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1 Appendix

1.1 A brief review of relevant differential geometry concepts

To make the paper self-contained, we briefly review certain differential geometry concepts. We only
include a condensed description – needed for our algorithm and analysis – and refer the interested
reader to Boothby (1986) for a comprehensive and rigorous treatment of the topic.

Figure 1: Schematic description of an exemplar manifold (M) and the visual illustration of Exp and Exp−1

map.

Riemannian Manifold: A Riemannian manifold, M, (of dimension m) is defined as a (smooth)
topological space which is locally diffeomorphic to the Euclidean space Rm. Additionally, M is
equipped with a Riemannian metric g which can be defined as

gX : TXM× TXM → R,

where TXM is the tangent space at X of M, see Fig. 1.

If X ∈ M, the Riemannian Exponential map at X , denoted by ExpX : TXM → M is defined as
γ(1) where γ : [0, 1] → M. We can find γ by solving the following differential equation:

γ(0) = X, (∀t0 ∈ [0, 1])
dγ

dt

∣∣∣
t=t0

= U.

In general ExpX is not invertible but the inverse

Exp−1
X : U ⊂ M → TXM

is defined only if U = Br(X), where r is called the injectivity radius Boothby (1986) of M. This
concept will be useful to define the mechanics of gradient descent on the manifold.

In our reformulation, we made use of the following manifolds, specifically, when decomposing U
and V into a product of several matrices.
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(a) St(p, n): the Stiefel manifold consists of n× p column orthonormal matrices

(b) Gr(p, n): the Grassman manifold consists of p-dimensional subspaces in Rn

(c) SO(n), the manifold/group consists of n × n special orthogonal matrices, i.e., space of
orthogonal matrices with determinant 1.

Differential Geometry of SO(n): SO(n) is a compact Riemannian manifold, hence by the Hopf-
Rinow theorem, it is also a geodesically complete manifold Helgason (2001). Its geometry is well
understood – we recall a few relevant concepts here and note that Helgason (2001) includes a more
comprehensive treatment.

SO(n) has a Lie group structure and the corresponding Lie algebra, so(n), is defined as,

so(n) = {W ∈ Rn×n|WT = −W}.

In other words, so(n) (the set of Left invariant vector fields with associated Lie bracket) is the set of
n× n anti-symmetric matrices. The Lie bracket, [, ], operator on so(n) is defined as the commutator,
i.e.,

for U, V ∈ so(n), [U, V ] = UV − V U.

Now, we can define a Riemannian metric on SO(n) as follows:

⟨U, V ⟩X = trace
(
UTV

)
, where

U, V ∈ TX(SO(n)), X ∈ SO(n).

It can be shown that this is a bi-invariant Riemannian metric. Under this bi-invariant metric, now
we define the Riemannian exponential and inverse exponential map as follows. Let, X,Y ∈ SO(n),
U ∈ TX(SO(n)). Then,

Exp−1
X (Y ) = X log(XTY )

ExpX(U) = X exp(XTU),

where, exp, log are the matrix exponential and logarithm respectively.

Differential Geometry of the Stiefel manifold: The set of all full column rank (n× p) dimensional
real matrices form a Stiefel manifold, St(p, n), where n ≥ p.

A compact Stiefel manifold is the set of all column orthonormal real matrices. When p < n, St(p, n)
can be identified with

SO(n)/SO(n− p).

Note that, when we consider the quotient space, SO(n)/SO(n− p), we assume that SO(n− p) ≃
ι(SO(n− p)) is a subgroup of SO(n), where,

ι : SO(n− p) → SO(n)

defined by

X 7→
[
Ip 0
0 X

]
is an isomorphism from SO(n− p) to ι(SO(n− p)).

Differential Geometry of the Grassmannian Gr(p, n): The Grassmann manifold (or the Grassman-
nian) is defined as the set of all p-dimensional linear subspaces in Rn and is denoted by Gr(p, n),
where p ∈ Z+, n ∈ Z+, n ≥ p. Grassmannian is a symmetric space and can be identified with the
quotient space

SO(n)/S (O(p)×O(n− p)) ,

where S (O(p)×O(n− p)) is the set of all n× n matrices whose top left p× p and bottom right
n− p× n− p submatrices are orthogonal and all other entries are 0, and overall the determinant is 1.

A point X ∈ Gr(p, n) can be specified by a basis, X . We say that X = Col(X) if X is a basis of X ,
where Col(.) is the column span operator. It is easy to see that the general linear group GL(p) acts
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isometrically, freely and properly on St(p, n). Moreover, Gr(p, n) can be identified with the quotient
space St(p, n)/GL(p). Hence, the projection map

Π : St(p, n) → Gr(p, n)

is a Riemannian submersion, where Π(X) ≜ Col(X). Moreover, the triplet (St(p, n),Π,Gr(p, n))
is a fiber bundle.

Horizontal and Vertical Space: At every point X ∈ St(p, n), we can define the vertical space,
VX ⊂ TXSt(p, n) to be Ker(Π∗X). Further, given gSt, we define the horizontal space, HX to be the
gSt-orthogonal complement of VX .

Horizontal lift: Using the theory of principal bundles, for every vector field Ũ on Gr(p, n), we
define the horizontal lift of Ũ to be the unique vector field U on St(p, n) for which UX ∈ HX and
Π∗XUX = ŨΠ(X), for all X ∈ St(p, n).

Metric on Gr: As, Π is a Riemannian submersion, the isomorphism Π∗X |HX
: HX → TΠ(X)Gr(p, n)

is an isometry from (HX , gSt
X) to (TΠ(X)Gr(p, n), gGr

Π(X)). So, gGr
Π(X) is defined as:

gGr
Π(X)(ŨΠ(X), ṼΠ(X)) = gSt

X(UX , VX) (1)

= trace((XTX)−1UT
XVX)

where, Ũ , Ṽ ∈ TΠ(X)Gr(p, n) and Π∗XUX = ŨΠ(X), Π∗XVX = ṼΠ(X), UX ∈ HX and VX ∈
HX .

We covered the exponential map and the Riemannian metric above, and their explicit formulation for
manifolds listed above is provided for easy reference in Table 1.

gX (U, V ) ExpX (U) Exp−1
X (Y )

St(p, n) Kaneko et al. (2012) trace
(
UTV

)
Ũ Ṽ T , (Y −X)−X(Y −X)TX

ŨSṼ T = svd(X + U)

Gr(p, n) Absil et al. (2004) trace
(
Π−1

∗ (U)
T
Π−1

∗ (V )
)

Û V̂ T , Ȳ
(
X̄T Ȳ

)−1 − X̄ ,

Û ŜV̂ T = svd(X̄ + U) X = Π(X̄), Y = Π(Ȳ )
SO(n) Subbarao & Meer (2009) trace

(
XTUXTV

)
Xexpm

(
XTU

)
X logm

(
XTY

)
Table 1: Explicit forms for some operations we need. Π(X) returns X’s column space; Π∗ is Π’s differential.

1.2 Proof of Theorem 1

We first restate the assumptions from section 2:

Assumptions:

(a) The random variables X ∼ N (0,Σx) and Y ∼ N (0,Σy) with Σx ⪯ cId and Σy ⪯ cId for
some c > 0.

(b) The samples X and Y drawn from X and Y respectively have zero mean.

(c) For a given k ≤ d, Σx and Σy have non-zero top-k eigen values.

Recall that F and F̃ are the optimal values of the true and approximated CCA objective in (1) and (4)
respectively, we next restate Theorem 1 and give its proof:

Theorem 1. Under the assumptions and notations above, the approximation error E = ∥F − F̃∥ is
bounded and goes to zero while the whitening constraints in (4b) are satisfied.

Proof. Let U∗, V ∗ be the true solution of CCA. Let U = ŨSuQu, V = Ṽ SvQv be the solution of (4)
with Ũ , Ṽ be the PCA solutions of X and Y respectively with SuQu = ŨTU∗ and SvQv = Ṽ TV ∗

(using RQ decomposition). Let X̂ = XŨŨT and Ŷ = Y Ṽ Ṽ T be the reconstruction of X and Y
using principal vectors.
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Then, we can write

F̃ = trace
(
UTCXY V

)
= trace

(
1

N

(
X̂U∗

)T
Ŷ V ∗

)
Similarly we can write F = trace

(
1
N (XU∗)

T
Y V ∗

)
.

Using Def. 1, we know X̂ , Ŷ follow sub-Gaussian distributions (such an assumption is common for
such analyses for CCA as well as many other generic models).

Consider the approximation error between the objective functions as E = |F − F̃ |. Due to von
Neumann’s trace inequality and Cauchy–Schwarz inequality, we have

E =
1

N
|trace

(
(U∗)T X̂T Ŷ (V ∗)− (U∗)TXTY (V ∗)

)
|

≤ |trace
(
(U∗)T

((
X̂ −X

)T (
Ŷ − Y

)
− 2XTY +XT Ŷ + X̂TY

)
(V ∗)

)
|

≤
∑
i

σi(X̂u −Xu)σi(Ŷv − Yv) +
∑
i

σi(X̂u −Xu)σi(Yv) +
∑
i

σi(Ŷv − Yv)σi(Xu)

≤ ∥
(
X̂u −Xu

)
∥F ∥

(
Ŷv − Yv

)
∥F + ∥

(
X̂u −Xu

)
∥F ∥Yv∥F +

(
Ŷv − Yv

)
∥F ∥Xu∥F

(A.1)

Here Au = AU∗ and Av = AV ∗ for any suitable A. where σi(A) denote the i-th singular value of
matrix A and ∥ • ∥F denotes the Frobenius norm.

Now, using Proposition 1, we get

∥
(
X̂u −Xu

)
∥F ≤ min

(√
2k∥∆x∥2,

2∥∆x∥22
λx
k − λx

k+1

)
∥
(
Ŷv − Yv

)
∥F ≤ min

(√
2k∥∆y∥2,

2∥∆y∥22
λy
k − λy

k+1

)
(A.2)

where,

∆x = C(Xu)− C(X̂u) ∆y = C(Yv)− C(Ŷv). (2)
Here λxs and λys are the eigen values of C(Xu) and C(Yv) respectively. Now, assume that C(Xu) =
Ik and C(Yv) = Ik since Xu and Yv are solutions of Eq. 1. Furthermore assume λx

k − λx
k+1 ≥ Λ

and λy
k − λy

k+1 ≥ Λ for some Λ > 0. Then, we can rewrite equation A.1 as

E ≤ min

(
√
2k∥Ik − C(X̂u)∥2,

2∥Ik − C(X̂u)∥22
Λ

)
min

(
√
2k∥Ik − C(Ŷv)∥2,

2∥Ik − C(Ŷv)∥22
Λ

)
+

min

(
√
2k∥Ik − C(X̂u)∥2,

2∥Ik − C(X̂u)∥22
Λ

)
∥Yv∥F+

min

(
√
2k∥Ik − C(Ŷv)∥2,

2∥Ik − C(Ŷv)∥22
Λ

)
∥Xu∥F

As C(X̂u) → Ik or C(Ŷv) → Ik, E → 0. Observe that the limiting conditions for C(X̂u) and C(Ŷv)
can be satisfied by the “whitening” constraint. In other words, as C(Xu) = Ik and C(Yv) = Ik,
C(X̂u) and C(Ŷv) converge to C(Xu) and C(Yv), the approximation error goes to zero.

1.3 Proof of Proposition 4

Here, we prove that the CCA objective function is geodesically convex as a function of U . An
analogous analysis follows in case of V . With a given solution of V , we define the objective function
as (i.e., the CCA objective) f : M → R given by

f(U) = trace(UTCXY V ) (3)
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Proceeding, we see gradf(U) = CXY V .

Now, we can show f is geodesically convex by showing

f(U1)− f(U2) ≤ gU1(gradf(U1),−Exp−1
U1

(U2)) (4)

for U1, U2 ∈ M and g is the Riemannian metric (Bécigneul & Ganea (2018) calls this ρ). First,
consider the LHS of the inequality.

f(U1)− f(U2) = trace(UT
1 CXY V )− trace(UT

2 CXY V ) = trace((U1 − U2)
TCXY V ) (5)

Now let us calculate −Exp−1
U1

(U2) which will be used for the RHS of the above inequality for
geodesic convexity,

−Exp−1U1(U2) = (U1 − U2) + U1(U2 − U1)
TU1 (6)

Then, for the RHS of the inequality we just plug in the terms, gU1
(gradf(U1),−Exp−1

U1
(U2) equal to

trace((U1 − U2)
TCXY V ) + trace(V TCT

XY U1(U2 − U1)
TU1) (7)

Observe that in order to show

f(U1)− f(U2) ≤ gU1
(gradf(U1),−Exp−1

U1
(U2)) (8)

since the first terms of the LHS and RHS match, we only need to show trace(V TCT
XY U1(U2 −

U1)
TU1) ≥ 0. Let Ũ be the solution of PCA, then trace(V TCT

XY Ũ) > 0, as Ũ lies in the feasible
set of maximizing correlation, i.e., solution of PCA belongs to the CCA feasible set.

Now let us assume that the consecutive iterates lie inside a geodesic ball of radius less than the con-
vexity radius. Let U1 = Ũ and U2 be the solution of second iterate. Then U1(U2−U1)

TU1 lies inside
the geodesic ball of a radius less than the convexity radius as it is linear combination of columns of U1.
This ensures that trace(V TCT

XY U1(U2 − U1)
TU1) has the same sign as the term trace(V TCT

XY U1)
(using intermediate value theorem on the convex ball), since trace(V TCT

XY U1(U2−U1)
TU1) is zero

only if U2 = U1, i.e., at convergence.

Thus,
f(U1)− f(U2) ≤ gU1(gradf(U1),−Exp−1

U1
(U2)) (9)

and hence it is geodesically convex (compare this inequality with equation (12) of Bécigneul & Ganea
(2018)).

1.4 Implementation details of CCA on fixed dataset

Implementation details. On all three benchmark datasets, we only passed the data once for both
our RSG+ and MSG Arora et al. (2017) and we use the code from Arora et al. (2017) to produce
MSG results. We conducted experiments on different dimensions of target space: k = 1, 2, 4. The
choice of k is motivated by the fact that the spectrum of the datasets decays quickly. Since our RSG+
processes data in small blocks, we let data come in mini-batches (mini-batch size was set to 100).

1.5 Runtime of RSG+ and baseline methods

In addition to the runtime comparison between RSG+ and MSG, we also plot the runtime of our
algorithm under different data dimension (set dx = dy = d) and number of total samples sampled
from joint gaussian distribution in Fig. 2.

1.6 Error metrics for fairness

Equality of Opportunity (EO) Hardt et al. (2016): A classifier h is said to satisfy EO if the
prediction is independent of the protected attribute s (in our experiment s is a binary variable where
s = 1 stands for Male and s = 0 stands for Female) for classification label y ∈ {0, 1}. We use the
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Figure 2: Runtime of RSG+ under different data dimensions and size of datasets.

difference of false negative rate (conditioned on y = 1) across two groups identified by protected
attribute s as the error metric, and we denote it as DEO.

Demographic Parity (DP) Yao & Huang (2017): A classifier h satisfies DP if the likelihodd of
making a misclassification among the positive predictions of the classifier is independent of the
protected attribute s. We denote the difference of demographic parity between two groups identified
by the protected attribute as DDP.

1.7 Implementation details of fairness experiments

Implementation details. The network is trained for 20 epochs with learning rate 0.01 and batch
size 256. We follow Donini et al. (2018) to use NVP (novel validation procedure) to evaluate our
result: first we search for hyperparameters that achieves the highest classification score and then
report the performance of the model which gets minimum fairness error metrics with accuracy within
the highest 90% accuracies. When we apply our RSG+ on certain layers, we first use randomized
projection to project the feature into 1k dimension, and then extract top-10 canonical components for
training. Similar to our previous experiments on DeepCCA, the batch method does not scale to 1k
dimension.

Resnet-18 architecture and position of Conv-0,1,2 in Table 3. The Resnet-18 contains a first
convolutional layer followed by normalization, nonlinear activation, and max pooling. Then it has
four residual blocks, followed by average polling and a fully connected layer. We denote the position
after the first convolutional layer as conv0, the position after the first residual block as conv1 and
the position after the second residual block as conv2. We choose early layers since late layers close
to the final fully connected layer will have feature that is more directly relevant to the classification
variable (attractiveness in this case).

Table 2: Results of Yger et al. (2012) (on CIFAR-10, our implementation of Yger et al. (2012) faces
convergence issues).

MNIST Mediamill
Performance k = 1 k = 2 k = 4 k = 1 k = 2 k = 4
PCC 0.93 0.81 0.53 0.55 0.61 0.51
Time (s) 575.88 536.46 540.91 41.89 28.66 28.76

1.8 Comparison with Yger et al. (2012)

We implemented the method from Yger et al. (2012) and conduct experiments on the three datasets
above. The results are shown in Table 2. We tune the step size between [0.0001, 0.1] and β = 0.99
as used in their paper. On MNIST and MEDIAMILL, the method performs comparably with ours
except k = 4 case on MNIST where it does not converge well. Since this algorithms also has a
d3 complexity, the runtime is 100× more than ours on MNIST and 20× more on Mediamill. On
CIFAR10, we fail to find a suitable step size for convergence.
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