing network capacity, and returns them to the candidate set to maintain the agent’s
plasticity, making dormant neurons reusable. NE outperforms previous methods that aimed at
alleviating plasticity loss on diverse tasks and demonstrates stable, outstanding performance on
plasticity metrics. Future directions include exploring adaptive architectures that dynamically adjust
their capacity based on the agent’s performance or task complexity, as well as further reducing
computational overhead. Overall, despite its acknowledged limitations, NE provides practical
insights into enhancing the plasticity of deep RL agents. We hope our findings pave the way for
future research, potentially leading to more sample-efficient and adaptable deep RL algorithms.
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A RELATED WORK

Plasticity loss in RL Recent studies have found that agents guided by the non-stationary objective
characteristic of RL suffer catastrophic degradation (Lyle et al., 2023) and ultimately overfit early
experiences, which limits their continuous learning ability. This phenomenon is known as plasticity
loss. Behaviorally, the loss of plasticity during training can manifest as, for instance, an inability to
obtain an effective gradient to guide policy adaptation in fine-tuning (Dohare et al., 2024), limiting
potential transferability and making it difficult to adapt to new sampling and unseen data (refer to
as primacy bias (Nikishin et al., 2022)). While the research on this topic is still in its early stages,
several techniques have been demonstrated to mitigate the loss of plasticity in deep RL. Resetting
global networks or dormant neurons (Nikishin et al., 2022; Sokar et al., 2023) and modifying ac-
tivation functions (Abbas et al., 2023) are observed to mitigate plasticity loss. Lyle et al. (2024b)
empirically finds that network normalization, particularly layer regularization (LN), can maintain
plasticity. Nikishin et al. (2024) introduced copies of random heads for injecting plasticity to im-
prove continual learning ability. PLASTIC (Lee et al., 2023) divides plasticity into input plasticity
and label plasticity, addressing them separately. NaP (Lyle et al., 2024a) alleviates the over-fitting
issue from the perspective of the association between regularization and learning rate. In pixel-based
deep RL, data augmentation (Ma et al., 2024) and batch size reduction (Obando Ceron et al., 2023)
have been analyzed for their effectiveness in reducing plasticity loss. Recent studies have found that
mitigating gradient starvation (Dohare et al., 2024) and constraining deviations from initial weights
(Kumar et al., 2023; Lewandowski et al., 2024) can also be effective in mitigating plasticity loss.
In supervised learning, Lee et al. (2024a) proposed to use a combination of fast and slow update
networks to balance between fast, fleeting adaptation and slow, steady generalization in supervised
learning. Ash & Adams (2020); Berariu et al. (2021) found that both warm initialize and pre-train
can better adapt to increasing amounts of data.

Pruning in RL Sokar et al. (2021) showed that training the deep RL policy with a changing
topology is difficult due to training instability. Since then, this challenging topic has been well-
studied. Policy Pruning and Shrinking (PoPs) (Livne & Cohen, 2020) obtain a sparse deep RL agent
with iterative parameter pruning. Graesser et al. (2022); Tan et al. (2022); Lee et al. (2024b) attempt
to train a sparse neural network from scratch without pre-training a dense teacher. Existing methods
mainly focus on obtaining a smaller topology to improve training efficiency. However, our paper
explores whether growing the topology from small to large can mitigate the plasticity loss in deep
RL agents rather than training with the maximum number of parameters. In deep RL, the model size
commonly utilized is typically small and may encounter policy collapse after scaling up (Schwarzer
et al., 2023; Ceron et al., 2024a). Thus, sparse training techniques that have proven beneficial for
significantly reducing training costs in fully supervised domains may not yield similar advantages
in deep RL in terms of computation cost reduction. Instead, we provide a new perspective and focus
on making deep RL agents better use of the growing network size to further improve their learning
ability.

B RELATED PRELIMINARIES

TD3 In our paper, we use TD3 as a practice backbone for most experiments.Thus, here we in-
troduce the training process of TD3 in detail. TD3 is a deterministic Actor-Critic algorithm. Dif-
ferent from the traditional policy gradient method DDPG, TD3 utilizes two heterogeneous critic
networks,i.e., Qθ1,2 , to mitigate the over-optimize problem in Q learning.

The training process of TD3 follows the Temporal difference learning (TD):

LQ(θi) = Es,a,s′
[
(y −Qθi(s, a))2

]
for ∀i ∈ {1, 2}. (3)

Where y = r + γ min
j=1,2

Qθ̄j (s
′, πϕ̄(s

′)), ϕ̄ denotes the target network parameters. The actor is

updated according to the Deterministic Policy Gradient (Fujimoto et al., 2018) At each training step
t, the agent first randomly samples a batch of state transitions from the buffer and calculates the loss
gradient as described above. It is worth noting that the proposed method in our paper is a plug-in
and does not affect the training process of the reinforcement learning algorithm itself.
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DrQ DrQ is an algorithm based on maximum entropy reinforcement learning. Its training method
are the same as SAC (Haarnoja et al., 2018). The soft value function is trained to minimize the
squared residual error:

JV (ϕ) = Es
1

2
(Vϕ(s)−Qθ(s, a) + log πψ(a|s)) (4)

where a is sampled according to the current policy instead of the replay buffer. The soft Q-
function parameters can be trained to minimize the soft Bellman residual: JQ(θ) = Es,a ∼
D[ 12 (Qθ(s, a) − Q̂(s, a))2]. Then the policy network can be learned by directly minimizing the
expected KL divergence

J(ψ) = Es∼D[DKL(πϕ(·|s)||
expQ(s)

Z(s)
)] (5)

C EXPERIMENTAL DETAILS

C.1 NETWORK STRUCTURE

TD3 The normal size of the TD3 network we used is the official architecture, and the detailed
setting is shown in Tab 1. Besides, the network we used for Scale-up experiments incrementally
adds the depth of both the actor and critic. For the 1.8× agent, we add one MLP as a hidden layer
in two critic networks in front of the output head and one MLP layer as the embedding layer at the
front of the actor. And the hidden dim is also increased to 256. And so on, we follow the above
approach to grow the model by an equal amount each time.

Layer Actor Network Critic Network

Fully Connected (state dim, 256) (state dim, 256)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128, action dim) and (128, 1)
Activation Tanh None

Table 1: Network Structures for TD3

DrQ We use DrQ to conduct experiments on robot control tasks within DeepMind Control using
image input as the observation. All experiments are based on previously superior DrQ algorithms
and maintain the architecture from the official setting unchanged.

C.2 IMPLEMENTATION DETAILS

TD3 Our codes are implemented with Python 3.8 and Torch 1.12.1. All experiments were run on
NVIDIA GeForce GTX 3090 GPUs. Each single training trial ranges from 6 hours to 21 hours,
depending on the algorithms and environments, e.g. DrQ spends more time than TD3 to handle
the image input and DMC needs more time than OpenAI mujoco for rendering. Our TD3 is imple-
mented with reference to github.com/sfujim/TD3 (TD3 source-code). The hyper-parameters
for TD3 are presented in Table 2. Notably, for all OpenAI mujoco experiments, we use the raw state
and reward from the environment and no normalization or scaling is used. An exploration noise
sampled from N(0, 0.1) (Lillicrap, 2015) is added to all baseline methods when selecting an action.
The discounted factor is 0.95, 0.99 and we use Adam Optimizer (Kingma, 2014) for all algorithms.
Tab.2 shows the common hyperparameters of TD3 used in all our experiments. Following (Elsayed
et al., 2024), We start applying weight clipping on both input and output weights of a neuron once
it becomes part of the topology. To ensure a fair comparison and reproducibility of the expected
performance of all baselines, we employ the recommended hyperparameter setting in Elsayed et al.
(2024) for all baselines, with the clipping parameter κ = 3 for MuJoCo tasks and κ = 2 for image-
input tasks. In our method, dormant neurons are randomly reinitialized after pruning, preparing
them to rejoin the network topology. When they are re-selected, weight clipping is applied to the
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corresponding neurons. Weight clipping is a well-established, straightforward, and generic imple-
mentation technique (that operates independently of core algorithm design and specific algorithm
choices, rather than a new algorithmic contribution here), which is a standard practice that we ap-
ply consistently across all implemented methods. Weight clipping is activated after the network
initialization and operates throughout the training process. Additionally, we introduce layer nor-
malization after the hidden layers of both the critic and actor networks to establish the LN-TD3
baseline for comparison. Notably, other methods do not incorporate normalization mechanisms to
ensure a fair comparison. We reproduce Plasticity Injection Following the guidelines from the of-
ficial paper (Nikishin et al., 2024). We utilize the default settings of the official ReDo codebase
for our comparative analysis https://github.com/google/dopamine/tree/master/
dopamine/labs/redo. For Reset-TD3, after a lot of empirical debugging, we found that pa-
rameter reset every 90, 000 step is a good setting, and fixed it as a hyperparameter. We suggest using
seed 5 to reproduce the learning curve in Figure 5.

Hyperparameter NE-TD3 Reset-TD3 ReDo-TD3 LN-TD3 PI-TD3

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−3

Representation Model Learning Rate None None None 1e−4 5e−3 5e−3

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99
Batch Size 128 128 128 128 128 128
Buffer Size 1e6 1e6 1e6 1e6 1e6 1e6

Table 2: A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote
the ‘not applicable’ situation.

DrQ We use DrQ as the backbone to verify our methods on DeepMind Control tasks. And All the
methods use the same setting. The details can be seen in Tab.3. Notably, For Reset-DrQ, we only
reset the last three MLP layers which is suggested by their paper.

Hyperparameter NE-DrQ Reset-DrQ ReDo-DrQ LN-DrQ PI-DrQ

Replay buffer capacity 1e6 1e6 1e6 1e6 1e6 1e6
Action repeat 2 2 2 2 2 2
Seed frames 4000 4000 4000 4000 4000 4000

Exploration steps 2000 2000 2000 2000 2000 2000
n-step returns 3 3 3 3 3 3

Mini-batch size 256 256 256 256 256 256
Discount γ 0.99 0.99 0.99 0.99 0.99 0.99
Optimizer Adam Adam Adam Adam Adam Adam

Learning rate 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4
Agent update frequency 2 2 2 2 2 2

Critic Q-function soft-update rate 0.01 0.01 0.01 0.01 0.01 0.01
Features dim. 50 50 50 50 50 50
Hidden dim. 1024 1024 1024 1024 1024 1024

Table 3: A default set of hyper-parameters used in our DrQ based methods.

NE For Humanoid and Ant tasks, we set grow interval ∆T = 25000, grow number k = 0.01 ∗
rest capacity, Prune upper bond ω = 0.4, ending step is the max training step, the threshold of ER
is 0.35 and the decay weight α = 0.02(which is used in all the tasks). For other OpenAI Mujoco
tasks, we set grow interval ∆T = 20000, grow number k = 0.15 ∗ rest capacity, Prune upper
bond ω = 0.2, ending step is the max training step, the threshold of ER is 0.25. Notably, as for
the continuous adaptation tasks, we set ∆T = 50000 to ensure the topology can continue growing
during the long-term training, and other parameters are same as Humanoid. When we combine our
method with DrQ, We use single set of hyperparameters to apply on all four tasks. ∆T is set as
20000 to ensure the network can grow quickly to handle the complex input. The grow number k
is 0.02 ∗ rest capacity for critic and 0.01 ∗ rest capacity for actor. The Prune upper bond ω = 0.23
and the threshold of ER is 0.18. We set ER step C to 450 for Mujoco tasks and {150, 250} is work
on DMC. Additional optimizer resets were eliminated for all methods to ensure the fairness of the
experiment.
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D PSEUDOCODE CODE

D.1 PSEUDO-CODE FOR NE

Algorithm 1 Neuroplastic Expansion TD3

πϕ: All parameters in actor. Qθ{1,2} : All parameters in critics, Ml: Sparse mask in layer l.
Initial sparse rate Sp. Set parameter κ and the clip bounds for all layers: {sϕl = 1√

nϕ
l

}Ll=1,

{sθl = 1√
nθ
l

}Ll=1 for weight clipping operation, where
√
nl denotes the number of the neurons in

layer l.
# Initialize the sparse networks for stable starting
keep θl∈{1,N}, ϕl∈{1,N} dense; θ, ϕ← Erdos-Renyi(Sp)

Neuroplastic Expention (every ∆T )
# Calculate growing number at t step to achieve warm growing
k ← cosine annealing(t, Tend)
for each lϕ ∈ πϕ, lθ ∈ Qθ{1,2} do

# Select top k weights from candidates
Igrow = ArgTopkil /∈ϕ̆l(|∇lϕL

ϕ
t |) ∪ ArgTopkil /∈θ̆l(|∇

l
θL

θ
t |)

# Collect the weights related to selected dormant neurons
Ilprune =

{
Index(ϕ̆li)|f(ϕ̆li) = 0

}
∪
{

Index(θ̆li)|f(θ̆li) = 0
}

Start truncate process ▷ Algorithm 2
Get indexes from Igrow, Iprune
Generate topology mask map Mlϕ ,Mlθ
# Update new topology
θ̆l ← θl ⊙Mlθ , ϕ̆l ← ϕl ⊙Mlϕ
# Weight clipping for the newly added neurons
θIlgrow ←Weight Clipping(θIlgrow ,min = −κsθl ,max = κsθl )

ϕIlgrow ←Weight Clipping(ϕIlgrow ,min = −κsϕl ,max = κsϕl )

end for

Train the RL policy

a← πϕ̆(s) (with Gaussian noise)
Observe r and new state s′
Fill D with (s, a, r, s′)
# Experience review
if random(0, 1) > ∆f(θ) then

sample a batch from bottom 1
4D

else
sample a batch from total D

end if
Update Qθ̆{1,2} , πϕ̆ based on TD3
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D.2 PSEUDO-CODE FOR TRUNCATE PROCESS

Algorithm 2 Truncate Process

1: Input:
2: # Enter the necessary inputs
3: min value: min pruning threshold (set to be 0)
4: Ilprune: the pruning set
5: Ilgrow: the growth set # for determining max pruning amount
6: ω: a preset ratio in [0, 1) # for determining max pruning amount
7: Output: Truncated pruning set
8:
9: max value = ω× |Ilgrow| # max pruning amount. | · | represents the number of the elements in

the set
10: if |Ilprune| > max value then
11: Randomly remove excess elements from the pruning set Ilprune
12: end if
13: Return Ilprune

E DETAILED EXPLANATION OF THE GROWTH MECHANISM

We follow the classical sparse network exploration method in (Evci et al., 2020). We use all the
weights to calculate the gradient backpropagation because we want to find a weight subgraph com-
posed of multiple candidates to add to the current network, that is, the newly added weight subsets
jointly obtain high gradient magnitude under the influence of each other, and calculating the weights
one by one will ignore the interaction between them and other weights in the subset, resulting in
serious errors and high-cost computation. To this end, we compute the full weight to cheaply select
the valid subgraphs. However, this evaluation does introduce errors that add low-quality weights,
and the reason why this growth framework is effective is that real-time pruning removes the error
caused by growth. In the future, we will further optimize the growth mechanism to improve the
accuracy of its evaluation.

F ADDITIONAL EXPERIMENTS

F.1 ANALYSIS OF GROW & PRUNE RATE

We conducted ablation experiments on dormant neuron pruning across two hard tasks in Tab.4. The
findings demonstrate the significant and generalized benefits of dormant neuron pruning for our
framework.

Method Cartpole Swingup Sparse Walker Walk
w/ prune 425.09± 45.28 491.28± 40.62
w/o prune 382.14.28± 29.86 367.51.24± 43.06

Table 4: Performance (Average of 10 runs).

F.2 ANALYSIS OF GROW & RRUNE RATE

In table.5, we set experiments for growth rate and pruning rate analyses. Our method shows good
performance on both image-based and state-based tasks with a very slow growth schedule, i.e.
0.001 ∼ 0.009, but it is not sensitive to pruning rate, i.e., keeping it between 10% and 40%

Task 0.0005 0.00010 0.00050 0.00100 0.00150
state-input (Ant) 7529.15± 132.36 7749.25± 127.73 7714.28± 147.56 7308.47± 261.95 7287.39± 384.02
image-input (DMC Reacher Hard) 416.72± 50.37 442.31± 56.42 475.46± 34.11 431.74± 52.09 419.38± 37.24

Table 5: The evaluations of growth rate on vector-input and image-input tasks. Average of 3 runs.
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F.3 ANALYSIS OF STARTING SPARSITY RATE

We empirically find that starting from around 0.25 is a general and effective setting for growth. For
the cycle adaptation task we find that starting from 0.15 is a good choice. In the future, we will
explore how to find the appropriate sparsity adaptively according to the task.

We uniformly sample different starting sparsity rates and test the performance. In table.6, we find
that the effect is similar when the sparsity ratio is between [0.7, 0.8], too sparse network cannot
learn efficiently in the early stage of training, and too dense network will limit the gain brought by
network growth. Therefore, we set it to 0.75 uniformly.

Task 0.85 0.8 0.75 0.7 0.65
state-input (Ant) 6962.52± 297.41 7694.37± 115.28 7749.25± 127.73 7681.61± 108.07 7255.34± 212.86
image-input (DMC Reacher Hard) 425.95± 27.62 480.73± 35.18 475.46± 34.11 492.13± 22.53 432.67± 29.17

Table 6: The evaluations of initial sparsity on vector-input and image-input tasks. Average of 3 runs.

F.4 VERIFY THE EFFICIENCY OF EXPERIENCE REPLAY MODULE

The experience replay module is related to reducing forgetting in the later training stage and en-
hancing stability-plasticity ability. The experiment depicted in Fig.7a illustrates that frequent alter-
ations to the network topology can induce sudden shifts in network computations, which may prune
neurons holding valuable information, leading to instability in subsequent training phases. The tra-
jectory visualization (Figure 12) demonstrates that the agent may exhibit suboptimal behavior by
forgetting the initial skill (standing up). Consequently, we introduce the experience replay mech-
anism during the later stages of training to prompt the network to revisit earlier data, mitigating
forgetting and fostering stability in the latter training phases.

To further authenticate the efficacy of ER across a spectrum of tasks, we focus on four challenging
image input tasks: Reacher Hard and Walker Walk in DMC, along with two sparse reward manipula-
tor control tasks: Hammer (sparse) and Sweep Into (sparse). The results in Table.7 shows enhanced
performance and notably reduced variance following the integration of the experience replay mech-
anism. This outcome underscores that experience replay fosters training stability.

Method Reacher Hard Walker Walk Hammer sparse (success rate) Sweep Into sparse (success rate)
NE w/ ER 475.46± 34.11 491.28± 40.62 0.54± 0.13 0.61± 0.09
NE w/o ER 419.25± 65.73 427.31± 73.84 0.47± 0.21 0.52± 0.16

Table 7: The evaluations of initial sparsity on vector-input and image-input tasks. Average of 3 runs.

In addition, we set a study of experience review (ER) on various tasks in Tab.8-10, and the results
show that without ER, although all the agents with different seeds can learn efficiently in the early
stage, the performance will drop at the later training stage and become unstable in some runs(high
std). We also find that this phenomenon is more pronounced on complex sparse reward tasks as well
as image input scenarios. Therefore we suggest employing ER in complex tasks to assist our method
for stable training.

Method at 1/2 training stage at 3/4 training stage end of training
NE w/ ER 6635.12± 245.28 7258.18± 151.66 7749.25± 127.73
NE w/o ER 6673.54± 216.41 6896.92± 264.23 7235.14± 493.83

Table 8: Performance on vector-input task (Ant) (Average of 10 seeds).

F.5 ANALYSIS OF GROW MODE

The choice of the control mode for topology growth is empirical, and we have tested several modes
in the experimental phase, i.e uniform schedule, warm decay, and cosine annealing. We show the
comparison in Table 11, the results show that although all modes are efficient, cosine annealing
performs the best. We guess that this is because it includes cyclicality based on warm decay, which
is more robust in practice.

20



Published as a conference paper at ICLR 2025

Method at 1/2 training stage at 3/4 training stage end of training
NE w/ ER 408.22± 74.14 462.09± 48.74 475.46± 34.11
NE w/o ER 413.75± 79.22 439.02± 86.15 419.25± 65.73

Table 9: Performance on image-input task (Reacher Hard) (Average of 10 seeds).

Method at 1/2 training stage at 3/4 training stage end of training
NE w/ ER 396.69± 83.27 416.39± 55.26 424.76± 47.68
NE w/o ER 397.15± 79.22 421.02± 61.08 402.88± 71.23

Table 10: Performance on sparse reward task (Cartpole Swingup Sparse)(Average of 10 seeds).

Mode Cartpole Swingup Sparse
Cosine annealing 425.09± 45.28
Uniform 389.66± 41.53
warm decay 392.24± 31.95

Table 11: The evaluations of growth mode on vector-input and image-input tasks. Average of 5 runs.

F.6 VISUALIZATION OF THE NETWORKS WITH LOW ACTIVATED NEURON RATIO

When the activated neurons ratio is low, means the networks contain lots of dormant (dead) neurons
that retain useless (negative) weights. In this section, we add two visualizations to demonstrate
the detrimental effects of accumulating lots of dormant neurons in a network: it diminishes the
network’s overall representational capacity during training and leads to suboptimal policy.

We contrasted the backpropagation gradient heatmaps of a standard network with those of a network
containing numerous dormant neurons (Figure 11), where darker colors indicate higher gradients
and faster weight optimization. Both networks use the same data for input. The findings indicate
that when a network has a substantial number of dormant neurons, the gradient guidance is notably
diminished, thereby constraining the learning efficacy. This limitation stems from dormant neurons
being unable to trigger the activation function, rendering them unseen on the computational graph
and impeding the backflow of gradients.

We compare the behaviors of the regular policy and the policy featuring numerous dormant neurons
in Figure 12, it becomes evident that the latter tends to exhibit suboptimal behavior due to its reduced
learning capacity.

F.7 ABLATION STUDY OF REPLAY RATIO

We test the effect of different Replay Ratio (RR) on all four DMC tasks. The results in Figure 13
show that with the increase of RR, the performance of baseline and NE increased slightly (the effect
of our method was more obvious). We concluded that this was because changing RR proved to be
an effective way to alleviate plasticity loss in VRL (Ma et al., 2024).
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Figure 11: Heat map. Darker colors indicate higher gradients and faster weight optimization. Both
networks use the same data for input.

Behavior after Policy training

Dormant  neuron: Although moving,  fail to learn the desired running skills

Activated  neuron: Achieve smooth running

Figure 12: Comparison of behaviors after training.

F.8 DETAIL RESULTS OF DIFFERENT NETWORK SIZE

Figure 14 shows the results for uniform fine-grained size sampling.
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Figure 13: Analysis of different Replay Ratios values.
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Figure 14: Performance comparison for different final model sizes.
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