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Figure 1: Overview of RenderMe-360’s core features. We present a large digital asset library RenderMe-360
to facilitate the development of advanced research on high-fidelity head avatar synthesis. It has the characteristics
of (a) high fidelity and (b) high diversity. Also, our dataset comes with (c) rich annotations.

Abstract

Synthesizing high-fidelity head avatars is a central problem for computer vision
and graphics. While head avatar synthesis algorithms have advanced rapidly,
the best ones still face great obstacles in real-world scenarios. One of the vital
causes is the inadequate datasets – 1) current public datasets can only support
researchers to explore high-fidelity head avatars in one or two task directions;
2) these datasets usually contain digital head assets with limited data volume,
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and narrow distribution over different attributes, such as expressions, ages, and
accessories. In this paper, we present RenderMe-360, a comprehensive 4D human
head dataset to drive advance in head avatar algorithms across different scenarios.
It contains massive data assets, with 243+ million complete head frames and over
800k video sequences from 500 different identities captured by multi-view cameras
at 30 FPS. It is a large-scale digital library for head avatars with three key attributes:
1) High Fidelity: all subjects are captured in 360 degrees via 60 synchronized,
high-resolution 2K cameras. 2) High Diversity: The collected subjects vary from
different ages, eras, ethnicities, and cultures, providing abundant materials with
distinctive styles in appearance and geometry. Moreover, each subject is asked to
perform various dynamic motions, such as expressions and head rotations, which
further extend the richness of assets. 3) Rich Annotations: the dataset provides
annotations with different granularities: cameras’ parameters, background matting,
scan, 2D/3D facial landmarks, FLAME fitting, and text description.
Based on the dataset, we build a comprehensive benchmark for head avatar re-
search, with 16 state-of-the-art methods performed on five main tasks: novel view
synthesis, novel expression synthesis, hair rendering, hair editing, and talking
head generation. Our experiments uncover the strengths and flaws of state-of-
the-art methods. RenderMe-360 opens the door for future exploration in modern
head avatars. All of the data, code, and models will be publicly available at
https://renderme-360.github.io/.

1 Introduction

Digitalizing human replicas is a perennial topic in both research and commercial communities. It
serves as the foundation of many advanced applications, e.g.,VR/AR, gaming, and metaverse. Among
various tasks, human head avatar synthesis plays a crucial but difficult role. This is because the
human head performs significant social functions with appearance, expression, speech, etc., in which
even subtle differences between synthesized and real ones can be easily perceived by human eyes to
trigger the uncanny valley effect. How to render, reconstruct, and animate a human head with realism
reminds a great challenge. Over decades, although numerous approaches have emerged and pushed
forward the frontier of facial reconstruction [43, 44] and animation [13, 38], general full-head level
avatar synthesis [56, 3, 53] has only started to actively advance in recent years. Research efforts
along human head avatar usually follow the flourishing of deep learning and neural rendering. Such
formalizations require large-scale or dense multi-view training datasets to drive progress.

Unlike the efforts on 2D datasets [28, 20], which could utilize Internet-scale data to enhance the
quantity and diversity, the path to constructing a 3D/4D repository is difficult. Thus, current human
head-related datasets [51–54, 11, 10] have significant limitations on dataset scale, sample diversity,
photorealism, sensory modality, and annotation granularity. For example, Multiface dataset [51]
contains facial data with only 13 publicly available subjects, VOCASET [11] focuses on auditory
modality while ignoring other facial functions, and HUMBI Face [54] suffers from low resolution
with 2 million pixels. The details of the existing head-related datasets’ limitations are shown in
Table 1. These datasets are valuable. However, they can only enable researchers to study a small set
of problems. The progress of human head avatar algorithms also indicates the saturated performances
on existing datasets, while the performance gap between standard datasets and real-world scenarios
still remains. Moreover, human head avatar synthesis is a complex combination of many fundamental
tasks (such as face/head reconstruction, expression animation, and hair modeling/animation), which
requires a comprehensive digital asset library to support the exploration. In a nutshell, compared with
2D counterparts, the construction of 3D/4D human head repositories is impoverished.

In this paper, we present RenderMe-360, a new publicly available large-scale 4D digital asset library
with over 243 million frames that features a wide range of downstream tasks, to boost the development
of human head avatar creation. RenderMe-360 goes beyond previous datasets in several key aspects:
1) High Fidelity: we set up a high-end data collection system to capture high-resolution raw data of
RenderMe-360. With the system, all data is ensured to be captured by 60 cameras at 2448× 2048
resolution and 30 FPS. 2) High Diversity: We collect 500 different participants, who come from
various countries with diverse ages and cultural backgrounds (illustrated in Figure 3). Specifically,
about 25% of them are with designed makeup styles and wearing special decorations, such as ancient
Chinese makeup styles with delicate hair accessories. These nature differences of the participants
provide ample variety in both appearance and accent. For each subject, we capture 12 expressions, 26
or 42 bilingual speeches, and 12 hairstyles (if not specifically required). These collection protocols
further enrich the diversity of motion, modality, and appearance. 3) Rich Annotations: We provide
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Table 1: Multi-view head dataset comparison. N: Dataset is not released, S: Scanner, M: Mesh, AU: Action
Unit, PF: Per-Frame. Outfit: A variety of clothes-related & accessory-related designs. Motion: head or body
motion, but facial changes are not included. Better zoom in for details.

ID Age
Expressio

n

Sentence

Language

Frame
Era Ethnicity

Outfit
Accesso

ry

HairStyle

Makeup
Motion

Camera View

Resolution

FPS Wig Style×
Wig Color

Appearance Annotation

Phoneme-balanced Corpus

PF Face Lmk2d

PF Face Lmk3d

PF Mattin
g

3DMM-lik
e model

Scam
UV map

Activity
Descriptions

PF AU

Dataset Diversity Realism Granularity
D3DFACS [10] 10 - 19-97AU - 6(S) M 60

HUMBI Face [54] 772 (<10)-(>60) 20 17.3M 68 2MP 60

Facescape [52] 847 16-70 20 16.9K M 68 4-12MP -

i3DMM [53] 64 16-69 10 N 137 - -

VOCASET [11] 12 - 40 1 - 18 M 60

Multiface [51] 13 - 65/118 50 1 ≈ 15M 40/150 3MP 30

RenderMe-360 500 6-88 12 26/42 2 >243M 60 5MP 30 7 × 6 127

multiple types of annotations with different granularities (Table 1), which ensure the compatibility of
one single dataset to various tasks and methods. Concretely, we provide annotations in two levels:
per-frame annotations, and per-id annotations. The per-frame annotations refer to annotating every
frame of the collected data. These per-frame annotations include camera parameters, matting, facial
action units, and 2D/3D landmarks. The per-id annotations refer to annotating keyframes for each
identity in fine-grained hierarchy, including 3D scans, FLAME fitting, UV maps, and text annotations
for appearance and activity descriptions. Our vast exploration space and massive data assets serve as
the foundation to investigate the performance boundary of state-of-the-art head avatar algorithms.

Based on RenderMe-360 dataset, we set up benchmarks on five fundamental tasks, i.e., novel view
synthesis, novel expression synthesis, hair editing, hair rendering, and talking head generation, with
extensive experimental settings evaluated on 16 baseline methods (Table 2). We probe in detail how
different factors might introduce the influences to current baseline methods. Our experiments present
many new observations and challenges for the research community to catalyze future research on
the human head avatar. We hope RenderMe-360 could kickstart research efforts in related areas, and
spur new opportunities not only from our formalized benchmarks, but also alternative ones that the
community might come up with from our comprehensive, massive, and publicly available dataset.

2 Related Works

2.1 Multi-View Head Dataset

Data serve as the primary fuel for promoting the development of algorithms. While there are many
open-world unstructured 2D datasets [20, 59, 29, 19, 21, 35] or synthetic ones, we focus on those
real human heads with structured data. Collecting 3D/4D data is essential for head avatar research
in both training and evaluating aspects. In the early days of computer vision, researchers mainly
focused on 3D face reconstruction/tracking from data sources that included multi-view cues. In 1999,
Blanz and Vetter [3] used a laser scan to capture 3D faces, and proposed to model a morphable model
(i.e.,3DMM) from the database. As such a piece of equipment is not suitable for dynamic motion
tracking, Zhang et al. [55] present a multi-camera active capturing system with six video cameras
and two active projectors to ensure spacetime stereo capturing. Later on, Paysan et al. [37] collect 3D
faces by ABW-3D system. D3DFACS [10] introduces a dynamic 3D stereo camera system to capture
4D high-quality scans of 10 performers with Action Unit annotations. Upon D3DFACS, Li et al. [22]
additionally integrate 4D scans from CAESAR dataset [39] and self-captured ones (from 3dMD
system). These datasets are mediocre in texture resolution and quality. Recently, Facescape [52]
is proposed to fulfill the raw data quality, in which 3D faces are collected from a dense 68-camera
array with 847 subjects performing specific expressions. Whereas, these research efforts are limited
to supporting facial shape and expression learning. To take a step further on modeling the entire
head, i3DMM [53] dataset is proposed with 64 subjects captured by a multi-view scanning system,
called Treedys. Since Treedys is not specifically designed for head-scale capture, the authors apply
post-process to crop the head meshes based on 3D landmarks, and removing the rest part of the upper
body. HUMBI [54] is a large-scale dataset, which contains different body part collections. As the
systems for these two datasets are not customized to best fit head-level capture, they are limited
in resolution. Multiface [51] contains head-oriented collections and detailed annotations, but only
releases 13 subjects’ data. To facilitate multisensory modeling, VOCASET [11] is proposed. It is
a 4D speech-driven scan dataset with about 29 minutes of 4D scans and synchronized audio from
12 speakers. Although VOCASET allows training and testing of speech-to-animation geometric
models and can generalize to new data, it is limited in the extremely narrow diversity of subjects and
onefold task. The other alternative is audio-visual data. These datasets are widely used in audio-visual
learning tasks, like lip reading [7, 6], speaker detection [40] and talking head generation [47, 58].
For example, GRID [9] and MEAD [47] are sparse multi-view datasets (four and eight respectively),
which are characterized by consistent shooting conditions, carefully designed identity, and corpus
distribution. However, the sparsity leaves these datasets more often to be used in 2D methods.

In contrast, our RenderMe-360, is a large-scale multi-view dataset for high-fidelity head avatar
creation research. It is under a head-oriented, and high-resolution data capture environment. It
contains diverse data samples (with 500 subjects performing various activities, e.g., expressions,
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Figure 2: Overview of data collection pipeline. (a) Our system, named as POLICY, records subjects’ perfor-
mances in 60 different views. (b) Illustration of data collection process. (c) Illustration of annotation pipeline.

speeches, and hair motions), multi-sensory data, and rich annotations. It is a comprehensive digital
asset library that ensures the compatibility of evaluating multiple head avatar tasks in one single
dataset. A comparison between RenderMe-360 and other related datasets is shown in Table 1.

2.2 Neural Rendering for Head Avatar

Due to space limits, we discuss methods for head rendering in main paper, and unfold the other three
directions – hair reconstruction, hair editing, and talking head generation in supplementary.

Head Rendering. Head or face priors are often used to condition the neural fields. Such a philosophy
can help either improve the robustness or create controllable avatars [16, 2, 5]. Priors like parametric
model [4, 22] coefficients, key points, and explicit surface mesh/point clouds are popular ones to
be integrated into the framework. For example, NHA [17] presents a framework to learn vertex
offsets and attached textures from fitted FLAME surface via coordinate-based MLPs embedded
on the surface. NerFACE [15] and IM Avatar [56] use FLAME [22] model expression coefficient
to condition the neural field and learn to create an animatable head avatar from monocular video.
Taking multi-view images as input condition, Neural Volume [30] models dynamic 3D content
with a volumetric representation. MVP [31] replaces the single volume with a mixture of multiple
predefined volumetric primitives which improves the resolution and efficiency of volume rendering.
To increase the flexibility of re-rendering the avatar in new environments (e.g., novel expression and
lighting), PointAvatar [57] presents a paradigm of utilizing point-based representation which achieves
fast model convergence by coarse-to-fine optimization. For generalization, KeypointNeRF [32]
synthesizes free viewpoints of human heads via multi-view image features and 3D keypoints. In
addition, some researchers use cross-domain data such as audio or text to condition the neural fields.
For instance, ADNeRF [18] presents a 3D-aware alternative to the 2D talking face pipelines by
conditioning the radiance field with both head poses and audio fragments.

3 RenderMe-360

In this section, we introduce RenderMe-360 dataset in detail. We start with the description of our
capture system (Section 3.1), and move on to an overview process of data collection (Section 3.2).
Then, we present the data annotation pipeline (Section 3.3). The whole process is visualized in
Figure 2.

3.1 Capture System

As illustrated in Figure 2(a), we build a multi-video camera system to record synchronized multi-view
videos of human head performance. It contains 60 industrial cameras and covers a field of view of
360◦ left-to-right and over 160◦ up-to-down for video capture at the whole-head level. To ensure
encompassing fine details (e.g., hair strands, wrinkles, and freckles), we choose cameras with a high
resolution at 2448× 2048. The shutter speed is 30 FPS for capturing fine-grained motion changes.
To capture multi-sensory information, a condenser microphone is collocated with the camera system,
and under the audio-vision synchronization. Please refer to supplementary for more system details.

3.2 Data Collection

The data collection pipeline is illustrated in Figure 2(b). Specifically, to guarantee the valid rate
of captured data, we first apply a trial collection with a fake head to check on the operability of
equipment and adjustment of camera positions before formal acquisition. After this, we start the
formal capture process with the following parts for per-person recording: 1) Calibration Capture. We
capture camera calibration data before every round of recording. We use a chessboard and move it
in front of the cameras at a fixed-order trajectory. 2) Expression Capture. We ask each subject to
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perform the same expression set, which includes 12 distinctive facial expressions (1 natural and 11
exaggerated expressions) defined in [53]. 3) Hair Capture. To cover diverse hair materials and hair
motions, we record 12 video sequences (on average) for each normal subject, with different hairstyles
under three levels –original hair, headgear, and wig captures. Specifically, the collected data includes
one motion sequence for the subject’s original hair, one for headgear that hides one’s hair, and rest
sequences for wearing different wigs with random styles and colors. 4) Speech Capture. We provide
rich corpus that encompasses single words combined sentences, phonetically balanced protocols,
and short paragraphs in two languages (Mandarin and English). For each subject, we randomly pick
materials from the corpus and ask the subject to speak 26 or 42 phonetically balanced sentences.

We obtain a large-scale dataset of over 800k recording videos from 500 identities at the end, which is
gender-balanced, includes multiple ethnicities, and spans ages from 6 to 88 with approximate normal
distribution where teenagers and adults form the major part (Figure 3). A more detailed description
of our data collection process and related data statistics are discussed in the Supplementary Materials.

3.3 Data Annotation

Diverse and multi-granularity head-related annotations are crucial for the research of human head
avatar tasks. However, there is still a deficiency of an all-around head dataset with rich annotation
in the research community. To facilitate the development of downstream tasks, we provide rich
annotations. We also provide a toolbox to automatically label most of the annotations (Figure 2(c)).
We unfold the key information in this section. For more details, please refer to Supplementary.
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Figure 3: Key data statistics. a) 26 or 42 speeches
are recorded per subject. b) Annotation example. c) 12
expressions are captured for each subject. d) 10 wigs
(on average) are randomly sampled for each normal
subject. Original hair and headgear are also captured. e)
Distribution of gender, age, and ethnicity. Better zoom
in for details.

Camera Parameters. We estimate extrinsic
matrix and rectify intrinsic matrix for each cam-
era via a fine checkerboard pipeline [8]. The
process includes checkerboard detection, intrin-
sic calibration, and extrinsic calibration with
multi-view bundle adjustment. To ensure qual-
ity, we additionally applied fast novel view syn-
thesis [34], and facial landmark reprojection on
multi-view single-frame to eliminate unqualified
estimation on camera parameters.

2D & 3D Facial Landmarks. 2D landmarks are
per-frame detected via an enhanced version of
[50] on selected frontal views, which range from
60◦ left to 60◦ right. With 2D landmarks from
multiple views, RANSAC [14] triangulation is
applied to obtain 3D landmarks. To guarantee
accuracy, low-quality 2D ones are filtered out
with spatial and temporal constraints, and 3D
results with large re-projection errors are also
filtered out. For the frames that are neither precisely calculated on 2D landmarks nor 3D landmarks,
we manually label the 2D landmarks and re-run the triangulation.

Dense Mesh Reconstruction. Traditional MVS algorithms based on feature points extraction and
geometric optimization, such as [46], can only generate irregular point clouds, and have low-quality
results in areas of texture missing, such as black hair and dark skin. Therefore, we additionally
apply NeuS [48], which uses neural representation for signed-distance-function and optimizes with
surface-based rendering results to do multi-view reconstruction and dense mesh extraction. For video
sequences, the first frame is optimized from scratch, then the following frames are fine-tuned on the
optimized neural representation to accelerate convergence speed.

Matting. Reasonable foreground segmentation for human heads is challenging. Since diverse
hairstyles and accessories form the long-tail problem. Thus, we develop a united pipeline that
combines video-based matting and scan mesh information to improve matting quality. Specifically,
we capture the background prior to each round of recordings, and apply RVM [25] to estimate the
rough matting result in the first step. We additionally blend depth-aware mask via Z-buffer during
rasterization [26] on the scanned mesh to improve matting quality. With multi-view information, the
background ambiguity can be distinguished from other views. We use Gaussian Mixture Model to
blend the estimations from two models for each pixel[41]. For extremely hard cases where both steps
cannot output satisfactory results, we add human-in-the-loop labeling.

FLAME Fitting. Since only keyframes are attached with scan meshes to save processing costs, we
use two fitting methods in practice – one is fitted with scan mesh, and the other is not. For frames with
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scans, we use 3D landmarks to initialize FLAME parameters and optimize via ICP [1]. Since scan
shows accurate facial shape in world space, fitting with it preserves better facial contour. For the ones
without scans, personalization is designed. The key is to select neutral frames with corresponding
scan geometries, and average across these fitting results to generate a personalized template for each
subject. We keep shape parameters constant during fitting the expression sequences which lack scans.

Text Annotation. To facilitate multi-modal research on human head avatars, we provide text
descriptions for the captured videos at unprecedented granularity. These descriptions cover both
static and dynamic attributes from four major aspects: 1) static facial features of the subjects, where
over 90 attributes at general facial appearance, detailed appearance, and lighting condition levels
are described; 2) static information of non-facial regions, where the texture, material, and shape
attributes of subject’s accessories (such as necklace, earrings, and hairpin) and hairstyle are defined;
3) dynamic facial actions, fine-grained action units (AUs) descriptions based on the FACs system[12]
are given; 4) dynamic video activity descriptions, where full-sentence annotations of global action
sequence descriptions for each captured video are provided.

4 Benchmark

Our RenderMe-360 dataset provides various potentials in new research directions and applications for
human avatar creation. Here, we build a comprehensive benchmark upon RenderMe-360 dataset, with
16 representative methods on five vital tasks of human head avatars (summarized in Table 2). These
tasks range from static head reconstruction and dynamic synthesis to generation and editing. For each
task, we set up several experimental protocols to probe the performance limits of current state-of-
the-art methods under different settings. Due to space limits, we present the key insights of the novel
view synthesis task in the main paper, and highlight the best/worst results in lavender/gray colors.
Please refer to Supplementary Materials for benchmarks of the rest four tasks (novel expression
synthesis, hair rendering, hair editing, and talking head generation), more implementation
details, experiments, qualitative/quantitative results, and discussions.

4.1 Novel View Synthesis

Here, we present novel view synthesis (NVS) benchmark of both case-specific (i.e.,Single-ID NVS in
sub-section 4.1.1) and generalizable (sub-section 4.1.2) tracks.

4.1.1 Single-ID NVS

This case-specific track refers to the setting of training on a single head with multi-view images,
which originates from NeRF [33]’s de facto setting, to evaluate the robustness of static multi-view
head reconstruction. We study four representative methods with two protocols – 1)#Protocol-1 for
exploring methods’ robustness to different appearance or geometry factors. The dataset is split into
three categories, i.e., Normal Case, With Deformable Accessory, and With Complex Accessory,
according to the complexity of appearance and geometry. We discuss the protocol in the main paper;
2)#Protocol-2 for probing methods’ robustness to different camera number and distributions. We
discuss this protocol in Supplementary Materials.

Table 2: Methods for RenderMe-360 benchmarks. M: Multi-view images,: S: Single-view images, C: Camera
Calibration, V: Neural Volumetric, S: Neural SDF, P: Point-based Representation, F: Feature Space, S: Static,
D: Dynamic, I: Images Conditioning, L: Latent Codes, P: Parametric Models K: Face Keypoints, R: Radiance
Field-based, F: SDF-based, N: Convolution-based, S: Case specific, G: Generalizable. Better zoom in.

Instant-N
GP [34]

NeuS [48]

NV [30]

MVP [31]

IBRNet [49]

KeypointNeRF [32]

Visio
nNeRF [24]

NeRFace [15]

IM
Avatar [56]

PointAvatar [57]

NSFF [23]

NR-NeRF [45]

HairC
LIP [42]

StyleCLIP [36]

ADNeRF [18]

SSPNeRF [27]

Attribute Novel View Synthesis Novel Expression Synthesis Hair Rendering Hair Editing Talking Head
Required Data M+C M+C M+C M+C M+C M+C M+C S+C S+C S+C M+C M+C S S S+C S+C
Representation V S V V V V V V V P V V F F V V
Static/Dynamic S S D D S S S D D D D D S S D D
Conditioning I I I I I I I L L L I I L L L L
Face Priors ✗ ✗ ✗ P ✗ K ✗ P P P ✗ ✗ F F P P

3D Consistency R F F R R R R R R R R R N N R R
Generalizability S S S S G G G S S S S S G G S S

Settings. We select 20 identities from the three categories to evaluate the methods. For the training-
testing split, we uniformly sample 22 views from all 60 views as test views, and use the rest camera
views to train each model. A visualization of camera distribution is shown in Supplementary Materials,
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noted as Cam1. The four methods for comparison are: Instant-NGP [34], NeuS [48], NV [30] and
MVP [31]. The first three methods are originally designed for general-purpose case-specific NVS,
and the last one is designed for human head avatar reconstruction. We compute PSNR, SSIM, and
LPIPS for rendered novel view images against ground-truth. The quantitative results are listed in
Table 3, and the qualitative ones are listed in Supplementary Materials.

Results. We observed three key phenomena under #Protocol-1: 1) All methods tend to drop the
performance lengthways along the Table 3, with the level of accessory complexity increasing. This
phenomenon reflects the status quo that we do not yet have one strong paradigm for robust case-
specific human head multi-view reconstruction. 2) NeuS yields the best performance on average.
There are two possible underlying reasons. First, NV and MVP are dynamic methods while not
emphasizing temporal-consistency constraints. Thus, when comparing these methods with static
ones under static measurement, the perturbation of data sequences would affect these two methods’
construction on dynamic fields to certain degrees. Second, by associating the quantitative results with
the qualitative ones, we can find that NeuS performs well in global shape reconstruction with almost
no surrounding noise due to its surface representation property, but has a much smoothing surface
appearance. In contrast, Instant-NGP and MVP can recover better high-frequency details. MVP uses
multiple-primitive representation with different networks to render, equipping the model with a larger
representative capacity. Whereas, they produce more surrounding noise. Neural Volume renders
images mostly with artifacts. We could draw the idea that surface representation helps the novel
view reconstruction in a global shape-forming manner. 3) NV suffers from limited grid resolution
(although it uses inverse warping to ease the problem) and inaccurate alpha value estimation. Thus, it
introduces more artifacts than others, and is strenuous in reconstructing high-frequency details.

Table 3: Single ID NVS (#Protocol-1). We evaluate methods under three subsets with levels of complexity.
Split Metrics NGP [34] NeuS [48] NV [30] MVP [31] Split Metrics NGP [34] NeuS [48] NV [30] MVP [31]

Normal Case
PSNR↑ 24.71 26.29 19.61 23.65 With Complex

Accessory
PSNR↑ 20.54 22.89 16.46 21.5

SSIM↑ 0.848 0.927 0.777 0.895 SSIM↑ 0.776 0.874 0.598 0.83
LPIPS↓ 0.28 0.11 0.29 0.14 LPIPS↓ 0.36 0.16 0.44 0.18

With Deformable
Accessory

PSNR↑ 23.06 23.53 17.83 23.93
Overall

PSNR↑ 23.21 24.67 18.56 23.1
SSIM↑ 0.807 0.904 0.703 0.893 SSIM↑ 0.819 0.906 0.723 0.876
LPIPS↓ 0.31 0.13 0.34 0.12 LPIPS↓ 0.31 0.13 0.33 0.15

4.1.2 Generalizable NVS

This track refers to the setting of training across multiple human heads, and testing on unseen1

human heads (i.e., new identities) or unseen motions (e.g., expressions) with conditioning on one or
few input images (as source views). It allows us to evaluate the network’s effectiveness in learning
priors, and the ability to adapt priors. We investigate three methods under two protocols in the main
paper – 1) #Protocol-1 for investigating methods’ generalization ability on geometry deformation
via evaluating the generalization ability to unseen expressions on seen identities. 2) #Protocol-2
for probing methods’ capability in learning category-level human head priors via evaluating the
generalization ability to unseen identities. We also name this protocol as Unseen ID NVS; This setting
is challenging as it requires the model to generalize to both new appearances and geometries. To
further reveal the factors that might have influences on generalization, we enrich both protocols with
four sets of training-testing view settings and three data subsets under different complexity.

Settings. We study three generalizable methods: IBRNet [49], VisionNeRF [24], and Keypoint-
NeRF [32]. For training-testing identity split, we select a subset from RenderMe-360, with 160
identities for training and 20 for serving as unseen identities. The selected identities are evenly
sampled from the three data subsets. We select 7 out of 60 camera views as novel views. Note that,
we calculate the metrics in #Protocol-2 on all expressions. As a consequence, 10 expression structures
attached with trained identities are covered in training set, and the rest 2 expression structures are
unseen. Such an evaluation strategy provides the feasibility for researchers to analyze their methods’
generalization ability on appearance and geometry in both entangled and disentangled aspects.

Results. The quantitative results are shown in Table 4. From per method perspective, we draw the
consistent conclusions that: 1) random view training could help enhance the model’s robustness on
both unseen expression and identity tasks; 2) the performance declines in terms of most metrics
with the complexity of human head’s appearance/geometry increase; 3) the Unseen ID NVS task
introduces larger performance drop rate than Unseen Expression NVS. These two phenomena suggest
that these generalizable methods could learn priors like the information of ‘minimal-accessory’

1Note that the adjective ‘seen’ refers to the sample that is used in training, and ‘unseen’ means the sample is
not used as training data.
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Table 4: Benchmark results on generalizable NVS. The results are evaluated on: (1) unseen expressions of
sampled training identities, and (2) unseen identities in each test split. (LPIPS* denotes LPIPS × 1000)

U
ns

ee
n

E
xp

re
ss

io
n

N
V

S

Training Setting Testing Setting Methods Normal Case With Deformable Accessories With Complex Accessories Overall
PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓*

Fixed Views

Fixed Views
IBRNet [49] 23.36 0.918 144.17 20.82 0.849 197.85 20.33 0.827 187.57 21.97 0.878 168.44

VisionNeRF [24] 23.57 0.905 139.52 20.42 0.846 186.04 20.89 0.835 189.60 22.11 0.873 163.67
KeypointNeRF [32] 19.59 0.898 127.06 17.42 0.805 213.43 16.54 0.760 205.82 18.29 0.840 168.34

Random Views
IBRNet [49] 24.34 0.924 140.21 20.81 0.85 189.57 20.45 0.832 179.57 22.485 0.883 162.39

VisionNeRF [24] 25.79 0.914 148.70 21.43 0.883 148.90 20.37 0.87 159.50 23.345 0.895 151.45
KeypointNeRF [32] 16.96 0.871 170.66 16.07 0.775 256.83 14.64 0.714 270.33 16.16 0.808 217.12

Random Views

Fixed Views
IBRNet [49] 23.37 0.918 144.21 20.82 0.8487 197.85 19.79 0.803 182.85 21.84 0.872 167.28

VisionNeRF [24] 23.05 0.905 135.20 21.42 0.864 167.00 20.28 0.835 165.01 21.95 0.877 150.60
KeypointNeRF [32] 19.74 0.902 113.5 18.05 0.817 183.66 17.02 0.778 182.08 18.64 0.850 148.19

Random Views
IBRNet [49] 24.38 0.924 139.71 21.02 0.850 190 20.91 0.837 175.14 22.67 0.884 161.14

VisionNeRF [24] 28.08 0.943 97.32 23.86 0.882 150.6 23.08 0.873 133.2 25.78 0.910 119.61
KeypointNeRF [32] 18.65 0.897 124.33 17.60 0.813 192.04 16.61 0.779 186.67 17.88 0.847 156.84
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Fixed Views
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VisionNeRF [24] 21.01 0.866 146.44 18.00 0.801 216.22 17.35 0.734 262.60 19.34 0.817 192.93
KeypointNeRF [32] 18.85 0.866 148.13 15.93 0.789 205.04 16.14 0.734 231.89 17.44 0.814 183.30

Random Views
IBRNet [49] 22.54 0.897 154.06 18.72 0.831 198.75 18.12 0.751 249.35 20.48 0.844 189.06

VisionNeRF [24] 24.01 0.818 150.04 18.15 0.857 198.46 19.33 0.796 197.42 21.38 0.822 173.99
KeypointNeRF [32] 17.03 0.841 187.19 14.79 0.76 244.94 15.46 0.715 273.00 16.08 0.789 223.08

Random Views

Fixed Views
IBRNet [49] 22.24 0.895 157.95 18.42 0.824 213.55 18.01 0.746 256.81 20.23 0.840 196.57

VisionNeRF [24] 21.92 0.889 139.90 18.43 0.833 176.12 18.35 0.773 223.04 20.16 0.846 169.74
KeypointNeRF [32] 18.96 0.868 138.21 16.15 0.800 185.43 16.12 0.744 230.09 17.55 0.820 172.99

Random Views
IBRNet [49] 22.53 0.897 154.05 18.75 0.830 195.12 18.10 0.749 250.72 20.48 0.843 188.49

VisionNeRF [24] 24.77 0.918 110.4 20.22 0.858 149.30 19.35 0.797 196.90 22.28 0.873 141.75
KeypointNeRF [32] 18.02 0.865 145.30 15.75 0.794 194.16 16.15 0.747 227.49 16.99 0.818 178.06
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Figure 4: Qualitative Results of Generalizable NVS (#Protocol-1&2). We illustrate three generalizable
methods in two different settings. The regions in red boxes are zoomed in for better visualization.

mean head, and local geometry transformation on a certain level, while still struggling with more
diverse scenarios that are long-tail distributed (please associate statistical details in Supplementary
Materials). In addition, there are several interesting observations when comparing the three methods:
1) VisionNeRF[24] achieves the best results on average. The robustness might come from its large
capacity of learnable variables from a transformer-based structure on image features and the multi-
resolution based encoder. 2) IBRNet[49] results in blurry synthesis even under the train and test
settings on fixed views. 3) KeypointNeRF [32] falls behind for most of the scenarios, but is in the lead
on LPIPS on average. In other words, KeypointNeRF benefits in perceptual measurement like LPIPS
while suffering from pixel-wise measurements. We infer the possible reason behind the contradictory
metric performances is that – the modules driven by triangulated keypoints provide better feature
and view alignments in an explicit manner to help reconstruct the radiance fields. Whereas, such a
key insight is a double-edged sword for full human head tasks. Since only the facial region could be
well guaranteed with accessible facial landmarks. As a consequence, non-facial regions, like the hat
in Figure 4, are more blurry than the facial region and distorted in the geometry aspect. Moreover,
KeypointNeRF only renders the intersected frustum regions from source views in practice, which
aggravates the performance problem from the full-head measurements. The results turn better when
we only calculate regions that KeypointNeRF could render, as shown in Supplementary Materials.

4.2 Intra-Dataset Evaluation

Settings. To demonstrate the strengths of our dataset’s diversity and scale, we first conduct an
intra-dataset evaluation with different subset settings. Concretely, we separate the training data
into three subsets according to accessories difficulties, namely, ‘Subset 1-3’ which corresponds to
‘Normal Case’, ‘With Deformable Accessories’, and ‘With Complex Accessories’ respectively. We
also randomly sample subsets with 30% and 50% of the training data to investigate the effectiveness
of the data scale. We train models ( three generalizable methods [24, 49, 32]) on different subsets,
and follow the strategy of #Protocol-2 in Sec. 4.1.2. To ensure fairness, we stop model training on
the same global step with the same learning rate.

Results. We span the results of models trained on different training sets by test splits. The quan-
titative results of IBRNet [49]are visualized in Fig. 5. Please refer to supplementary for detailed
numbers and qualitative results. Generally, models trained on one subset achieve relatively better
performance on test split of the same category than the ones train on other subsets. For instance, the
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model trained on ‘Subset 1’ gets the best performance in “Normal Case” splits while performing
unsatisfactorily in other splits with accessories. With the full training data set, the model tends
to overfit less on specific splits and achieves better overall performance. For models trained on
smaller random datasets with even distributed data coverage, there is no obvious overfitting on
any certain split. While we can observe that with a larger scale of data, the model generalizes
better on novel identities. To sum up, we believe the proposed dataset could improve the robust-
ness of generalization methods with both the large scale and the wide range of data distribution.

Normal Case

With Deformable 

Accessories

With Complex 

AccessoriesFull Set

Random 50%

Random 30%

Subset 3

Subset 2

Subset 1

Scaled 1/PSNR

Scaled 1/SSIM

Scaled LPIPS

Overall

Figure 5: Intra-Dataset evaluation. We
visualize quantitative results by training
and testing on different subsets of the
proposed dataset. Smaller bubbles indi-
cate better performances. Better zoom
in for details.

4.3 Cross-Dataset Evaluation

Settings. We conducted cross-dataset experiments to vali-
date the transferability of our dataset. Specifically, we use
Multiface dataset [51] for comparison. Similar to intra-
dataset evaluation, three aforementioned generalization meth-
ods [49, 24, 32] used in Section 4.1.2, are utilized to validate
the cross-domain performance of our proposed RenderMe-360
and Multiface. We rigidly transform the Multiface’s camera
system to align with our dataset so as to avoid coordinate off-
sets. For fairness, we also crop and resize both source and
target images with 512× 512, and train models with the same
global step and learning rate. We also follow the strategy of
#Protocol-2 in Sec. 4.1.2, models trained on both datasets are
directly evaluated on test sets without any fine-tuning.

Results. We visualize the cross-dataset performance of three
methods in Fig. 6, where we can observe that our dataset
achieves excellent cross-domain performance in all three gen-
eralizable methods [32, 49, 24]. Compared to RenderMe-360,
Multiface dataset only contains 13 identities. Thanks to the

large data coverage and scale of RenderMe-360, it enables robust generalization on novel identi-
ties in both in-domain and cross-domain settings. Especially, when testing on the Multiface test
set, the cross-domain models trained on our dataset even outperform the in-domain evaluation of
Multiface-trained models.

5 Boarder Impact and Limitations

Ren
de

rM
e-3

60
Mult

ifa
ce

Training Dataset

PSNR

Ren
de

rM
e-3

60
Mult

ifa
ce

SSIM

Ren
de

rM
e-3

60
Mult

ifa
ce

LPIPS

Te
st

in
g 

D
at

as
et

RenderMe-360

Multiface

RenderMe-360

Multiface

RenderMe-360

Multiface

(a) IBRNet

(c) VisionNeRF

(b) KeypointNeRF

Figure 6: Cross-Dataset evaluation.
We visualize the quantitative results by
training and testing on the different
datasets. Better zoom in for details.

Previously, the unavailability of publicly accessible datasets
comprising large-scale high-fidelity human heads had im-
peded advancements in related fields for years. The pro-
posed RenderMe-360 dataset, together with the comprehensive
benchmark, is expected to advance the research community
in developing high-fidelity head avatars. It also brings new
opportunities to many downstream applications in various
fields, such as video telephony and the film industry, which
shall be beneficial for society. However, there are still several
challenges beyond the current scope of this project, that are
essential to tackle in the future. We discuss the challenges
from both ethical consideration and dataset limitation aspects
in the following subsections.

Ethical Consideration. Both our dataset and future research efforts based on it, might be applied
for malicious purposes like identity theft and fake news. For example, one might use the data to
generate fake videos performing various talking interactions with realistic appearances, head/facial/lip
motions, and audio. Then, the generated videos might be used in illegal activities such as financial
fraud and emotional harm. This might lead to social instability and inflict emotional harm. To
alleviate the negative impacts, there are three doable solutions. (1) DeepFake detection algorithms
could be applied to evaluate the realism of videos. In this way, the public could be informed whether
the video content is real or fake. Besides, our dataset, as well as the data synthesized by algorithms
(from our benchmarks), could also serve as references for advancing the development of deepfake
detection algorithms. (2) Watermarks could be inserted into rendered images/videos to deter data
abuse in practical applications. (3) We caution discretion on behalf of the user, and strongly call for
responsible usage of the dataset. For the public good, RenderMe-360 will be open to anyone who
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has learned and agrees with our dataset usage agreement, where the data shall be used for research
purposes only. Moreover, as our dataset centers on real human data, it is important to consider
private information protection and cluster bias problems during the data collection. We summarise
the key efforts we made for these aspects as follows – 1) Privacy Authorization and Protection:
All subjects have gone through and signed informed consent before data collection. The consent is
based on and compliant with the Personal Information Protection Law of the People’s Republic of
China (PIPL) standards. The users should learn that the dataset is for research purposes only and
prohibits harmful or illegal use. Besides, to protect sensitive personal information, we only collect the
necessary information of each subject. We anonymize the data by replacing real names with virtual
serial numbers. 2) Fairness and Bias: We consider demographic representativeness during data
collection and minimize personal bias during annotation. Multiple professional annotators label the
same data, and the most accurate result is selected through voting. By implementing these measures
and promoting responsible usage, we aim to maximize the positive impact of our dataset while
minimizing the potential negative consequences.

Limitations. RenderMe-360 contains over 243 million video frames with high-fidelity captures and
corresponding rich annotations. However, there are some potential limitations specifically affecting
RenderMe-360: (1) Adequate data volume towards open-world human avatar generation. Despite the
significance of our dataset when compared with existing datasets in terms of data volume, diversity,
realism, and granularity, etc, there is still a large magnitude gap between in-lab scale collection and
internet scale collection. The multi-view capture setting makes it infeasible to reach the same data
volume magnitude with internet scale collection like monocular videos or unstructured 2D images.
On the one hand, we will scale up the volume in the future dataset version, with continuous effort
to collect more human heads. On the other hand, this limitation could be a starting point for future
work on developing algorithms via combining both high-quality multiview data and unstructured
open-world collection. (2) Constraints in the data capture system. To achieve high-fidelity capture,
we apply uniform lighting, 30fps capture speed, and audio collection with the microphone in one
position. Upgrading the system could enable relighting, higher speed capture, subtle movement
detection, and multi-positional audio collection etc, expanding the possibilities for downstream tasks.
(3) There are two potential improvements regarding the data collection setup. Firstly, the naturalness
of the wigs in videos may vary due to the random selection process, disregarding the personalized
fit for each individual. Insufficiently fitted wigs can lead to a less authentic appearance. To address
this, our future endeavors will prioritize the establishment of a more tailored wig collection pipeline,
ensuring heightened authenticity. Secondly, an opportunity for improvement lies in expanding our
data collection to encompass the depiction of individuals adorned with diverse makeup styles and
embellishments. This expansion would augment dataset diversity, bolstering applications in head
avatar generation and editing. (4) From a benchmark construction perspective, it is difficult to
thoroughly investigate all aspects of the dataset and evaluate all state-of-the-art methods in a single
publication. Thus, we regard the benchmark construction upon RenderMe-360 as an ongoing mission.
We also welcome contributions from the research community to foster development in this area
together.

6 Conclusion

We build a large-scale 4D human head dataset and relative benchmarks, RenderMe-360, for boosting
the research on human head avatar creation. Our dataset covers 500 subjects with diverse appearances,
behaviors, and accents. We capture each subject with high-fidelity appearance, dynamic expressions,
multiple hairstyles, and various speeches. Furthermore, we provide rich and accurate annotations,
which encompass camera parameters, matting, 2D/3D facial landmarks, scans, FLAME fitting, and
text descriptions. Upon the dataset, we conduct extensive experiments on the state-of-the-art methods
to form a comprehensive benchmark study. The experimental results demonstrate that RenderMe-360
could facilitate downstream tasks, such as novel view synthesis, novel expression synthesis, hair
editing, and talking head generation. We hope our dataset can unfold new challenges and provide the
cues for future directions of related research fields.
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