
Constrained Update Projection Approach to Safe
Policy Optimization

Long Yang1,2,∗, Jiaming Ji1,∗, Juntao Dai1, Linrui Zhang3, Binbin Zhou,4, Pengfei Li,1, Yaodong
Yang2,5, Gang Pan1,†

1College of Computer Science and Technology, Zhejiang University, China
2 School of Artificial Intelligence, Peking University, China

3 Tsinghua Shenzhen International Graduate School, Tsinghua University, China
4 Department of Computer Science and Computing, Zhejiang University City College, China

5 Institute for Artificial Intelligence, Peking University & BIGAI, China
yanglong001@pku.edu.cn, gpan@zju.edu.cn

Abstract

Safe reinforcement learning (RL) studies problems where an intelligent agent
has to not only maximize reward but also avoid exploring unsafe areas. In this
study, we propose CUP, a novel policy optimization method based on Constrained
Update Projection framework that enjoys rigorous safety guarantee. Central to
our CUP development is the newly proposed surrogate functions along with the
performance bound. Compared to previous safe reinforcement learning meth-
ods, CUP enjoys the benefits of 1) CUP generalizes the surrogate functions to
generalized advantage estimator (GAE), leading to strong empirical performance.
2) CUP unifies performance bounds, providing a better understanding and in-
terpretability for some existing algorithms; 3) CUP provides a non-convex im-
plementation via only first-order optimizers, which does not require any strong
approximation on the convexity of the objectives. To validate our CUP method,
we compared CUP against a comprehensive list of safe RL baselines on a wide
range of tasks. Experiments show the effectiveness of CUP both in terms of reward
and safety constraint satisfaction. We have opened the source code of CUP at
https://github.com/zmsn-2077/CUP-safe-rl.

1 Introduction

Reinforcement learning (RL) [Sutton and Barto, 1998] has achieved significant successes in many
fields (e.g., [Mnih et al., 2015; Silver et al., 2017; OpenAI, 2019; Afsar et al., 2021; Yang et al.,
2022]). However, most RL algorithms improve the performance under the assumption that an agent
is free to explore any behaviors. In real-world applications, only considering return maximization
is not enough, and we also need to consider safe behaviors. For example, a robot agent should
avoid playing actions that irrevocably harm its hardware, and a recommender system should avoid
presenting offending items to users. Thus, it is crucial to consider safe exploration for RL, which is
usually formulated as constrained Markov decision processes (CMDP) [Altman, 1999].

It is challenging to solve CMDP since traditional approaches (e.g., Q-learning [Watkins, 1989] &
policy gradient [Williams, 1992]) usually violate the safe exploration constraints, which is undesirable
for safe RL. Recently, Achiam et al. [2017]; Yang et al. [2020]; Bharadhwaj et al. [2021] suggest to
use some surrogate functions to replace the objective and constraints. However, their implementations
involve some convex approximations to the non-convex objective and safe constraints, which leads to
∗L.Yang and J.Ji share equal contributions. † G.Pan is the corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/zmsn-2077/CUP-safe-rl

many error sources and troubles. Concretely, Achiam et al. [2017]; Yang et al. [2020]; Bharadhwaj et
al. [2021] approximate the non-convex objective (or constraints) with first-order or second Taylor
expansion, but their implementations still lack a theory to show the error difference between the
original objective (or constraints) and its convex approximations. Besides, their approaches involve
the inverse of a high-dimension inverse Fisher information matrix, which causes their algorithms
require a costly computation for each update when solving high-dimensional RL problems.

To address the above problems, we propose the constrained update projection (CUP) algorithm with
a theoretical safety guarantee. We derive the CUP bases on the newly proposed surrogate functions
with respect to objectives and safety constraints, and provide a practical implementation of CUP that
does not depend on any convex approximation to adapt high-dimensional safe RL.

Concretely, in Section 3, Theorem 1 shows generalized difference bounds between two arbitrary
policies for the objective and constraints. Those bounds provide principled approximations to the
objective and constraints, which are theoretical foundations for us to use those bounds as surrogate
functions to replace objective and constraints to design algorithms. Although using difference bounds
as surrogate functions to replace the objective has appeared in previous works (e.g., [Schulman et
al., 2015; Achiam et al., 2017]), Theorem 1 refines those bounds (or surrogate functions) at least
two aspects: (i) Firstly, our rigorous theoretical analysis shows a bound with respect to generalized
advantage estimator (GAE) [Schulman et al., 2016]. GAE significantly reduces variance empirically
while maintaining a tolerable level of bias, the proposed bound involves GAE is one of the critical
steps for us to design efficient algorithms. (ii) Our new bounds unify the classic result of CPO
Achiam et al. [2017], i.e., the classic performance bound of CPO is a special case of our bounds.
Although existing work (e.g., Zhang et al. [2020]; Kang et al. [2021]) has applied the key idea of
CPO with GAE to solve safe RL problems, their approaches are all empirical and lack a theoretical
analysis. Thus, the proposed newly bound partially explains the effectiveness of the above safe
RL algorithms. Finally, we should emphasize that although GAE has been empirically applied to
extensive reinforcement learning tasks, this work is the first to show a rigorous theoretical analysis to
extend the surrogate functions with respect to GAE.

In Section 4, we provide the necessary details of the proposed CUP. The CUP contains two steps: it
first performs a policy improvement, which may produce a temporary policy violates the constraint.
Then in the second step, CUP projects the policy back onto the safe region to reconcile the constraint
violation. Theorem 2 shows the worst-case performance degradation guarantee and approximate
satisfaction of safety constraints of CUP, result shows that with a relatively small parameter that
controls the penalty of the distance between the old policy and current policy, CUP shares a desirable
toleration for both policy improvements and safety constraints. Furthermore, we provide a practical
implementation of sample-based CUP. This implementation allows us to use deep neural networks to
train a model, which is an efficient iteration without strongly convex approximation of the objective
or constraints (e.g., [Achiam et al., 2017; Yang et al., 2020]), and it optimizes the policy according
to the first-order optimizer. Finally, extensive high-dimensional experiments on continuous control
tasks show the effectiveness of CUP where the agent satisfies safe constraints.

2 Preliminaries

Reinforcement learning (RL) [Sutton and Barto, 1998] is often formulated as a Markov decision
process (MDP) [Puterman, 2014] that is a tuple M = (S,A,P, r, ρ0, γ). Here S is state space,
A is action space. P(s

′ |s, a) is probability of state transition from s to s
′

after playing a. r(·) :
S ×S ×A → R, and r(s′|s, a) denotes the reward that the agent observes when state transition from
s to s

′
after it plays a. ρ0(·) : S → [0, 1] is the initial state distribution and γ ∈ (0, 1).

A stationary parameterized policy πθ is a probability distribution defined on S ×A, πθ(a|s) denotes
the probability of playing a in state s. We use Πθ to denote the set of all stationary policies, where
Πθ = {πθ : θ ∈ Rp}, and θ is a parameter needed to be learned. Let Pπθ

∈ R|S|×|S| be a state
transition probability matrix, and their components are: Pπθ

[s, s′] =
∑
a∈A πθ(a|s)P(s′|s, a) =:

Pπθ
(s
′ |s), which denotes one-step state transformation probability from s to s

′
by executing πθ.

Let τ = {st, at, rt+1}t≥0 ∼ πθ be a trajectory generated by πθ, where s0 ∼ ρ0(·), at ∼ πθ(·|st),
st+1 ∼ P(·|st, at), and rt+1 = r(st+1|st, at). We use Pπθ

(st = s
′ |s) to denote the probability of

visiting the state s
′

after t time steps from the state s by executing πθ . Due to the Markov property in

2

MDP, Pπθ
(st = s

′ |s) is (s, s
′
)-th component of the matrix Pt

πθ
, i.e., Pπθ

(st = s
′ |s) = Pt

πθ
[s, s

′
].

Finally, let ds0πθ
(s) = (1 − γ)

∑∞
t=0 γ

tPπθ
(st = s|s0) be the stationary state distribution of the

Markov chain (starting at s0) induced by policy πθ. We define dρ0πθ
(s) = Es0∼ρ0(·)[d

s0
πθ

(s)] as the
discounted state visitation distribution on initial distribution ρ0(·).

The state value function of πθ is defined as Vπθ
(s) = Eπθ

[
∑∞
t=0 γ

trt+1|s0 = s], where Eπθ
[·|·]

denotes a conditional expectation on actions which are selected by πθ. Its state-action value
function is Qπθ

(s, a) = Eπθ
[
∑∞
t=0 γ

trt+1|s0 = s, a0 = a], and advantage function is Aπθ
(s, a) =

Qπθ
(s, a)− Vπθ

(s). The goal of reinforcement learning is to maximize J(πθ) = Es∼ρ0(·)[Vπθ
(s)].

2.1 Policy Gradient and Generalized Advantage Estimator (GAE)

Policy gradient [Williams, 1992; Sutton et al., 2000] is widely used to solve policy optimization,
which maximizes the expected total reward by repeatedly estimating the gradient g = ∇J(πθ).
Schulman et al. [2016] summarize several different related expressions for the policy gradient:

g = ∇J(πθ) = E

[∞∑
t=0

Ψt∇ log πθ(at|st)

]
, (1)

where Ψt can be total discounted reward of the trajectory, value function, advantage function or
temporal difference (TD) error. As stated by Schulman et al. [2016], the choice Ψt = A(st, at) yields
almost the lowest possible variance, which is consistent with the theoretical analysis [Greensmith
et al., 2004; Wu et al., 2018]. Furthermore, Schulman et al. [2016] propose generalized advantage
estimator (GAE) ÂGAE(γ,λ)

t (st, at) to replace Ψt: for any λ ∈ [0, 1],

Â
GAE(γ,λ)
t (st, at) =

∞∑
`=0

(γλ)`δVt+`, (2)

where δVt = rt+1 + γV (st+1)− V (st) is TD error, and V (·) is an estimator of value function. GAE
is an efficient technique for data efficiency and reliable performance of reinforcement learning.

2.2 Safe Reinforcement Learning

Safe RL is often formulated as a constrained MDP (CMDP) M ∪ C [Altman, 1999], which is
a standard MDP M augmented with an additional constraint set C. The set C = {(ci, bi)}mi=1,
where ci are cost functions: ci : S × A → R, and limits are bi, i = 1, ·,m. The cost-return
is defined as: Jci(πθ) = Eπθ

[
∑∞
t=0 γ

tci(st, at)], then we define the feasible policy set ΠC as:
ΠC = ∩mi=1 {πθ ∈ Πθ and Jci(πθ)≤bi} . The goal of CMDP is to search the optimal policy π?:

π? = arg max
πθ∈ΠC

J(πθ). (3)

Furthermore, we define value functions, action-value functions, and advantage functions for the
auxiliary costs in analogy to Vπθ

, Qπθ
, and Aπθ

, with ci replacing r respectively, we denote them
as V ciπθ

, Qciπθ
, and Aciπθ

. For example, V ciπθ
(s) = Eπθ

[
∑∞
t=0 γ

tci(st, at)|s0 = s]. Without loss of
generality, we will restrict our discussion to the case of one constraint with a cost function c and
upper bound b. Finally, we extend the GAE with respect to auxiliary cost function c:

Â
GAE(γ,λ)
C,t (st, at) =

∞∑
`=0

(γλ)`δCt+`, (4)

where δCt = rt+1 + γC(st+1)− C(st) is TD error, and C(·) is an estimator of cost function c.

3 Generalized Policy Performance Difference Bounds

In this section, we show some generalized policy optimization performance bounds for J(πθ) and
Jc(πθ). The proposed bounds provide some new surrogate functions with respect to the objective and
cost function, which are theoretical foundations for us to design efficient algorithms to improve policy

3

performance and satisfy constraints. Before we present the new performance difference bounds, let
us revisit a classic performance difference from Kakade and Langford [2002],

J(πθ)− J(πθ′) = (1− γ)−1Es∼dρ0πθ (·),a∼πθ(·|s)

[
Aπ

θ
′ (s, a)

]
. (5)

Eq.(5) shows a difference between two arbitrary policies πθ and πθ′ with different parameters θ and
θ
′
. According to (5), we rewrite the policy optimization (3) as follows

π? = arg max
πθ∈ΠC

Es∼dρ0πθ (·),a∼πθ(·|s)

[
Aπ

θ
′ (s, a)

]
. (6)

However, Eq.(5) or (6) is very intractable for sampling-based policy optimization since it requires the
data comes from the (unknown) policy πθ that needed to be learned. In this section, we provide a
bound refines the result (5), which provide the sights for surrogate functions to solve problem (3).

3.1 Some Additional Notations

We use a bold lowercase letter to denote a vector, e.g., a = (a1, a2, · · · , an), and its i-th element
a[i] =: ai. Let ϕ(·) : S → R be a function defined on S, δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st)
is TD error with respect to ϕ(·). For two arbitrary policies πθ and πθ′ , we denote δϕπθ,t

(s) as the
expectation of TD error, and define ∆ϕ

t (πθ, πθ′ , s) as the difference between δϕπθ,t
(s) and δϕπ

θ
′ ,t(s):

δϕπθ,t
(s) = E

st∼Pπθ (·|s)
at∼πθ(·|st)

st+1∼P(·|st,at)

[δϕt] ,∆ϕ
t (πθ, πθ′ , s) = E

st∼Pπ
θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
.

Furthermore, we introduce two vectors δϕπθ,t
,∆ϕ

t (πθ, πθ′) ∈ R|S|, and their components are:

δϕπθ,t
[s] = δϕπθ,t

(s), ∆ϕ
t (πθ, πθ′)[s] = ∆ϕ

t (πθ, πθ′ , s). (7)

Let matrix P
(λ)
πθ = (1 − γλ)

∑∞
t=0(γλ)tPt+1

πθ
, where λ ∈ [0, 1]. It is similar to the normalized

discounted distribution dρ0πθ
(s), we extend it to λ-version and denote it as dλπθ

(s):

dλπθ
(s) = Es0∼ρ0(·)

[
(1− γ̃)

∞∑
t=0

γ̃tP(λ)
πθ

(st = s|s0)

]
,

where γ̃ = γ(1−λ)
1−γλ , the probability P(λ)

πθ (st = s|s0) is the (s0, s)-th component of the matrix product(
P

(λ)
πθ

)t
. Finally, we introduce a vector dλπθ

∈ R|S|, and its components are: dλπθ
[s] = dλπθ

(s).

3.2 Main Results

Theorem 1 (Generalized Policy Performance Difference). For any function ϕ(·) : S → R, for two
arbitrary policies πθ and πθ′ , for any p, q ∈ [1,∞) such that 1

p + 1
q = 1, we define two error terms:

ε
ϕ,(λ)
p,q,t (πθ, πθ′) =: ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q, (8)

Lϕ,±p,q (πθ, πθ′) =:
1

1− γ̃

∞∑
t=0

γtλtEs∼dλπ
θ
′ (·)

[
∆ϕ
t (πθ, πθ′ , s)± ε

ϕ,(λ)
p,q,t (πθ, πθ′)

]
. (9)

Then, the following bound with respect to policy performance difference J(πθ)− J(πθ′) holds:

Lϕ,−p,q, (πθ, πθ′) ≤ J(πθ)− J(πθ′) ≤ L
ϕ,+
p,q, (πθ, πθ′). (10)

Proof. See Appendix E.

The bound (10) is well-defined, i.e., if πθ = πθ′ , all the three terms in Eq.(10) are zero identically.
From Eq.(9), we know the performance difference bound Lϕ,±p,q (πθ, πθ′) (10) can be interpreted by
two distinct difference parts: (i) the first difference part, i.e., the expectation ∆ϕ

t (πθ, πθ′ , s), which

4

is determined by the difference between TD errors of πθ and πθ′ ; (ii) the second difference part,
i.e., the discounted distribution difference εϕ,(λ)

p,q,t (πθ, πθ′), which is determined by the gap between
the normalized discounted distribution of πθ and πθ′ . Thus, the difference of both TD errors and
discounted distribution determine the policy difference J(πθ)− J(πθ′).

The different choices of p and q lead Eq.(10) to be different bounds. If p = 1, q = ∞, we denote
εϕπθ,t

=: ‖δϕπθ,t
‖q = maxst∈S Eat∼πθ(·|st),st+1∼P(·|st,at)[|δ

ϕ
t |], then, according to Lemma 2 (see

Appendix F.2), when p = 1, q =∞, then error εϕ,(λ)
p,q,t (πθ, πθ′) is reduced to:

ε
ϕ,(λ)
p,q,t (πθ, πθ′)

∣∣
p=1,q=∞ ≤

γ̃ (γλ(|S| − 1) + 1) εϕπθ,t

(1− γ̃)(1− γλ)
Es∼dλπθ (·) [2DTV(πθ′ , πθ)[s]] ,

where DTV(πθ′ , πθ)[s] is the total variational divergence between action distributions at state s, i.e.,

2DTV(πθ′ , πθ)[s] =
∑
a∈A
|πθ′ (a|s)− πθ(a|s)| .

Finally, let ϕ = Vπ
θ
′ , the left side of (10) in Theorem 1 implies a lower bound of performance

difference, which illustrates the worse case of approximation error, we present it in Proposition 1.
Proposition 1. For any two policies πθ and πθ′ , let εVπθ

(πθ′) =: supt∈N+{εϕπθ,t
: ϕ = Vπ

θ
′ }, then

J(πθ)− J(πθ′) ≥
1

1− γ̃
Es∼dλπ

θ
′ (·),a∼πθ(·|s)

[
AGAE(γ,λ)
π
θ
′ (s, a)

−
2γ̃ (γλ(|S| − 1) + 1) εVπθ

(πθ′)

(1− γ̃)(1− γλ)
DTV(πθ′ , πθ)[s]

]
. (11)

The refined bound (11) contains GAE technique that significantly reduces variance while maintaining
a tolerable level of bias empirically [Schulman et al., 2016], which implies using the bound (11) as
a surrogate function could improve performance potentially for practice. Although GAE has been
empirically applied to extensive reinforcement learning tasks, to the best of our knowledge, the result
(11) is the first to show a rigorous theoretical analysis to extend the surrogate functions to GAE.
Remark 1 (Unification of [Achiam et al., 2017]). If λ→ 0, then the distribution dλπ

θ
′ (·) is reduced

to dρ0π
θ
′ (·) and the bound (11) is reduced to

J(πθ)− J(πθ′) ≥
1

1− γ
Es∼dρ0π

θ
′ (·),a∼πθ(·|s)

[
Aπ

θ
′ (s, a)− 2

γ

1− γ
εVπθ

(πθ′)DTV(πθ′ , πθ)[s]

]
,

(12)
which matches the result of [Achiam et al., 2017, Corollary 1]. That is to say the proposed bound
(11) unifies the classic bound (12)

Let ϕ = V cπ
θ
′ , Theorem 1 implies an upper bound of cost function as presented in the next Proposition

2, we will use it to make guarantee for safe policy optimization.
Proposition 2. For any two policies πθ and πθ′ , let εCπθ

(πθ′) =: supt∈N+{εϕπθ,t
: ϕ = V cπ

θ
′ }, then

Jc(πθ)− Jc(πθ′) ≤
1

1− γ̃
Es∼dλπ

θ
′ (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
π
θ
′ ,C (s, a)

+
2γ̃ (γλ(|S| − 1) + 1) εCπθ

(πθ′)

(1− γ̃)(1− γλ)
DTV(πθ′ , πθ)[s]

]
. (13)

where we calculate AGAE(γ,λ)
π
θ
′ ,C (s, a) according to the data sampled from πθ′ and the estimator (4).

All above bound results (11) and (13) can be extended for a total variational divergence to KL-
divergence between policies, which are desirable for policy optimization.
Proposition 3. All the bounds in (11) and (13) hold if we make the following substitution:

Es∼dλπ
θ
′ (·)

[DTV(πθ′ , πθ)[s]]←
√

1

2
Es∼dλπ

θ
′ (·)

[KL(πθ′ , πθ)[s]],

where KL(·, ·) is KL-divergence, and KL(πθ′ , πθ)[s] = KL(πθ′ (·|s), πθ(·|s)).

5

4 CUP: Constrained Update Projection

It is challenging to implement CMDP (3) directly since it requires us to judge whether a proposed
policy πθ is in the feasible region ΠC . According to the bounds in Proposition 1-3, we develop new
surrogate functions to replace the objective and constraints. We propose the CUP (constrained update
projection) algorithm that is a two-step approach contains performance improvement and projection.
Due to the limitation of space, we present all the details of the implementation in Appendix C and
Algorithm 1.

4.1 Algorithm

Step 1: Performance Improvement. According to Proposition 1 and Proposition 3, for an appropri-
ate coefficient αk, we update policy as:

πθ
k+1

2

= arg max
πθ∈Πθ

 E
s∼dλπθk

(·)
a∼πθk

(·|s)

[
πθ(a|s)
πθk(a|s)

AGAE(γ,λ)
πθk

(s, a)

]
− αk

√
Es∼dλπθk (·) [KL(πθk , πθ)[s]]

 .

(14)

This step is a typical minimization-maximization (MM) algorithm [Hunter and Lange, 2004], it
includes return maximization and minimization the distance between old policy and new policy. the
expectation (14) by sample averages according to the trajectories collected by πθk .

Step 2: Projection. According to Proposition 2 and Proposition 3, for an appropriate coefficient βk,
we project the policy πθ

k+1
2

onto the safe constraint set,

πθk+1
= arg min

πθ∈Πθ

D
(
πθ, πθ

k+1
2

)
, s.t. Cπθk

(πθ, βk) ≤ b, (15)

where D(·, ·) (e.g., KL divergence or `2-norm) measures distance between πθ
k+1

2

and πθ,

Cπθk
(πθ, β) = Jc(πθk)+

1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθ,C

(s, a)
]
+β
√

Es∼dλπθk (·) [KL(πθk , πθ)[s]].

Until now, the particular choice of surrogate function is heuristically motivated, we show the worst-
case performance degradation guarantee and approximate satisfaction of safety constraints of CUP in
Theorem 2, and its proof is shown in Appendix G.

Theorem 2. Let χk = Es∼dλπθk (·)[KL(πθk , πθk+1
2

)[s]], ι =: γ̃(γλ(|S|−1)+1)
(1−γ̃)(1−γλ) .If πθk and πθk+1

are

generated according to (14)-(15), then the lower bound on policy improvement, and upper bound on
constraint violation are

J(πθk+1
)− J(πθk) ≥− ιαk

√
2χk

1− γ̃
εVπθk+1

(πθk), Jc(πθk+1
) ≤ b+

ιβk
√

2χk
1− γ̃

εCπθk+1
(πθk).

Remark 2 (Asymptotic Safety Guarantee). Let αk → 0, βk → 0 as k →∞, Theorem 2 implies a
monotonic policy improvement with an asymptotic safety guarantee.

4.2 Practical Implementation

Now, we present our sample-based implementation for CUP (14)-(15). Our main idea is to estimate
the objective and constraints in (14)-(15) with samples collected by current policy πθk , then solving
its optimization problem via first-order optimizer.

Let {(st, at, rt+1, ct+1)}Tt=1 ∼ πθk , we denote the empirical KL-divergence with respect to πθ and
πθ′ as:

D̂KL(πθ, πθ′) =
1

T

T∑
t=1

KL(πθ(at|st), πθ′ (at|st)).

6

We update performance improvement (14) step as follows,

πθ
k+1

2

= arg max
πθ∈Πθ

{
1

T

T∑
t=1

πθ(at|st)
πθk(at|st)

Ât − αk
√
D̂KL(πθk , πθ)

}
,

where Ât is an estimator of AGAE(γ,λ)
πθk

(s, a).

Then we update the projection step by replacing the distance D by KL-divergence, the next Theorem
3 (for its proof, see Appendix C.2) provides a fundamental way for us to solve projection step (15).
Theorem 3. The constrained problem (40) is equivalent to the following primal-dual problem:

max
ν≥0

min
πθ∈Πθ

{
D
(
πθ, πθ

k+1
2

)
+ ν

(
Cπθk

(πθ, β)− b
)}

.

According to Theorem 3, we solve the constraint problem (15) by the following primal-dual approach,

(πθk+1
, νk+1) = arg min

πθ∈Πθ

max
ν≥0

{
D̂KL(πθ

k+1
2

, πθ) + νĈ(πθ, πθk)
}

where Ĉ(πθ, πθk) = ĴC + 1
1−γ̃ ·

1
T

∑T
t=1

πθ(at|st)
πθk

(at|st) Â
C
t + βk

√
D̂KL(πθk , πθ)− b, ĴCand ÂCt are

estimators for cost-return and cost-advantage.

Finally, let

L̂c

(
πθ, πθk ,θk+ 1

2
, ν
)

=: D̂KL(πθ
k+1

2

, πθ) + νĈ(πθ, πθk), (16)

we update the parameters (θk+1, νk+1) as follows,

θk+1 ← θk − η
∂

∂θ
L̂c

(
πθ, πθk ,θk+ 1

2
, ν
) ∣∣∣
θ=θk,ν=νk

, (17)

νk+1 ←
{
νk + η

∂

∂ν
L̂c

(
πθ, πθk ,θk+ 1

2
, ν
) ∣∣∣
θ=θk,ν=νk

}
+

, (18)

where η > 0 is step-size, {·}+ denotes the positive part, i.e., if x ≤ 0, {x}+ = 0, else {x}+ = x.
We have shown all the details of the implementation in Algorithm 1.

5 Related Work

Due to the limitation of space, for more discussions and comparisons, see Appendix B and Table 2.

5.1 Local Policy Search and Lagrangian Approach

A direct way to solve CMDP (3) is to apply local policy search [Peters and Schaal, 2008; Pirotta et
al., 2013] over the policy space ΠC , i.e.,

πθk+1
= arg max

πθ∈Πθ

J(πθ), s.t. Jc(πθ) ≤ b, and D(πθ, πθk) < δ, (19)

where δ is a positive scalar, D(·, ·) is some distance measure. For practice, the local policy search (19)
is challenging to implement because it requires evaluation of the constraint function c to determine
whether a proposed point π is feasible [Zhang et al., 2020]. Besides, Li and Belta [2019]; Cheng et
al. [2019]; Liu et al. [2020] provide a local policy search via the barrier function. The key idea of the
proposed CUP is parallel to Barrier functions. When updating policy according to samples, local
policy search (19) requires off-policy evaluation [Achiam et al., 2017], which is very challenging for
high-dimension control problem [Duan et al., 2016; Yang et al., 2018, 2021a].

A way to solve CMDP (3) is Lagrangian approach that is also known as primal-dual problem:

(π?, λ?) = arg min
λ≥0

max
πθ∈Πθ

{J(πθ)− λ(Jc(πθ)− b)} . (20)

Although extensive canonical algorithms are proposed to solve problem (20), e.g., [Liang et al., 2018;
Tessler et al., 2019; Paternain et al., 2019; Le et al., 2019; Russel et al., 2020; Satija et al., 2020;

7

Chen et al., 2021], the policy updated by Lagrangian approach may be infeasible w.r.t. CMDP (3).
This is hazardous in reinforcement learning when one needs to execute the intermediate policy (which
may be unsafe) during training [Chow et al., 2018].

Constrained Policy Optimization (CPO). Recently, Achiam et al. [2017] suggest to replace the
cost constraint with a surrogate cost function which evaluates the constraint Jc(πθ) according to
the samples collected from the current policy πθk , see Eq.(21)-(23). For a given policy πθk , CPO
[Achiam et al., 2017] updates new policy πθk+1

as follows:

πθk+1
= arg max

πθ∈Πθ

Es∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]

(21)

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
≤ b, (22)

D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(πθ, πθk)[s]] ≤ δ. (23)

Existing recent works (e.g., [Achiam et al., 2017; Vuong et al., 2019; Yang et al., 2020; Han et
al., 2020; Bisi et al., 2020; Bharadhwaj et al., 2021]) try to find some convex approximations to
replace the term Aπθk

(s, a) and D̄KL(πθ, πθk) in Eq.(24)-(26). Such first-order and second-order
approximations turn a non-convex problem (24)-(26) to be a convex problem, it seems to make a
simple solution, but this approach results in many error sources and troubles in practice. Firstly, it
still lacks a theory analysis to show the difference between the non-convex problem (24)-(26) and its
convex approximation. Policy optimization is a typical non-convex problem [Yang et al., 2021b];
its convex approximation may introduce some error for its original issue. Secondly, CPO updates
parameters according to conjugate gradient [Süli and Mayers, 2003], and its solution involves the
inverse Fisher information matrix, which requires expensive computation for each update.

Instead of using a convex approximation for the objective function, the proposed CUP algorithm
improves CPO and PCPO at least two aspects. Firstly, the CUP directly optimizes the surrogate
objective function via the first-order method, and it does not depend on any convex approximation.
Thus, the CUP effectively avoids the expensive computation for the inverse Fisher information matrix.
Secondly, CUP extends the surrogate objective function to GAE. Although Zhang et al. [2020]
has used the GAE technique in experiments, to the best of our knowledge, it still lacks a rigorous
theoretical analysis involved GAE before we propose CUP.

6 Experiment

In this section, we aim to answer the following three issues:

• Does CUP satisfy the safety constraints in different environments? Does CUP performs well
with different cost limits?

• How does CUP compare to the state-of-the-art safe RL algorithms?

• Does CUP play a sensibility during the hyper-parameters in the tuning processing?

We train different robotic agents using five MuJoCo physical simulators [Todorov et al., 2012] which
are open by OpenAI Gym API [Brockman et al., 2016], and Safety Gym [Ray et al., 2019]. For
more details, see Appendix H.2. Baselines includes CPO [Achiam et al., 2017], PCPO [Yang et al.,
2020], TRPO Lagrangian (TRPO-L), PPO Lagrangian (PPO-L) and FOCOPS [Zhang et al., 2020].
TRPO-L and PPO-L are improved by [Chow et al., 2018; Ray et al., 2019], which are based on TRPO
[Schulman et al., 2015] and PPO [Schulman et al., 2017]. These two algorithms use the Lagrangian
method [Bertsekas, 1997], which applies adaptive penalty coefficients to satisfy the constraint.

6.1 Evaluation CUP and Comparison Analysis

We have shown the Learning curves for CUP, and other baselines in Figure 1-2, and Table 1 sum-
marizes the performance of all algorithms. Results show that CUP quickly stabilizes the constraint
return around the limit value while converging the objective return to higher values faster. In most
cases, the traces of constraint from CUP almost coincide with the dashed black line of the limit. By
contrast, the baseline algorithms frequently suffer from over or under the correction.

8

0 100 200 300 400 500

0

250

500

750

1000

1250

1500

1750

Re
tur

n

Ant-v3

0 100 200 300 400 500
0

250

500

750

1000

1250

1500

1750

2000

Hopper-v3

0 100 200 300 400 500
0

200

400

600

800

1000

Humanoid-v3

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
Swimmer-v3

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800
HumanoidCircle

0 100 200 300 400 500
0

25

50

75

100

125

150

175

200

Co
ns

tra
int

Ant-v3

0 100 200 300 400 500
0

20

40

60

80

100

Hopper-v3

0 100 200 300 400 500
0

5

10

15

20

25
Humanoid-v3

CPO PPO-L TRPO-L FOCOPS PCPO CUP
0 100 200 300 400 500

10

20

30

40

50

60

70

80

90

100
Swimmer-v3

0 100 200 300 400 500
10

20

30

40

50

60
HumanoidCircle

Figure 1: Comparison of CUP to baseline algorithms over 10 seeds on Mujoco.

0 50 100 150 200 250 300
5

0

5

10

15

20

25

Re
tur

n

Safexp-PointGoal1-v0

0 50 100 150 200 250 300
5

0

5

10

15

20

25
Safexp-PointButton1-v0

0 50 100 150 200 250 300
5

0

5

10

15

20

25

30
Safexp-CarGoal1-v0

0 50 100 150 200 250 300
5

0

5

10

15

20
Safexp-CarButton1-v0

0 50 100 150 200 250 300
0

20

40

60

80

100

Co
ns

tra
int

Safexp-PointGoal1-v0

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Safexp-PointButton1-v0

CPO PPO-L TRPO-L FOCOPS PCPO CUP
0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80
Safexp-CarGoal1-v0

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
Safexp-CarButton1-v0

Figure 2: Comparison of CUP to to baseline algorithms over 3 seeds on Satety-Gym.

From Figure 1, we know initial policies of the baseline algorithms are not guaranteed to be feasible,
such as in Swimmer-v3, while CUP performs the best and keeps safety learning in Swimmer-v3 tasks.
In the HumanoidCircle task, all the algorithms learn steadily to obtain a safe policy, except PPO-L.
Additionally, we observed that CUP brings the policy back to the feasible range faster than other
baselines in the HumanoidCircle task. In the Ant-v3 task, only the FOCOPS and the proposed CUP
learn safely, and both CPO and TRPO-L violate the safety constraints significantly. Besides, although
FOCOPS and CUP converge to a safe policy, CUP obtains a better reward performance than FOCOPS
in the Ant-v3 task. The result of Figure 2 is relatively complex, the initial policies of the CPO and
PCPO are not guaranteed to be feasible on both Safexp-PointGoal1-v0 and Safexp-PointButton1-v0.
We think it is not accidental, but it partially provides corroboration of the previous discussions in
Appendix B. Both CPO and PCPO use first-order and second-order approximation to approximate a
non-convex problem as a convex problem, which inevitably produces a significant deviation from the
original RL problem, and it is more serious in large-scale and complex control systems.

From Table 1, we know although PPO-L achieves a reward of 35.58 ± 5.68 outperforms CUP in
Swimmer-v3, PPO-L obtains a cost of 54.91± 3.93 that violates the cost limit of 24.5 significantly,
which implies PPO-L learns a dangerous policy under this setting. On the other hand, Figure 1
has shown that CUP generally gains higher returns than different baselines while enforcing the
cost constraint. Mainly, CUP achieves a reward performance of 2025.56± 122.35 that significantly
outperforms all the baseline algorithms. Additionally, after equal iterations, CUP performs a greater
speed of stabilizing the constraint return around the limit value and is quicker to find feasible policies
to gain a more significant objective return.

6.2 Sensitivity Analysis for Hyper-Parameters Tuning

Hyper-parameters tuning is necessary to achieve efficient policy improvement and enforce constraints.
We investigate the performance with respect to the parameters: ν, step-size α, and cost limit b. From
Figure 3 (a), we know if the estimated cost under the target threshold b, then ν keeps calm, which
implies ν is not activated. Such an empirical phenomenon gives significant expression to the Ant-v3,

9

Environment CPO TRPO-L PPO-L PCPO FOCOPS CUP
Ant-v3 Return 1030.17± 8.15 480.86± 161.05 1012.02± 17.26 90.83± 17.66 1662.53± 17.40 1743.66 ± 40.5

cost limit: 103 Constraint 120.76± 4.80 131.07± 67.9 112.45± 15.48 174.80± 5.53 101.31± 0.41 99.11± 0.93
Hopper-v3 Return 875.89± 285.17 1025.49± 10.68 1010.2± 61.48 214.90± 101.22 1687.72± 24.38 2025.56 ± 122.35

cost limit: 83 Constraint 76.6± 10.62 40.36± 4.75 83.28± 31.19 36.63± 12.54 102.3± 1.455 79.98± 2.306
Swimmer-v3 Return 18.77± 6.56 27.35± 10.07 35.58 ± 5.68 37.73± 3.56 28.15± 4.30 33.38± 0.54

cost limit: 24.5 Constraint 42.07± 3.31 49.58± 7.46 54.91± 3.93 74.39± 22.71 26.54± 4.16 23.31± 0.052
Humanoid-v3 Return 326.95± 16.00 307.71± 24.71 322.11± 25.54 962.13± 57.94 542.5± 4.76 1066.83 ± 266.12

cost limit: 20.0 Constraint 26.13± 2.13 18.22± 3.04 22.94± 4.54 48.66± 3.52 20.04± 0.19 19.91± 0.36
Humanoid-Circle Return 237.54± 23.20 384.45± 47.66 243.35± 37.90 525.23± 48.32 713.04± 9.25 768.65 ± 63.70
cost limit: 50.0 Constraint 43.64± 1.91 53.77± 1.48 41.17± 3.98 50.80± 4.57 47.73± 0.64 48.23± 0.65

Table 1: Average results for baseline algorithms and CUP over 10 seeds the last 500 iterations.

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.01
0.00
0.01
0.02
0.03
0.04

0.01
0.00
0.01
0.02
0.03
0.04

0 200 400
95.0

97.5

100.0

102.5

105.0

C
o
n
st

ra
in

t

Ant-v3

0 200 400
95.0

97.5

100.0

102.5

105.0
Ant-v3

0 200 400
60

70

80

90

100
Hopper-v3

0 200 400
60

70

80

90

100
Hopper-v3

0 200 400
16
18
20
22
24

Humanoid-v3

0 200 400
16
18
20
22
24

Humanoid-v3

0 200 400

20

30

40

50
Swimmer-v3

0 200 400

20

30

40

50
Swimmer-v3

0 200 400
20

30

40

50

HumanoidCircle

0 200 400
20

30

40

50

HumanoidCircle

(a) Cost constraint with respect to hyper-parameter ν (defined in Projection step).

0

500

1000

1500

R
et

u
rn

 = 0.1
 = 0.15
 = 0.2
 = 0.25
 = 0.3

0
250
500
750

1000
1250

 = 0.1
 = 0.01
 = 0.001
 = 0.0001

0

250

500

750

1000

 = 0.2
 = 0.25
 = 0.3
 = 0.35
 = 0.4

10
0

10
20
30
40

 = 0.2
 = 0.3
 = 0.35
 = 0.4
 = 0.45

0

200

400

600

800
 = 0.5
 = 1.0
 = 0.1
 = 0.01
 = 0.0001

0 100 200 300 400 500
40

60

80

100

C
o
n
st

ra
in

t

Ant-v3

0 100 200 300 400 500
10

15

20

25
Hopper-v3

0 100 200 300 400 500
5

10

15

20

25
Humanoid-v3

0 100 200 300 400 500
10
20
30
40
50
60

Swimmer-v3

0 100 200 300 400 500

20

30

40

50

HumanoidCircle

(b) Performance w.r.t. penalty factor α.

0
500

1000
1500
2000

R
et

u
rn

cost limit = 20
cost limit = 40
cost limit = 60
cost limit = 80
cost limit = 100

0

500

1000

1500

2000

cost limit = 60
cost limit = 70
cost limit = 80
cost limit = 90
cost limit = 100

0
500

1000
1500
2000
2500

cost limit = 10
cost limit = 15
cost limit = 20
cost limit = 25
cost limit = 30

10
0

10
20
30
40

cost limit = 10
cost limit = 15
cost limit = 20
cost limit = 25
cost limit = 30

0

200

400

600

800
cost limit = 10
cost limit = 20
cost limit = 30
cost limit = 40
cost limit = 50

0 100 200 300 400 500
0

25

50

75

100

C
o
n
st

ra
in

t
Ant-v3

0 100 200 300 400 500
40

60

80

100

Hopper-v3

0 100 200 300 400 500

10

20

30

Humanoid-v3

0 100 200 300 400 500
0

10

20

30

40
Swimmer-v3

0 100 200 300 400 500
0

20

40

HumanoidCircle

(c) Performance w.r.t. cost limit.

Figure 3: Sensitivity analysis for hyper-parameters tuning with respect to ν, α and cost limit.

Humanoid-v3, and Hopper-v3 environments. While if the estimated cost exceeds the target threshold
b, ν will be activated, which requires the agent to play a policy on the safe region. Those empirical
results are consistent with the update rule of ν: νk+1 = {νk + η(ĴCk − b)}+, which implies the
projection of CUP plays an important role for the agent to learn a safe policy. Additionally, Figure 3
(a) provides a visualization way to show the difficulty of different tasks, where the task actives much
quantification of ν, such a task is more challenging to obtain a safe policy. Furthermore, Figure 3 (b)
shows that the performance of CUP is still very stable for different settings of α, and the constraint
value of CUP also still fluctuates around the target value. The different value achieved by CUP in
different setting α is affected by the simulated environment and constraint thresholds, which are
easy to control. Finally, Figure 3 (c) shows that CUP learns safe policies stably under the cost limit
thresholds. We compare policy performance and cost under different cost limit settings. For example,
in the Swimmer-v3, we set cost limit b among {10, 15, 20, 25, 30}. Different cost limit setting implies
different difficulty for learning, results show that CUP is scalable to various complex tasks, which
means CUP is robust to different cost limit settings for various safe RL tasks.

7 Conclusion

This paper proposes the CUP algorithm with a theoretical safety guarantee. We derive the CUP based
on the newly proposed surrogate functions with respect to objectives and constraints and provide a
practical implementation of CUP that does not depend on any convex approximation. We compared
CUP against a comprehensive list of safe RL baselines on a wide range of tasks, which shows the
effectiveness of CUP where the agent satisfies safe constraints.

Acknowledgements

The National Key R&D Program of China (2021ZD0200400).Natural Science Foundation of China
(No. 61925603, and No.62102349).

10

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In

Proceedings of International Conference on Machine Learning (ICML), volume 70, pages 22–31,
2017.

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. arXiv preprint arXiv:2101.06286, 2021.

Eitan Altman. Constrained Markov decision processes. CRC Press, 1999.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, 6(5):679–
684, 1957.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):334–
334, 1997.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. In International Conference on
Learning Representations (ICLR), 2021.

Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello Restelli. Risk-averse
trust region optimization for reward-volatility reduction. In Christian Bessiere, editor, Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages
4583–4589, 2020.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yi Chen, Jing Dong, and Zhaoran Wang. A primal-dual approach to constrained markov decision
processes. arXiv preprint arXiv:2101.10895, 2021.

Richard Cheng, Gábor Orosz, Richard M. Murray, and Joel W. Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence. AAAI Press, 2019.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Imre Csiszár and János Körner. Information theory: coding theorems for discrete memoryless systems.
Cambridge University Press, 2011.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning
(ICML), pages 1329–1338, 2016.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research (JMLR), 5(Nov):1471–
1530, 2004.

Minghao Han, Lixian Tian, Yuanand Zhang, Jun Wang, and Wei Pan. Reinforcement learning control
of constrained dynamic systems with uniformly ultimate boundedness stability guarantee. arXiv
preprint arXiv:2011.06882, 2020.

David R Hunter and Kenneth Lange. A tutorial on mm algorithms. The American Statistician,
58(1):30–37, 2004.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of International Conference on Machine Learning (ICML), volume 2, pages 267–274,
2002.

11

Bingyi Kang, Shie Mannor, and Jiashi Feng. Learning safe policies with cost-sensitive advantage
estimation, 2021. https://openreview.net/forum?id=uVnhiRaW3J.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning (ICML), pages 3703–3712, 2019.

Xiao Li and Calin Belta. Temporal logic guided safe reinforcement learning using control barrier
functions. arXiv preprint arXiv:1903.09885, 2019.

Qingkai Liang, Fanyu Que, and Eytan Modiano. Accelerated primal-dual policy optimization for
safe reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

OpenAI. Openai five defeats dota 2 world champions, 2019. https://openai.com/blog/
openai-five-defeats-dota-2-world-champions/.

Santiago Paternain, Luiz FO Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Jan. Peters and Stefan. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Netw, 21(4):682–697, 2008.

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In International
Conference on Machine Learning (ICML), pages 307–315, 2013.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019.

Reazul Hasan Russel, Mouhacine Benosman, and Jeroen Van Baar. Robust constrained-mdps: Soft-
constrained robust policy optimization under model uncertainty. arXiv preprint arXiv:2010.04870,
2020.

Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained markov decision processes via backward
value functions. In International Conference on Machine Learning (ICML), pages 8502–8511,
2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), pages 1889–1897,
2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. International Conference on Learning
Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge university press,
2003.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

12

https://openreview.net/forum?id=uVnhiRaW3J
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1057–1063, 2000.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
International Conference on Learning Representation (ICLR), 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012.

Quan Vuong, Yiming Zhang, and Keith W Ross. Supervised policy update for deep reinforcement
learning. In International Conference on Learning Representation (ICLR), 2019.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. International Conference on Learning Representation (ICLR), 2018.

Long Yang, Minhao Shi, Qian Zheng, Wenjia Meng, and Gang Pan. A unified approach for multi-step
temporal-difference learning with eligibility traces in reinforcement learning. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages
2984–2990, 2018.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representation (ICLR),
2020.

Long Yang, Gang Zheng, Yu Zhang, Qian Zheng, Pengfei Li, and Gang Pan. On convergence of
gradient expected sarsa (λ). In AAAI, 2021.

Long Yang, Qian Zheng, and Gang Pan. Sample complexity of policy gradient finding second-order
stationary points. In AAAI, 2021.

Long Yang, Gang Zheng, Haotian Zhang, Yu Zhang, Qian Zheng, and Gang Pan. Policy optimization
with stochastic mirror descent. Association for the Advancement of Artificial Intelligence (AAAI),
2022.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, 2020.

13

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Abstract and Section 1.
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] We ensure our paper to conform to the ethics review guidelines.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
and Section 4.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix E and
Appendix G.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See the URL in
the supplementary material for the code, and see H for environments of experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix H

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Appendix H

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix H

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide the code for our implementation of CUP in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We use open source safe reinforcement learning environments,
see Appendix H.2

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Our data does not contain any personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Notations

A.1 Matrix Index

In this paper, we use a bold capital letter to denote matrix, e.g., A = (ai,j) ∈ Rm×n, and its (i, j)-th
element denoted as

A[i, j] =: ai,j ,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Similarly, a bold lowercase letter denotes a vector, e.g., a =
(a1, a2, · · · , an) ∈ Rn, and its i-th element denoted as

a[i] =: ai,

where 1 ≤ i ≤ n.

A.2 Key Notations of Reinforcement Learning

For convenience of reference, we list key notations that have be used in this paper.

A.2.1 Value Function and Dynamic System of MDP.

rπθ
, Rπθ

(s), : rπθ
∈ R|S| is the expected vector reward according to πθ , i.e., their compo-

nents are: rπθ
[s] =

∑
a∈A

∑
s′∈S πθ(a|s)r(s′|s, a) =: Rπθ

(s), s ∈ S.
vπθ

, Vπθ
(s), : vπθ

∈ R|S| is the vector that stores all the state value functions, and its
components are: vπθ

[s] = Vπθ
(s), s ∈ S.

ρ(·),ρ : ρ(s): the initial state distribution of state s; ρ ∈ R|S|, and ρ[s] = ρ(s).
Pπθ

: Single-step state transition matrix by executing πθ.
Pπθ

(s
′ |s) : Single-step state transition probability from s to s

′
by executing πθ, and it

is the (s, s
′
)-th component of the matrix Pπθ

, i.e., Pπθ
[s, s

′
] = Pπθ

(s
′ |s).

Pπθ
(st = s

′ |s) : The probability of visiting the state s
′

after t time steps from the state s
by executing πθ, and it is the (s, s

′
)-th component of the matrix Pπθ

, i.e.,
Pt
πθ

[s, s
′
] = Pπθ

(st = s
′ |s).

ds0πθ
(s), dρ0πθ

(s) : The normalized discounted distribution of the future state s encountered
starting at s0 by executing πθ: ds0πθ

(s) =: (1− γ)
∑∞
t=0 γ

tPπθ
(st = s|s0).

Since s0 ∼ ρ(·), we define dρ0πθ
(s) =: Es0∼ρ(·)[ds0πθ

(s)].
dρ0πθ

: It stores all the normalized discounted state distributions dρ0πθ
(s), ∈ S, i.e.,

dρ0πθ
∈ R|S|, and its components are: dρ0πθ

[s] = dρ0πθ
(s).

A.2.2 Extend them to λ-version.

P
(λ)
πθ : P

(λ)
πθ = (1− γλ)

∑∞
t=0(γλ)tPt+1

πθ
.

P(λ)
πθ (s

′ |s) : P(λ)
πθ (s

′ |s) =: P
(λ)
πθ [s, s

′
] = (1− γλ)

∑∞
t=0(γλ)tPπθ

(st+1 = s
′ |s).

r
(λ)
πθ , R

(λ)
πθ (s) : r

(λ)
πθ =

∑∞
t=0(γλPπθ

)trπθ
; R

(λ)
πθ (s) =: r

(λ)
πθ [s].

γ̃ : γ̃ =
γ(1− λ)

1− γλ
.

ds0,λπθ
(s) : ds0,λπθ

(s) = (1− γ̃)
∑∞
t=0 γ̃

tP(λ)
πθ (st = s|s0).

dλπθ
(s), dλπθ

: dλπθ
(s) = Es0∼ρ0(·)

[
ds0,λπθ

(s)
]
, dλπθ

[s] = dλπθ
(s).

A.2.3 TD error w.r.t. any function ϕ(·).

δϕt : δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st).
δϕπθ,t

(s) : δϕπθ,t
(s) = Est∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [δϕt].

δϕπθ,t
: δϕπθ,t

[s] = δϕπθ,t
(s).

∆ϕ
t (πθ, πθ′ , s) : Est∼Pπ

θ
′ (·|s),at∼πθ

′ (·|st),st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
.

∆ϕ
t (πθ, πθ′) : ∆ϕ

t (πθ, πθ′)[s] = ∆ϕ
t (πθ, πθ′ , s).

15

B Additional Discussion about Related Work

This section reviews three typical safe reinforcement learning algorithms: CPO [Achiam et al., 2017],
PCPO [Yang et al., 2020] and FOCOPS [Zhang et al., 2020]. Those algorithms also use new surrogate
functions to replace the objective and constraints, which resembles the proposed CUP algorithm. The
goal is to present the contribution of our work.

B.1 CPO [Achiam et al., 2017]

For a given policy πθk , CPO updates new policy πθk+1
as follows:

πθk+1
= arg max

πθ∈Πθ

Es∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]

(24)

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
≤ b, (25)

D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(πθ, πθk)[s]] ≤ δ. (26)

It is impractical to solve the problem (24) directly due to the computational cost. [Achiam et al.,
2017] suggest to find some convex approximations to replace the term Aπθk

(s, a) and D̄KL(πθ, πθk)
Eq.(24)-(26).

Concretely, according to (5), Achiam et al. [2017] suggest to use first-order Taylor expansion of
J(πθ) to replace the objective (24) as follows,

1

1− γ
Es∼dρ0πθk (·),a∼πθk

(·|s)

[
πθ(a|s)
πθk(a|s)

Aπθk
(s, a)

]
= J(πθ)− J(πθk) ≈ (θ − θk)>∇θJ(πθ).

Similarly, Achiam et al. [2017] use the following approximations to turn the constrained policy
optimization (24)-(26) to be a convex problem,

1

1− γ
Es∼dρ0πθk (·),a∼πθk

(·|s)

[
πθ(a|s)
πθk(a|s)

Acπθk
(s, a)

]
≈ (θ − θk)>∇θJc(πθ), (27)

D̄KL(πθ, πθk) ≈ (θ − θk)>H(θ − θk), (28)

where H is Hessian matrix of D̄KL(πθ, πθk), i.e.,

H[i, j] =:
∂2

∂θi∂θj
Es∼dρ0πθk (·) [KL(πθ, πθk)[s]] ,

Eq.(28) is the second-oder approximation of (26).

Let λ?, ν? is the dual solution of the following problem

λ?, ν? = arg max
λ≥0,ν≥0

{
−1

2λ

(
g>H−1g − 2νr + sv2

)
+ νc− λδ

2

}
;

where g = ∇θEs∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]
, a = ∇θEs∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
, r =

g>Ha, s = a>H−1a, and c = Jc(πθk)− b.
Finally, CPO updates parameters according to conjugate gradient as follows: if approximation to
CPO is feasible:

θk+1 = θk +
1

λ?
H−1(g − ν?a),

else,

θk+1 = θk −
√

2δ

a>H−1a
H−1a.

16

B.2 PCPO [Yang et al., 2020]

Projection-Based Constrained Policy Optimization (PCPO) is an iterative method for optimizing
policies in a two-step process: the first step performs a local reward improvement update, while the
second step reconciles any constraint violation by projecting the policy back onto the constraint set.

Reward Improvement:

πθ
k+1

2

= arg max
πθ∈Πθ

Es∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]
,

s.t.D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(πθ, πθk)[s]] ≤ δ;

Projection:

πθk+1
= arg min

πθ∈Πθ

D
(
πθ, πθ

k+1
2

)
,

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
≤ b.

Then, Yang et al. [2020] follows CPO [Achiam et al., 2017] uses convex approximation to original
problem, and calculate the update rule as follows,

θk+1 = θk −

√
2δ

g>H−1g
H−1g −max

0,

√
2δ

g>H−1g
a>H−1g + c

a>L−1a

L−1a,

where L = I if D is `2-norm, and L = H if D is KL-divergence.

B.3 FOCOPS [Zhang et al., 2020]

Zhang et al. [2020] propose the First Order Constrained Optimization in Policy Space (FOCOPS)
that is a two-step approach. We present it as follows.

Step1: Finding the optimal update policy. Firstly, for a given policy πθk, we find an optimal
update policy π? by solving the optimization problem (24)-(26) in the non-parameterized policy
space.

π? = arg max
π∈Π

Es∼dρ0πθk (·),a∼π(·|s)

[
Aπθk

(s, a)
]

(29)

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼π(·|s)

[
Acπθk

(s, a)
]
≤ b, (30)

D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(π, πθk)[s]] ≤ δ. (31)

If πθk is feasible, then the optimal policy for (29)-(31) takes the following form:

π?(a|s) =
πθk(a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπθk

(s, a)− νAcπθk
(s, a)

))
, (32)

where Zλ,ν(s) is the partition function which ensures (32) is a valid probability distribution, λ and ν
are solutions to the optimization problem:

min
λ,ν≥0

λν + νb̃+ λEs∼dρ0πθk (·),a∼π?(·|s) [Zλ,ν(s)] ,

the term b̃ = (1− γ)(b− Jc(πθk)).

Step 2: Projection Then, we project the policy found in the previous step back into the parameterized
policy space Πθ by solving for the closest policy πθ ∈ Πθ to π? in order to obtain πθk+1

:

θk+1 = arg min
θ

Es∼dρ0πθk (·)[KL(πθ, π
?)[s]].

17

Ta
bl

e
2:

C
om

pa
ri

so
n

of
so

m
e

sa
fe

re
in

fo
rc

em
en

ta
lg

or
ith

m
s.

A
lg

or
ith

m
O

pt
im

iz
at

io
n

pr
ob

le
m

Im
pl

em
en

ta
tio

n
R

em
ar

k

C
PO

[A
ch

ia
m

et
al

.,
20

17
]

π
θ
k
+

1
=

a
rg

m
a
x
π
θ
∈

Π
θ
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
π
θ
k

(s
,a

)] ,

s.
t.
J
c
(π

θ
k
)

+
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
c π
θ
k

(s
,a

)] ≤b
,

D̄
K

L
(π

θ
,π

θ
k
)

=
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π

θ
k
)[
s]

]
≤
δ.

θ
k
+

1
=

a
rg

m
a
x
θ
g
>

(θ
−

θ
k
),

s.
t.
c

+
b
>

(θ
−

θ
k
)
≤

0
,

1 2
(θ
−

θ
k
)>

H
(θ
−

θ
k
)
≤
δ.

C
on

ve
x

Im
pl

em
en

ta
tio

n

PC
PO

[Y
an

g
et

al
.,

20
20

]

R
ew

ar
d

Im
pr

ov
em

en
t

π
θ
k
+

1 2

=
a
rg

m
a
x
π
θ
∈

Π
θ
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
π
θ
k

(s
,a

)] ,

s.
t.
D̄

K
L
(π

θ
,π

θ
k
)

=
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π

θ
k
)[
s]

]
≤
δ;

Pr
oj

ec
tio

n

π
θ
k
+

1
=

a
rg

m
in
π
θ
∈

Π
θ
D

(π
θ
,π

θ
k
+

1 2

) ,

s.
t.
J
c
(π

θ
k
)

+
1

1
−
γ
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
c π
θ
k

(s
,a

)] ≤b
.

R
ew

ar
d

Im
pr

ov
em

en
t

θ
k
+

1 2
=

a
rg

m
a
x
θ
g
>

(θ
−

θ
k
),

s.
t.

1 2
(θ
−

θ
k
)>

H
(θ
−

θ
k
)
≤
δ;

Pr
oj

ec
tio

n

θ
k
+

1
=

a
rg

m
in

θ
1 2

(θ
−

θ
k
)>

L
(θ
−

θ
k
),

s.
t.
c

+
b
>

(θ
−

θ
k
)
≤

0
.

C
on

ve
x

Im
pl

em
en

ta
tio

n

FO
C

O
PS

[Z
ha

ng
et

al
.,

20
20

]

O
pt

im
al

up
da

te
po

lic
y

π
?

=
a
rg

m
a
x
π
∈

Π
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π

(·
|s

)

[A
π
θ
k

(s
,a

)] ,

s.
t.
J
c
(π

θ
k
)

+
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π

(·
|s

)

[A
c π
θ
k

(s
,a

)] ≤b
,

D̄
K

L
(π

θ
,π

θ
k
)

=
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π
,π

θ
k
)[
s]

]
≤
δ;

Pr
oj

ec
tio

n
π
θ
k
+

1
=

a
rg

m
in
π
θ
∈

Π
θ
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π
?
)[
s]

].

O
pt

im
al

up
da

te
po

lic
y

π
?
(a
|s

)
=

π
θ
k

(a
|s

)

Z
λ
,ν

(s
)

ex
p
(1 λ

(A
π
θ
k

(s
,a

)
−
ν
A
c π
θ
k

(s
,a

))) ;

Pr
oj

ec
tio

n
θ
k
+

1
=

a
rg

m
in

θ
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π
?
)[
s]

].

N
on

-C
on

ve
x

Im
pl

em
en

-
ta

tio
n

C
U

P
(O

ur
W

or
k)

Po
lic

y
Im

pr
ov

em
en

t

π
θ
k
+

1 2

=
a
rg

m
a
x

π
θ
∈

Π
θ

{ E s
∼
d
λ π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
G

A
E

(γ
,λ

)
π
θ
k

(s
,a

)]
−
α
k

√ E s
∼
d
λ π
θ
k

(·
)
[K

L
(π

θ
k
,π

θ
)[
s]

]} ,

Pr
oj

ec
tio

n

π
θ
k
+

1
=

a
rg

m
in

π
θ
∈

Π
θ

D
(π

θ
,π

θ
k
+

1 2

) ,

s.
t.J

c
(π

θ
k
)

+
1

1
−
γ̃
E s
∼
d
λ π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
G

A
E

(γ
,λ

)
π
θ
k
,C

(s
,a

)]
+
β
k

√ E s
∼
d
λ π
θ
k

(·
)
[K

L
(π

θ
k
,π

θ
)[
s]

]
≤
b.

Po
lic

y
Im

pr
ov

em
en

t

θ
k
+

1 2
=

a
rg

m
a
x

θ

{ 1 T

T ∑ t=
1

π
θ
(a
t
|s
t
)

π
θ
k
(a
t
|s
t
)
Â
t

−
α

√ √ √ √1 T

T ∑ t=
1

K
L

(π
θ
k
(·
|s
t
),
π
θ
(·
|s
t
))

} ;

Pr
oj

ec
tio

n

θ
k
+

1
=

a
rg

m
in θ

1 T

T ∑ t=
1

{ K
L

(π
θ
k
+

1 2

(·
|s
t
),
π
θ
(·
|s
t
))

+
ν
k

1
−
γ
λ

1
−
γ

π
θ
(a
t
|s
t
)

π
θ
k
(a
t
|s
t
)
Â
C t

} .

N
on

-C
on

ve
x

Im
pl

em
en

-
ta

tio
n

18

C Constrained Update Projection Algorithm

C.1 Practical Implementation of Performance Improvement

C.1.1 Sample-based Performance Improvement

Let the trajectory {(st, at, rt+1, ct+1)}Tt=1 be sampled according to πθk , then we denote the empirical
KL-divergence with respect to πθ and πθ′ as follows,

D̂KL(πθ, πθ′) =
1

T

T∑
t=1

KL(πθ(at|st), πθ′ (at|st)).

We defined the following L̂R(πθ, πθk),

L̂R(πθ, πθk) =
1

T

T∑
t=1

πθ(at|st)
πθk(at|st)

Ât − αk
√
D̂KL(πθk , πθ), (33)

where Ât is an estimator of AGAE(γ,λ)
πθk

(s, a). The term L̂R(πθ, πθk) (33) is an estimator of the next
expectation that appears in (14)

Es∼dλπθk (·), a∼πθk
(·|s)

[
πθ(a|s)
πθk(a|s)

AGAE(γ,λ)
πθk

(s, a)

]
− αk

√
Es∼dλπθk (·) [KL(πθk , πθ)[s]].

Then we implement the performance improvement as follows,

πθ
k+1

2

= arg max
πθ∈Πθ

{
L̂R(πθ, πθk)

}
. (34)

C.1.2 Clipped Surrogate Objective

How can the implementation (34) take the biggest possible improvement step on a policy using the
data we currently have, without stepping so far that we accidentally cause performance collapse?
Now, we present a clip implementation for policy improvement, which is very efficient in practice.

Instead of the previous policy improvement (14), according to PPO Schulman et al. [2017], we update
the policy as follows,

πθ
k+1

2

= arg max
πθ∈Πθ

{
Es∼dλπθk (·), a∼πθ(·|s) [Lclip (s, a, πθ, πθk , ε)]

}
,

where the the objective Lclip is defined as follows,

Lclip (s, a, πθ, πθk , ε) = min

{
πθ(a|s)
πθk(a|s)

AGAE(γ,λ)
πθk

(s, a), clip
(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε

)
AGAE(γ,λ)
πθk

(s, a)

}
,

(35)

ε is a hyperparameter which roughly says how far away the policy πθ
k+1

2

is allowed to go from the

current policy πθk . The objective Lclip (s, a, πθ, πθk , ε) is complex, we present the insights of this
clip mechanism Schulman et al. [2017] to make CUP learn stably.

Positive GAE: AGAE(γ,λ)
πθk

(s, a) > 0. Firstly, we consider the positive advantage, which implies the
objective Lclip (s, a, πθ, πθk , ε) reduces to

Lclip (s, a, πθ, πθk , ε) = min

{
πθ(a|s)
πθk(a|s)

, 1 + ε

}
AGAE(γ,λ)
πθk

(s, a). (36)

Since AGAE(γ,λ)
πθk

(s, a) > 0, to improve the performance, we need to increase πθ . The min{·} operator
determines the quantization how much the CUP improves. If the policy improves too much such that

πθ(a|s) > (1 + ε)πθk(a|s),

The min{·} operator hit the objective with a ceiling of (1 + ε)A
GAE(γ,λ)
πθk

(s, a). The clip technique
requires CUP learns a policy πθ

k+1
2

does not benefit by going far away from the current policy πθk .

19

Negative GAE: AGAE(γ,λ)
πθk

(s, a) < 0. Let us consider the negative advantage, which implies the
objective Lclip (s, a, πθ, πθk , ε) reduces to

Lclip (s, a, πθ, πθk , ε) = max

{
πθ(a|s)
πθk(a|s)

, 1− ε
}
AGAE(γ,λ)
πθk

(s, a). (37)

Since AGAE(γ,λ)
πθk

(s, a) < 0, to improve the performance, we need to decrease the policy πθ(a|s). The
max{·} operator determines the quantization how much the CUP improves. If the policy decrease
too much such that

πθ(a|s) < (1− ε)πθk(a|s),

The max{·} operator hit the objective with a ceiling of (1− ε)AGAE(γ,λ)
πθk

(s, a). Thus, similar to the
positive GAE the clip technique requires CUP learns a policy πθ

k+1
2

does not benefit by going far
away from the current policy πθk .

C.1.3 Learning from Sampling

To short the expression, we introduce a function g(ε, A) as follows,

g(ε, A) =

{
(1 + ε)A A ≥ 0

(1 + ε)A A < 0.

Then we rewrite the objective (35) as follows,

Lclip (s, a, πθ, πθk , ε) = min

{
πθ(a|s)
πθk(a|s)

AGAE(γ,λ)
πθk

(s, a), g
(
ε, AGAE(γ,λ)

πθk
(s, a)

)}
. (38)

Recall the trajectory {(st, at, rt+1, ct+1)}Tt=1 be sampled according to πθk , we defined the following
L̂clip(πθ, πθk),

L̂clip(πθ, πθk , ε) = min

{
1

T

T∑
t=1

πθ(at|st)
πθk(at|st)

Ât − g

(
ε,

1

T

T∑
t=1

Ât

)}
, (39)

where Ât is an estimator of AGAE(γ,λ)
πθk

(s, a). The term L̂clip(πθ, πθk , ε) (39) is an estimator of the
next expectation that appears in (38).

Then we implement the performance improvement as follows,

πθ
k+1

2

= arg max
πθ∈Πθ

{
L̂clip(πθ, πθk , ε)

}
,

i.e., we obtain the parameter θk+ 1
2

according to

θk+ 1
2

= θk + η1
∂

∂θ
L̂clip(πθ, πθk , ε)

∣∣∣
θ=θk

,

where η1 is step-size.

C.2 Practical Implementation of Projection

Recall (15), we introduce the new surrogate function with respected to cost function as follows,

Cπ
θ
′ (πθ, β) = Jc(πθ′)+

1

1− γ̃
Es∼dλπ

θ
′ (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
π
θ
′ ,C (s, a) + β

√
Es∼dλπ

θ
′ (·)

[KL(πθ′ , πθ)[s]]

]
,

where β is adaptive to the term
√

2γ̃(γλ(|S|−1)+1)εVπθ
(π

θ
′)

(1−γλ) . Now, we rewrite the projection step (15)
as follows,

πθk+1
= arg min

πθ∈Πθ

D
(
πθ, πθ

k+1
2

)
, s.t. Cπθk

(πθ, β) ≤ b. (40)

We update the projection step (15) by replacing the distance function D(·, ·) by KL-divergence, and
we solve the constraint problem (15) by the primal-dual approach.

20

Theorem 4. The constrained problem (40) is equivalent to the following primal-dual problem:

max
ν≥0

min
πθ∈Πθ

{
D
(
πθ, πθ

k+1
2

)
+ ν

(
Cπθk

(πθ, β)− b
)}

.

Proof. This result is a direct application of [Boyd and Vandenberghe, 2004, Chapter 5.9], and we
also present it in D.1. Firstly, we notice if D

(
·, πθ

k+1
2

)
is KL divergence or `2-norm, then the

constrained problem (40) is a convex problem 2. In fact, for a given policy πθ
k+1

2

, D
(
·, πθ

k+1
2

)
is

convex over the policy Πθ, and Cπ
θ
′ (·, β) is also convex over the policy Πθ. Additionally, Slater’s

condition alway holds since Cπ
θ
′ (πθ′ , β) = 0.

According to Theorem 4, we turn the projection step (40) as the following unconstrained problem,

max
ν≥0

min
πθ∈Πθ

{
D
(
πθ, πθ

k+1
2

)
+ ν

(
Cπθk

(πθ, β)− b
)}

. (41)

In our implementation, we use KL-divergence as the distance D(·, ·) to measure the difference
between two policies, then

D
(
πθ, πθ

k+1
2

)
= Es∼dλπθk (·)

[
KL
(
πθ

k+1
2

, πθ

)
[s]
]
, (42)

which implies we can rewrite the problem (41) as follows,

max
ν≥0

min
πθ

{
Es∼dλπθk (·)

[
KL
(
πθ

k+1
2

, πθ

)
[s]
]

+ ν
(
Cπθk

(πθ, β)− b
)}

. (43)

Furthermore, we update the projection step as follows,

(πθk+1
, νk+1) = arg min

πθ∈Πθ

max
ν≥0

{
L̂c

(
πθ, πθk ,θk+ 1

2
, ν
)}

,

where

L̂c

(
πθ, πθk ,θk+ 1

2
, ν
)

= D̂KL(πθ
k+1

2

, πθ) + νĈ(πθ, πθk),

Ĉ(πθ, πθk) = ĴC +
1

1− γ̃
· 1

T

T∑
t=1

πθ(at|st)
πθk(at|st)

ÂCt + βk

√
D̂KL(πθk , πθ)− b,

ĴCand ÂCt are estimators for cost-return and cost-advantage.
Remark 3 (Track for Learning ν). Particularly, after some simple algebra, we obtain the derivation
of L̂c(·) with respect to ν as follows,

∂L̂c

(
πθ, πθk ,θk+ 1

2
, ν
)

∂ν
= Jc(πθk) +

1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]
− b. (44)

But recall (14) is a minimization-maximization iteration, i.e., we require to minimize the distance
Es∼dλπθk (·)KL (πθ, πθk) [s], which implies πθ is close to πθk . Thus it is reasonable to consider

Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]
≈ 0.

Thus, in practice, we update ν following a simple way
ν ← {ν + η(Jc(πθk)− b)}+ .

Finally, we obtain the parameters (θk+1, νk+1) as follows,

θk+1 ← θk − η2
∂

∂θ
L̂c

(
πθ, πθk ,θk+ 1

2
, ν
) ∣∣∣
θ=θk,ν=νk

, (45)

νk+1 ←
{
νk + η2

∂

∂ν
L̂c

(
πθ, πθk ,θk+ 1

2
, ν
) ∣∣∣
θ=θk,ν=νk

}
+

, (46)

where {·}+ denotes the positive part, i.e., if x ≤ 0, {x}+ = 0, else {x}+ = x. We have shown all
the details of the implementation in Algorithm 1.

2It is worth noting that minπθ∈Πθ D

(
πθ, πθ

k+1
2

)
is a convex problem, while minθ∈Rp D

(
πθ, πθ

k+1
2

)
can be a non-convex problem.

21

Algorithm 1 Constrained Update Projection (CUP)

Initialize: policy network parameters θ0; value network parameter ω0; cost value function
parameter ν0, step-size ν0;
Hyper-parameters: trajectory horizon T ; discount rate γ; episode number M,N , mini-batch size
B, positive constant α, η;
for k = 0, 1, 2, . . . do

Collect batch data ofM episodes of horizon T in∪Mi=1∪Tt=0{(si,t, ai,t, ri,t+1, ci,t+1)} according
to current policy πθk ;
Estimate c-return by discount averaging on each episode: ĴCi =

∑T
t=0 γ

tci,t+1;
Compute TD errors ∪Mi=1 ∪Tt=0 {δi,t}, cost TD errors ∪Mi=1 ∪Tt=0 {δCi,t}:

δi,t = ri,t + γVωk(si,t)− Vωk(si,t−1), δCi,t = ci,t + γV Cνk(si,t)− V Cνk(si,t−1);

Compute GAE: ∪Mi=1 ∪Tt=0 {Âi,t, ÂCi,t}: Âi,t =
∑T
j=t(γλ)j−tδi,j , Â

C
i,t =

∑T
j=t(γλ)j−tδCi,j ;

Compute target function for value function and cost value function as follows,

V target
i,t = Âi,t + Vωk(si,t), V

target,C
i,t = ÂCi,t + V Cνk(si,t);

Store data: Dk = ∪Mi=1 ∪Tt=0

{
(ai,t, si,t, Âi,t, Â

C
i,t, V

target
i,t , V target,C

i,t)
}

;
πold ← πθk ; Policy Improvement
for i = 0, 1, 2, . . . ,M do

θk+ 1
2

= arg max
θ

{
1

T

T∑
t=1

πθ(ai,t|si,t)
πold(ai,t|si,t)

Âi,t − g

(
ε,

1

T

T∑
t=1

Âi,t

)}
;

end for
πold ← πθ

k+1
2

; Projection

νk+1 = (νk + η(ĴCi − b))+;
for i = 0, 1, 2, . . . ,M do

θk+1 = arg min
θ

1

T

T∑
t=1

{
KL(πθold(·|si,t), πθ(·|si,t)) + νk

1− γλ
1− γ

πθ(ai,t|si,t)
πθk(ai,t|si,t)

ÂCi,t

}
;

end for
for each mini-batch {(aj , sj , Âj , ÂCj , V

target
j , V target,C

j)} of size B from Dk do

ωk+1 = arg min
ω

B∑
j=1

(
Vω(sj)− V target

j

)2
,νk+1 = arg min

ν

B∑
j=1

(
V cν (sj)− V target,C

j

)2

;

end for
end for

22

D Preliminaries

In this section, we introduce some new notations and results about convex optimization, state
distribution, policy optimization and λ-returns.

D.1 Strong Duality via Slater’s Condition

We consider a convex optimization problem:

p? = min
x
f0(x), (47)

s.t. fi(x) ≤ 0, i = 1, 2, · · · ,m, (48)
hi(x) = 0, i = 1, 2, · · · , p, (49)

where the functions f0, f1, · · · , fm are convex, and h1, · · · , hp are affine. We denote by D the
domain of the problem (which is the intersection of the domains of all the functions involved), and by
X ⊂ D its feasible set.

To the problem we associate the Lagrangian L : Rn × Rm × Rp → R, with values

L(x, λ, ν) = f0 +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x). (50)

The dual function is g : Rm × Rp → R, with values

g(λ, ν) = min
x
L(x, λ, ν). (51)

The associated dual problem is

d? = max
λ�0,ν

g(λ, ν). (52)

Slater’s condition. We say that the problem satisfies Slater’s condition if it is strictly feasible, that is:

∃x0 ∈ D : fi(x0) < 0, i = 1, · · · ,m, hi(x0) = 0, i = 1, · · · , p. (53)

Theorem 5 (Strong duality via Slater condition). If the primal problem (8.1) is convex, and satisfies
the weak Slater’s condition, then strong duality holds, that is, p? = d?.

We omit the proof of Theorem 5, for more discussions, please refer to [Boyd and Vandenberghe,
2004, Chapter 5.9].

D.2 State Distribution

We use Pπθ
∈ R|S|×|S| to denote the state transition matrix by executing πθ, and their components

are:
Pπθ

[s, s′] =
∑
a∈A

πθ(a|s)P(s′|s, a) =: Pπθ
(s
′
|s), s, s

′
∈ S,

which denotes one-step state transformation probability from s to s
′
.

We use Pπθ
(st = s|s0) to denote the probability of visiting s after t time steps from the initial state

s0 by executing πθ. Particularly, we notice if t = 0, st 6= s0, then Pπθ
(st = s|s0) = 0, i.e.,

Pπθ
(st = s|s0) = 0, t = 0 and s 6= s0. (54)

Then for any initial state s0 ∼ ρ(·), the following holds,

Pπθ
(st = s|s0) =

∑
s′∈S

Pπθ
(st = s|st−1 = s

′
)Pπθ

(st−1 = s
′
|s0). (55)

Recall ds0πθ
(s) denotes the normalized discounted distribution of the future state s encountered starting

at s0 by executing πθ,

ds0πθ
(s) = (1− γ)

∞∑
t=0

γtPπθ
(st = s|s0).

23

Furthermore, since s0 ∼ ρ0(·), we define

dρ0πθ
(s) = Es0∼ρ0(·)[d

s0
πθ

(s)] =

∫
s0∈S

ρ0(s0)ds0πθ
(s)ds0

as the discounted state visitation distribution over the initial distribution ρ0(·). We use dρ0πθ
∈ R|S| to

store all the normalized discounted state distributions, and its components are:

dρ0πθ
[s] = dρ0πθ

(s), s ∈ S.

We use ρ0 ∈ R|S| to denote initial state distribution vector, and their components are:

ρ0[s] = ρ0(s), s ∈ S.

Then, we rewrite dρ0πθ
as the following matrix version,

dρ0πθ
= (1− γ)

∞∑
t=0

(γPπθ
)tρ0 = (1− γ)(I− γPπθ

)−1ρ0. (56)

D.3 Objective of MDP

Recall τ = {st, at, rt+1}t≥0 ∼ πθ, according to τ , we define the expected return J(πθ|s0) as
follows,

J(πθ|s0) =Eτ∼πθ
[R(τ)] =

1

1− γ
Es∼ds0πθ (·),a∼πθ(·|s),s′∼P(·|s,a)

[
r(s
′
|s, a)

]
, (57)

where R(τ) =
∑
t≥0 γ

trt+1, and the notation J(πθ|s0) is “conditional” on s0 is to emphasize the
trajectory τ starting from s0.

Since s0 ∼ ρ0(·), we define the objective of MDP as follows,

J(πθ) =
1

1− γ
Es∼dρ0πθ (·),a∼πθ(·|s),s′∼P(·|s,a)

[
r(s
′
|s, a)

]
. (58)

The goal of reinforcement learning is to solve the following optimization problem:

θ? = arg max
θ∈Rp

J(πθ). (59)

D.4 λ-Return

Let Bπθ
be the Bellman operator:

Bπθ
: R|S| → R|S|, v 7→ rπθ

+ γPπθ
v, (60)

where rπθ
∈ R|S| is the expected reward according to πθ, i.e., their components are:

rπθ
[s] =

∑
a∈A

∑
s′∈S

πθ(a|s)r(s′|s, a) =: Rπθ
(s), s ∈ S.

Let vπθ
∈ R|S| be a vector that stores all the state value functions, and its components are:

vπθ
[s] = Vπθ

(s), s ∈ S.

Then, according to Bellman operator (60), we rewrite Bellman equation [Bellman, 1957] as the
following matrix version:

Bπθ
vπθ

= vπθ
. (61)

Furthermore, we define λ-Bellman operator Bλπθ
as follows,

Bλπθ
= (1− λ)

∞∑
t=0

λt(Bπθ
)t+1,

24

which implies

Bλπθ
: R|S| → R|S|, v 7→ r(λ)

πθ
+ γ̃P(λ)

πθ
v, (62)

where

P(λ)
πθ

= (1− γλ)

∞∑
t=0

(γλ)tPt+1
πθ

, r(λ)
πθ

=

∞∑
t=0

(γλPπθ
)trπθ

, γ̃ =
γ(1− λ)

1− γλ
. (63)

Let

P(λ)
πθ

(s
′
|s) = P(λ)

πθ
[s, s

′
] =: (1− γλ)

∞∑
t=0

(γλ)t
(
Pt+1
πθ

[s, s
′
]
)
, (64)

where Pt+1
πθ

[s, s
′
] is the (s, s

′
)-th component of matrix Pt+1

πθ
, which is the probability of visiting s

′

after t+ 1 time steps from the state s by executing πθ, i.e.,

Pt+1
πθ

[s, s
′
] = Pπθ

(st+1 = s
′
|s). (65)

Thus, we rewrite P(λ)
πθ (s

′ |s) (64) as follows

P(λ)
πθ

(s
′
|s) = (1− γλ)

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s), s ∈ S. (66)

Remark 4. Furthermore, recall the following visitation sequence τ = {st, at, rt+1}t≥0 induced by
πθ , it is similar to the probability Pπθ

(st = s
′ |s0), we introduce P(λ)

πθ (st = s
′ |s0) as the probability

of transition from state s to state s
′
after t time steps under the dynamic transformation matrix P

(λ)
πθ .

Then, the following equity holds

P(λ)
πθ

(st = s|s0) =
∑
s′∈S

P(λ)
πθ

(st = s|st−1 = s
′
)P(λ)
πθ

(st−1 = s
′
|s0). (67)

Similarly, let

R(λ)
πθ

(s) =: r(λ)
πθ

[s] =

∞∑
t=0

(γλPπθ
)trπθ

[s] =

∞∑
t=0

(γλ)t

∑
s′∈S

Pπθ
(st = s

′
|s)Rπθ

(s
′
)


=

∞∑
t=0

∑
s′∈S

(γλ)tPπθ
(st = s

′
|s)Rπθ

(s
′
). (68)

It is similar to normalized discounted distribution dρ0πθ
(s), we introduce λ-return version of discounted

state distribution dλπθ
(s) as follows: ∀s ∈ S,

ds0,λπθ
(s) = (1− γ̃)

∞∑
t=0

γ̃tP(λ)
πθ

(st = s|s0), (69)

dλπθ
(s) = Es0∼ρ0(·)

[
ds0,λπθ

(s)
]
, (70)

dλπθ
[s] = dλπθ

(s), (71)

where P(λ)
πθ (st = s|s0) is the (s0, s)-th component of the matrix

(
P

(λ)
πθ

)t
, i.e.,

P(λ)
πθ

(st = s|s0) =:
(
P(λ)
πθ

)t
[s0, s].

Similarly, P(λ)
πθ (st = s

′ |s) is the (s, s
′
)-th component of the matrix

(
P

(λ)
πθ

)t
, i.e.,

P(λ)
πθ

(st = s
′
|s) =:

(
P(λ)
πθ

)t
[s, s

′
].

Finally, we rewrite dρ0,λπθ
as the following matrix version,

dλπθ
= (1− γ̃)

∞∑
t=0

(
γP(λ)

πθ

)t
ρ0 = (1− γ̃)

(
I− γ̃P(λ)

πθ

)−1

ρ0. (72)

25

Remark 5 (λ-Return Version of Bellman Equation). According to Bellman equation (61), vπθ
is

fixed point of λ-operator Bλπθ
, i.e.,

vπθ
= r(λ)

πθ
+ γ̃P(λ)

πθ
vπθ

. (73)

Recall τ = {st, at, rt+1}t≥0 ∼ πθ, according to (73), the value function of initial state s0 is

Vπθ
(s0) = vπθ

[s0] = r(λ)
πθ

[s0] + γ̃P(λ)
πθ

vπθ
[s0]

= R(λ)
πθ

(s0) + γ̃
∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)Vπθ

(s
′
). (74)

We unroll the expression of (74) repeatedly, then we have

Vπθ
(s0)

=R(λ)
πθ

(s0) + γ̃
∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)

R(λ)
πθ

(s
′
) + γ̃

∑
s′′∈S

P(λ)
πθ

(s2 = s
′′
|s1 = s

′
)Vπθ

(s
′′
)


︸ ︷︷ ︸

=Vπθ (s′)

=R(λ)
πθ

(s0) + γ̃
∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)R(λ)

πθ
(s
′
)

+ γ̃2
∑
s′′∈S

∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)P(λ)

πθ
(s2 = s

′′
|s1 = s

′
)


︸ ︷︷ ︸

(67)
= :P(λ)

πθ (s2=s′′ |s0)

Vπθ
(s
′′
)

=R(λ)
πθ

(s0) + γ̃
∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s) + γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)Vπθ
(s)

=R(λ)
πθ

(s0) + γ̃
∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s)

+ γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s3 = s
′
|s2 = s)Vπθ

(s
′
)


=R(λ)

πθ
(s0) + γ̃

∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s) + γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)R(λ)
πθ

(s)

+ γ̃3
∑
s′∈S

(∑
s∈S

P(λ)
πθ

(s2 = s|s0)P(λ)
πθ

(s3 = s
′
|s2 = s)

)
︸ ︷︷ ︸

=P(λ)
πθ

(s3=s′ |s0)

Vπθ
(s
′
)

=R(λ)(s0) + γ̃
∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s) + γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)R(λ)
πθ

(s)

+ γ̃3
∑
s∈S

P(λ)
πθ

(s3 = s|s0)Vπθ
(s)

= · · ·

=
∑
s∈S

∞∑
t=0

γ̃tP(λ)
πθ

(st = s|s0)R(λ)
πθ

(s)
(69)
=

1

1− γ̃
∑
s∈S

ds0,λπθ
(s)R(λ)

πθ
(s). (75)

26

According to (57) and (75), we have

J(πθ) =
∑
s0∈S

ρ0(s0)Vπθ
(s0)

(75)
=

1

1− γ̃
∑
s0∈S

ρ0(s0)
∑
s∈S

ds0,λπθ
(s)R(λ)

πθ
(s)

=
1

1− γ̃
∑
s∈S

(∑
s0∈S

ρ0(s0)ds0,λπθ
(s)

)
︸ ︷︷ ︸

=dλπθ
(s)

R(λ)
πθ

(s)

=
1

1− γ̃
∑
s∈S

dλπθ
(s)R(λ)

πθ
(s) =

1

1− γ̃
Es∼dλπθ (·)

[
R(λ)
πθ

(s)
]
. (76)

Finally, we summarize above results in the following Lemma 1.
Lemma 1. The objective J(πθ) (58) can be rewritten as the following version:

J(πθ) =
1

1− γ̃
∑
s∈S

dλπθ
(s)R(λ)

πθ
(s) =

1

1− γ̃
Es∼dλπθ (·)

[
R(λ)
πθ

(s)
]
.

27

E Proof of Theorem 1

We need the following Proposition 4 to prove Theorem 1, which illustrates an identity for the objective
function of policy optimization.

Proposition 4. For any function ϕ(·) : S → R, for any policy πθ, for any trajectory satisfies
τ = {st, at, rt+1}t≥0 ∼ πθ, let

δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st),

δϕπθ,t
(s) = Est∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [δϕt] ,

then, the objective J(πθ) (76) can be rewritten as the following version:

J(πθ) =Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
∑
s∈S

dλπθ
(s)

(∞∑
t=0

γtλtδϕπθ,t
(s)

)
(77)

=Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
Es∼dλπθ (·)

[∞∑
t=0

γtλtδϕπθ,t
(s)

]
.

We present the proof of of Proposition 4 at the end of this section, see Section E.2.

We introduce a vector δϕπθ,t
∈ R|S| and its components are: for any s ∈ S

δϕπθ,t
[s] = δϕπθ,t

(s). (78)

Then, we rewrite the objective as the following vector version

J(πθ) = Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃

∞∑
t=0

γtλt〈dλπθ
, δϕπθ,t

〉, (79)

where 〈·, ·〉 denotes inner production between two vectors.

E.1 Proof of Theorem 1

Theorem 1 (Generalized Policy Performance Difference) For any function ϕ(·) : S → R, for two
arbitrary policy πθ and πθ′ , for any p, q ∈ [1,∞) such that 1

p + 1
q = 1, The following bound holds:

1

1− γ̃

∞∑
t=0

γtλtMϕ,−
p,q,t(πθ, πθ′) ≤ J(πθ)− J(πθ′) ≤

1

1− γ̃

∞∑
t=0

γtλtMϕ,+
p,q,t(πθ, πθ′), (80)

where the terms Mϕ,−
p,q,t and Mϕ,+

p,q,t are defined in (96)-(97).

Proof. (of Theorem 1)

We consider two arbitrary policies πθ and πθ′ with different parameters θ and θ
′
, let

D
ϕ,(λ)
t (πθ, πθ′) =: 〈dλπθ

, δϕπθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉. (81)

According to (79), we obtain performance difference as follows,

J(πθ)− J(πθ′) =
1

1− γ̃

∞∑
t=0

γtλt
(
〈dλπθ

, δϕπθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉
)

=
1

1− γ̃

∞∑
t=0

γtλtD
ϕ,(λ)
t (πθ, πθ′), (82)

which requires us to consider the boundedness of the difference Dϕ,(λ)
t (πθ, πθ′) (81) .

Step 1: Bound the term D
ϕ,(λ)
t (πθ, πθ′) (81).

28

We rewrite the first term of (81) as follows,

〈dλπθ
, δϕπθ,t

〉 = 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉+ 〈dλπθ

− dλπ
θ
′ , δ

ϕ
πθ,t
〉, (83)

which is bounded by applying Hölder’s inequality to the term 〈dλπθ
− dλπ

θ
′ , δ

ϕ
πθ,t
〉, we rewrite (83) as

follows,

〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 − ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q

≤〈dλπθ
, δϕπθ,t

〉 ≤ 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉+ ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q, (84)

where p, q ∈ [1,∞) and 1
p + 1

q = 1. Let

ε
ϕ,(λ)
p,q,t (πθ, πθ′) =: ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q,

then we rewrite Eq.(84) as follows,

〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 − εϕ,(λ)

p,q,t (πθ, πθ′) ≤ 〈d
λ
πθ
, δϕπθ,t

〉 ≤ 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉+ ε

ϕ,(λ)
p,q,t (πθ, πθ′). (85)

Let

Mϕ
t (πθ, πθ′) =: 〈dλπ

θ
′ , δ

ϕ
πθ,t
〉︸ ︷︷ ︸

Term-I

−〈dλπ
θ
′ , δ

ϕ
π
θ
′ ,t〉︸ ︷︷ ︸

Term-II

, (86)

combining the (81) and (85), we achieve the boundedness of Dϕ
t (πθ, πθ′) as follows

Mϕ
t (πθ, πθ′)− ε

ϕ,(λ)
p,q,t (πθ, πθ′) ≤ D

ϕ
t (πθ, πθ′) ≤M

ϕ
t (πθ, πθ′) + ε

ϕ,(λ)
p,q,t (πθ, πθ′). (87)

Step 2: Analyze the term Mϕ
t (πθ, πθ′) (86).

To analyze (87) further, we need to consider the first term appears in Mϕ
t (πθ, πθ′) (86):

Term-I (86) =〈dλπ
θ
′ , δ

ϕ
πθ,t
〉

=
∑
s∈S

dλπ
θ
′ (s)δ

ϕ
πθ,t

(s) = Es∼dλπ
θ
′ (·)
[
δϕπθ,t

(s)
]

(88)

(78)
= Es∼dλπ

θ
′ (·)

[
Est∼Pπθ (·|s)[δ

ϕ
πθ

(st)]
]
. (89)

We notice the following relationship

δϕπθ,t
(s) = E

st∼Pπθ (·|s)
at∼πθ(·|st)

st+1∼P(·|st,at)

[δϕt] = E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[
πθ(at|st)
πθ′ (at|st)

δϕt

]
, (90)

which holds since we use importance sampling: for any distribution p(·) and q(·), for any random
variable function f(·),

Ex∼p(x)[f(x)] = Ex∼q(x)

[
p(x)

q(x)
f(x)

]
.

According to (88), (90), we rewrite the term 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 in Eq.(86) as follows,

Term-I (86) = 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 =

∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[
πθ(at|st)
πθ′ (at|st)

δϕt

]
 . (91)

29

Now, we consider the second term appears in Mϕ
t (πθ, πθ′) (86):

Term-II (86) = 〈dλπ
θ
′ , δ

ϕ
π
θ
′ ,t〉

=
∑
s∈S

dλπ
θ
′ (s)δ

ϕ
π
θ
′ ,t(s) =

∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[δϕt]

 . (92)

Finally, take the results (91) and (92) to (86), we obtain the difference between 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 and

〈dλπ
θ
′ , δ

ϕ
π
θ
′ ,t〉, i.e., we achieve a identity for Mϕ

t (πθ, πθ′) (86) as follows,

Mϕ
t (πθ, πθ′)

(86)
= 〈dλπ

θ
′ , δ

ϕ
πθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉

(91,(92)
=

∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
 . (93)

To simplify expression, we introduce a notation as follows,

∆ϕ
t (πθ, πθ′ , s) =: E

st∼Pπ
θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
, (94)

and we use a vector ∆ϕ
t (πθ, πθ′) ∈ R|S| to store all the values {∆ϕ

t (πθ, πθ′ , s)}s∈S :
∆ϕ
t (πθ, πθ′)[s] = ∆ϕ

t (πθ, πθ′ , s).

Then we rewrite 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉 (93) as follows,

Mϕ
t (πθ, πθ′) =〈dλπ

θ
′ , δ

ϕ
πθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉

(93)
=
∑
s∈S

dλπ
θ
′ (s)∆

ϕ
t (πθ, πθ′ , s) = 〈dλπ

θ
′ ,∆

ϕ
t (πθ, πθ′)〉.

Step 3: Bound on J(πθ)− J(πθ′).

Recall (87), taking above result in it, we obtain

〈dλπ
θ
′ ,∆

ϕ
t (πθ, πθ′)〉 − ε

ϕ,(λ)
p,q,t (πθ, πθ′) ≤ D

ϕ
t (πθ, πθ′) ≤ 〈d

λ
π
θ
′ ,∆

ϕ
t (πθ, πθ′)〉+ ε

ϕ,(λ)
p,q,t (πθ, πθ′).

(95)

Finally, let

Mϕ,−
p,q,t(πθ, πθ′) = 〈dλπ

θ
′ ,∆

ϕ
t (πθ, πθ′)〉 − ε

ϕ,(λ)
p,q,t (πθ, πθ′) (96)

=
∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
− ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q

=Es∼dλπ
θ
′ (·)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
− ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q.

30

and
Mϕ,+
p,q,t(πθ, πθ′) = 〈dλπ

θ
′ ,∆

ϕ
t (πθ, πθ′)〉+ ε

ϕ,(λ)
p,q,t (πθ, πθ′) (97)

=
∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
+ ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q

=Es∼dλπ
θ
′ (·)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
+ ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q.

According to (82) and (95), we achieve the boundedness of performance difference between two
arbitrary policies πθ and πθ′ :

1

1− γ̃

∞∑
t=0

γtλtMϕ,−
p,q,t(πθ, πθ′)︸ ︷︷ ︸

=:Lϕ,−p,q,

≤ J(πθ)− J(πθ′) ≤
1

1− γ̃

∞∑
t=0

γtλtMϕ,+
p,q,t(πθ, πθ′)︸ ︷︷ ︸

=:Lϕ,+p,q,

. (98)

E.2 Proof of Proposition 4

Proof. (of Proposition 4).

Step 1: Rewrite the objective J(πθ) in Eq.(76).

We rewrite the discounted distribution dλπθ
(72) as follows,

ρ0 −
1

1− γ̃
dλπθ

+
γ̃

1− γ̃
P(λ)
πθ

dλπθ
= 0. (99)

Let ϕ(·) be a real number function defined on the state space S, i.e., ϕ : S → R. Then we define a
vector function φ(·) ∈ R|S| to collect all the values {ϕ(s)}s∈S , and its components are

φ[s] = ϕ(s), s ∈ S.
Now, we take the inner product between the vector φ and (99), we have

0 = 〈ρ0 −
1

1− γ̃
dλπθ

+
γ̃

1− γ̃
P(λ)
πθ

dλπθ
,φ〉

= 〈ρ0,φ〉 −
1

1− γ̃
〈dλπθ

,φ〉+
γ̃

1− γ̃
〈P(λ)

πθ
dλπθ

,φ〉. (100)

We express the first term 〈ρ0,φ〉 of (100) as follows,

〈ρ0,φ〉 =
∑
s∈S

ρ0(s)ϕ(s) = Es∼ρ0(·)[ϕ(s)]. (101)

We express the second term 〈dλπθ
,φ〉 of (100) as follows,

− 1

1− γ̃
〈dλπθ

,φ〉 = − 1

1− γ̃
∑
s∈S

dλπθ
(s)ϕ(s) = − 1

1− γ̃
Es∼dλπθ (·)[ϕ(s)]. (102)

We express the third term 〈γ̃P
(λ)
πθ dλπθ

,φ〉 of (100) as follows,
γ̃

1− γ̃
〈P(λ)

πθ
dλπθ

,φ〉 =
γ̃

1− γ̃
∑
s′∈S

(
P(λ)
πθ

dλπθ

)
[s
′
]ϕ(s

′
)

=
γ̃

1− γ̃
∑
s′∈S

(∑
s∈S

P(λ)
πθ

(s
′
|s)dλπθ

(s)

)
ϕ(s

′
). (103)

31

According to Lemma 1, put the results (76) and (100) together, we have

J(πθ)
(76),(100)

=
1

1− γ̃
∑
s∈S

dλπθ
(s)R(λ)

πθ
(s) + 〈ρ0 −

1

1− γ̃
dλπθ

+
γ̃

1− γ̃
P(λ)
πθ

dλπθ
,φ〉

=Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
∑
s∈S

dλπθ
(s)

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s)

 ,

(104)

where the last equation holds since we unfold (100) according to (101)-(103).

Step 2: Rewrite the term
(
R

(λ)
πθ (s) + γ̃

∑
s′∈S P

(λ)
πθ (s

′ |s)ϕ(s
′
)− ϕ(s)

)
in Eq.(104).

Then, we unfold the second term of (104) as follows,

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s) (105)

(66),(68)
=

∞∑
t=0

(γλPπθ
)trπθ

[s] + γ̃(1− γλ)
∑
s′∈S

∞∑
t=0

(γλ)t
(
Pt+1
πθ

[s, s
′
]
)
ϕ(s

′
)− ϕ(s)

(63)
=

∞∑
t=0

(γλPπθ
)trπθ

[s] + γ(1− λ)
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)− ϕ(s). (106)

Recall the terms P
(λ)
πθ , r

(λ)
πθ [s] defined in (63)-(68),

R(λ)
πθ

(s) + γ(1− λ)
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s) (107)

We consider the first term R
(λ)
πθ (s) of (105) as follows,

R(λ)
πθ

(s)
(63)−(68)

= r(λ)
πθ

[s] =

∞∑
t=0

(γλ)tPt
πθ

rπθ
[s] =

∞∑
t=0

∑
st∈S

(γλ)tPπθ
(st|s)Rπθ

(st). (108)

We consider the second term γ̃
∑
s∈S P

(λ)
πθ (s

′ |s)ϕ(s)− ϕ(s) of (105) as follows,

γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s)

(66)
= γ̃(1− γλ)

∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)− ϕ(s) (109)

(63)
= γ(1− λ)

∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)− ϕ(s) (110)

=γ
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)−

∑
s′∈S

(∞∑
t=0

(γλ)t+1Pπθ
(st+1 = s

′
|s)ϕ(s

′
)

)
︸ ︷︷ ︸

=
∑∞
t=1(γλ)tPπθ (st=s

′ |s)ϕ(s′)

−ϕ(s)

=γ
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)−

∑
s′∈S

∞∑
t=1

(γλ)tPπθ
(st = s

′
|s)ϕ(s

′
) + ϕ(s)


︸ ︷︷ ︸

=
∑
s
′∈S

∑∞
t=0(γλ)tPπθ (st=s

′ |s)ϕ(s′)

(111)

=γ
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)−

∑
st∈S

∞∑
t=0

(γλ)tPπθ
(st|s)ϕ(s), (112)

32

where the equation from Eq.(111) to Eq.(112) holds since: according to (54), we use the following
identity ∑

s′∈S

Pπθ
(s0 = s

′
|s)ϕ(s

′
) = ϕ(s).

Furthermore, take the result (108) and (112) to (107), we have

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s)

=

∞∑
t=0

(γλ)t

(∑
st∈S

Pπθ
(st|s)Rπθ

(st) + γ
∑
s′∈S

Pπθ
(st+1 = s

′
|s)ϕ(s

′
)︸ ︷︷ ︸

(55)
=

∑
st∈S

Pπθ (st+1=s′ |st)Pπθ (st|s)ϕ(s′)

−
∑
st∈S

Pπθ
(st|s)ϕ(st)

)
(113)

=

∞∑
t=0

(γλ)t

∑
st∈S

Pπθ
(st|s)Rπθ

(st) + γ
∑
st∈S

Pπθ
(st|s)

∑
st+1∈S

Pπθ
(st+1|st)ϕ(st+1)

−
∑
st∈S

Pπθ
(st|s)ϕ(st)

)
(114)

=

∞∑
t=0

(γλ)t
∑
st∈S

Pπθ
(st|s)


∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, at)r(st+1|st, at)︸ ︷︷ ︸

=Rπθ (st)

+ γ
∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, at)︸ ︷︷ ︸

=Pπθ (st+1|st)

ϕ(st+1)− ϕ(st)


=

∞∑
t=0

(γλ)t
∑
st∈S

Pπθ
(st|s)

∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, at) (r(st+1|st, at) + γϕ(st+1)− ϕ(st))

(115)

=

∞∑
t=0

(γλ)tEst∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [r(st+1|st, at) + γϕ(st+1)− ϕ(st)] , (116)

the equation from Eq.(112) to Eq.(113) holds since:

Pπθ
(st+1|s)

(55)
=
∑
st∈S

Pπθ
(st+1|st)Pπθ

(st|s);

the equation from Eq.(113) to Eq.(114) holds since we use the Markov property of the definition of
MDP: for each time t ∈ N,

Pπθ
(st+1 = s

′
|st = s) = Pπθ

(s
′
|s);

the equation (115) the following identity:∑
at∈A

πθ(at|st) = 1,
∑

st+1∈S
P(st+1|st, at) = 1,

33

then
ϕ(st) =

∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, a)ϕ(st).

Step 3: Put all the result together.

Finally, let

δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st),

δϕπθ,t
(s) = Est∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [δϕt] ,

combining the results (104) and (116), we have

J(πθ) =Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
∑
s∈S

dλπθ
(s)

(∞∑
t=0

γtλtδϕπθ,t
(s)

)
(117)

=Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
Es∼dλπθ (·)

[∞∑
t=0

γtλtδϕπθ,t
(s)

]
.

This concludes the proof of Proposition 4.

E.3 Proposition 3

All above bound results appear in (11) and (13) can be extended for a total variational divergence to
KL-divergence between policies, which are desirable for policy optimization.

We obtain

Es∼dλπ
θ
′ (·)

[DTV(πθ′ , πθ)[s]] ≤Es∼dλπ
θ
′ (·)

[√
1

2
KL(πθ′ , πθ)[s]

]
≤
√

1

2
Es∼dλπ

θ
′ (·)

[KL(πθ′ , πθ)[s]],

(118)

where KL(·, ·) is KL-divergence, and

KL(πθ′ , πθ)[s] = KL(πθ′ (·|s), πθ(·|s));

the first inequality follows Pinsker’s inequality [Csiszár and Körner, 2011] and the second inequality
follows Jensen’s inequality. According to (118), we obtain the next Proposition 3.

Proposition 3. All the bounds in (11) and (13) hold if we make the following substitution:

Es∼dλπ
θ
′ (·)

[DTV(πθ′ , πθ)[s]]←
√

1

2
Es∼dλπ

θ
′ (·)

[KL(πθ′ , πθ)[s]].

34

F Lemma 2

In this section, we show Lemma 2 that presents an upper bound to the difference between two
λ-version of normalized discounted distribution. Before we present our main results, we review the
norms induced by p-norms for matrix.

F.1 Norms Induced by p-norms for Matrix

If the p-norm for vectors (1 ≤ p ≤ ∞) is used for both spaces Rn and Rm, then the corresponding
operator norm is:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.

These induced norms are different from the "entry-wise" p-norms and the Schatten p-norms for
matrices treated below, which are also usually denoted by ‖A‖p.
In the special cases of p = 1 and p =∞, the induced matrix norms can be computed or estimated by

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |,

which is simply the maximum absolute column sum of the matrix;

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |,

which is simply the maximum absolute row sum of the matrix. Thus, the following equation holds

‖A>‖∞ = ‖A‖1. (119)

F.2 Lemma 2

Lemma 2. The divergence between discounted future state visitation distributions, ‖dλπ
θ
′ − dλπθ

‖1
is bounded as follows,

‖dλπ
θ
′ − dλπθ

‖1 ≤
1

1− γ̃
· γ̃ (γλ(|S| − 1) + 1)

1− γλ
Es∼dλπθ (·) [2DTV(πθ′ , πθ)[s]] ,

where DTV(πθ′ , πθ)[s] is the total variational divergence between action distributions at state s, i.e.,

2DTV(πθ′ , πθ)[s] =
∑
a∈A
|πθ′ (a|s)− πθ(a|s)| .

Proof. (of Lemma 2). Recall Eq.(72), we know,

dλπθ
= (1− γ̃)

∞∑
t=0

(
γP(λ)

πθ

)t
ρ0 = (1− γ̃)

(
I− γ̃P(λ)

πθ

)−1

ρ0.

To short the expression, we introduce some additional notations as follows.

Gπθ
=
(
I− γ̃P(λ)

πθ

)−1

, Gπ
θ
′ =

(
I− γ̃P(λ)

π
θ
′

)−1

, D = P(λ)
π
θ
′ −P(λ)

πθ
. (120)

Then, after some simple algebra, the following holds

G−1
πθ
−G−1

π
θ
′ =

(
I− γ̃P(λ)

πθ

)
−
(
I− γ̃P(λ)

π
θ
′

)
= γ̃D. (121)

Furthermore, by left-multiplying by Gπθ
and right-multiplying by Gπ

θ
′ , we achieve

Gπ
θ
′ −Gπθ

= γ̃Gπ
θ
′DGπθ

. (122)

35

Grouping all the results from (120)-(122), recall (72),

dλπθ
= (1− γ̃)

∞∑
t=0

(
γP(λ)

πθ

)t
ρ0 = (1− γ̃)

(
I− γ̃P(λ)

πθ

)−1

ρ0 = (1− γ̃)Gπθ
ρ0, (123)

then we have

dλπ
θ
′ − dλπθ

=(1− γ̃)
(
Gπ

θ
′ −Gπθ

)
ρ0

(122)
= (1− γ̃)γ̃Gπ

θ
′DGπθ

ρ0

(123)
= γ̃Gπ

θ
′Ddλπθ

. (124)

Applying (124), we have

‖dλπ
θ
′ − dλπθ

‖1
(124)

≤ γ̃‖Gπ
θ
′ ‖1‖Ddλπθ

‖1. (125)

Firstly, we bound the term ‖Gπ
θ
′ ‖1 as follows,

‖Gπ
θ
′ ‖1 =

∥∥∥∥(I− γ̃P(λ)
π
θ
′

)−1
∥∥∥∥

1

≤
∞∑
t=0

γ̃t
∥∥∥P(λ)

π
θ
′

∥∥∥
1

=
1

1− γ̃
. (126)

Thus, recall γ̃ =
γ(1− λ)

1− γλ
, we obtain

‖dλπ
θ
′ − dλπθ

‖1 ≤γ̃‖Gπ
θ
′ ‖1‖Ddλπθ

‖1 ≤
γ̃

1− γ̃
‖Ddλπθ

‖1 (127)

≤ 1

1− γ̃
· γ̃ (γλ(|S| − 1) + 1)

1− γλ
Es∼dλπθ (·) [2DTV(πθ′ , πθ)[s]] , (128)

where the last equation holds due to Lemma 3, this concludes the proof of Lemma 2 .

Lemma 3. The term ‖Ddλπθ
‖1 is bounded as follows,

‖Ddλπθ
‖1 ≤

γλ(|S| − 1) + 1

1− γλ
Es∼dλπθ (·) [2DTV(πθ′ , πθ)[s]] .

Proof. Now, we analyze ‖Ddλπθ
‖1 as follows,

‖Ddλπθ
‖1 =

∑
s∈S

∣∣∣∣∣∣
∑
s′∈S

D(s
′
|s)dλπθ

(s)

∣∣∣∣∣∣ (66)
=
∑
s∈S

∣∣∣∣∣∣
∑
s′∈S

(
P(λ)
π
θ
′ (s
′
|s)− P(λ)

πθ
(s
′
|s)
)∣∣∣∣∣∣ dλπθ

(s)

(66)
=
∑
s∈S

∣∣∣∣∣∣(1− γλ)

∞∑
t=0

(γλ)t
∑
s′∈S

(
Pπ

θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
)∣∣∣∣∣∣ dλπθ

(s),

which implies that to bound ‖Ddλπθ
‖1, we need to bound the following difference

∞∑
t=0

(γλ)t
∑
s′∈S

(
Pπ

θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
)
.

Step 1: Rewrite
∑∞
t=0(γλ)t

∑
s′∈S

(
Pπ

θ
′ (st+1 = s

′ |s)− Pπθ
(st+1 = s

′ |s)
)
.

Let s0 = s, then

Pπθ
(st+1 = s

′
|s) (55)

=
∑
s1∈S

Pπθ
(st+1 = s

′
|s1)Pπθ

(s1|s0) (129)

=
∑
s1∈S

Pπθ
(st+1 = s

′
|s1)

(∑
a∈A

πθ(a|s0)P(s1|s0, a)

)
. (130)

36

Similarly,

Pπ
θ
′ (st+1 = s

′
|s) (55)

=
∑
s1∈S

Pπ
θ
′ (st+1 = s

′
|s1)Pπ

θ
′ (s1|s0) (131)

=
∑
s1∈S

Pπ
θ
′ (st+1 = s

′
|s1)

(∑
a∈A

πθ′ (a|s0)P(s1|s0, a)

)
. (132)

Firstly, we consider the following term
∞∑
t=0

(γλ)t
∑
s′∈S

Pπθ
(st+1 = s

′
|s) =

∞∑
t=0

(γλ)t
∑
s′∈S

∑
s1∈S

Pπθ
(st+1 = s

′
|s1)

(∑
a∈A

πθ(a|s)P(s1|s, a)

)

=

∞∑
t=0

(γλ)t
∑
s′∈S

∑
s1∈S

Pt
πθ

[s1, s
′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)

=
∑
s′∈S

∑
s1∈S

(∞∑
t=0

(γλPπθ
)t

)
[s1, s

′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)

=
∑
s′∈S

∑
s1∈S

(I− γλPπθ
)
−1

[s1, s
′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)
. (133)

To short expression, we introduce a new notation as follows,

Fπθ
= (I− γλPπθ

)
−1
. (134)

Then, we rewrite (133) as follows,
∞∑
t=0

(γλ)t
∑
s′∈S

Pπθ
(st+1 = s

′
|s) =

∑
s′∈S

∑
s1∈S

Fπθ
[s1, s

′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)
. (135)

Furthermore, according to (135), we obtain
∞∑
t=0

(γλ)t
∑
s′∈S

(
Pπ

θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
)

=
∑
s′∈S

∑
s1∈S

Fπ
θ
′ [s1, s

′
]

(∑
a∈A

πθ′ (a|s)P(s1|s, a)

)
−
∑
s′∈S

∑
s1∈S

Fπθ
[s1, s

′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)

=
∑
s′∈S

∑
s1∈S

Fπ
θ
′ [s1, s

′
]

(∑
a∈A

πθ′ (a|s)P(s1|s, a)

)
−
∑
s′∈S

∑
s1∈S

Fπ
θ
′ [s1, s

′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)

+
∑
s′∈S

∑
s1∈S

Fπ
θ
′ [s1, s

′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)
−
∑
s′∈S

∑
s1∈S

Fπθ
[s1, s

′
]

(∑
a∈A

πθ(a|s)P(s1|s, a)

)

=
∑
s′∈S

∑
s1∈S

Fπ
θ
′ [s1, s

′
]

(∑
a∈A

(
πθ′ (a|s)− πθ(a|s)

)
P(s1|s, a)

)
(136)

+
∑
s′∈S

∑
s1∈S

(
Fπ

θ
′ [s1, s

′
]− Fπθ

[s1, s
′
]
)(∑

a∈A
πθ(a|s)P(s1|s, a)

)
, (137)

which implies that to bound the following difference
∞∑
t=0

(γλ)t
∑
s′∈S

(
Pπ

θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
)
,

we need to bound (136) and (137).

37

Step 2: Bound the difference (137).

Due to the simple fact: for any inverse matrices A and B, then the following identity holds

A−1 −B−1 = A−1(B−A)B−1,

we rewrite the difference Fπ
θ
′ − Fπθ

as follows,

Fπ
θ
′ − Fπθ

=
(
I− γλPπ

θ
′

)−1

− (I− γλPπθ
)
−1

= γλ
(
I− γλPπ

θ
′

)−1 (
Pπ

θ
′ −Pπθ

)
(I− γλPπθ

)
−1
.

Then, we rewrite (137) as the following matrix version∑
s′∈S

∑
s1∈S

(
Fπ

θ
′ [s1, s

′
]− Fπθ

[s1, s
′
]
)(∑

a∈A
πθ(a|s)P(s1|s, a)

)

=
∑
s′′∈S

∑
s′∈S

(
Fπ

θ
′ [s
′
, s
′′
]− Fπθ

[s
′
, s
′′
]
)(∑

a∈A
πθ(a|s)P(s

′
|s, a)

)
=
∥∥∥(F>π

θ
′ − F>πθ

)
pπθ

(s)
∥∥∥

1
,

where pπθ
(s) ∈ R|S|, and

pπθ
(s) =

(
Pπθ

(s1|s),Pπθ
(s2|s), · · · ,Pπθ

(
s|S||s

))>
.

According to (119), we obtain∥∥∥(F>π
θ
′ − F>πθ

)
pπθ

(s)
∥∥∥

1
=
∥∥∥p>πθ

(s)
(
Fπ

θ
′ − Fπθ

)∥∥∥
∞

=γλ

∥∥∥∥p>πθ
(s)
(
I− γλPπ

θ
′

)−1 (
Pπ

θ
′ −Pπθ

)
(I− γλPπθ

)
−1

∥∥∥∥
∞

=
γλ

1− γλ

∥∥∥∥∥p>πθ
(s)(1− γλ)

(
I− γλPπ

θ
′

)−1

︸ ︷︷ ︸
f>s

(
Pπ

θ
′ −Pπθ

)
(I− γλPπθ

)
−1

∥∥∥∥∥
∞

(138)

≤ γλ

1− γλ

∥∥∥f>s (Pπ
θ
′ −Pπθ

)∥∥∥
∞

∥∥∥(I− γλPπθ
)
−1
∥∥∥
∞

=
γλ

(1− γλ)2

∥∥∥f>s (Pπ
θ
′ −Pπθ

)∥∥∥
∞

(139)

=
2γλ

(1− γλ)2

∑
s∈S

DTV(πθ′ , πθ)[s], (140)

where in Eq.(138), we introduce a notation f>s ∈ R|S| as follows,

f>s =: p>πθ
(s)(1− γλ)

(
I− γλPπ

θ
′

)−1

;

Eq.(139) holds since: ∥∥∥(I− γλPπθ
)
−1
∥∥∥
∞

=
1

1− γλ
;

Eq.(140) holds since:∥∥∥f> (Pπ
θ
′ −Pπθ

)∥∥∥
∞

=
∑
s∈S

∑
s′∈S

fs[s
′
]
∣∣∣Pπ

θ
′ (s
′
|s)− Pπθ

(s
′
|s)
∣∣∣

=
∑
s∈S

∑
s′∈S

fs[s
′
]

∣∣∣∣∣∑
a∈A

P(s
′
|s, a) (πθ′ (a|s)− πθ(a|s))

∣∣∣∣∣
≤
∑
s∈S

∑
s′∈S

fs[s
′
]
∑
a∈A
|πθ′ (a|s)− πθ(a|s)|

=
∑
s∈S

∑
a∈A
|πθ′ (a|s)− πθ(a|s)| ,

38

where the last equation holds due to the following fact∑
s′∈S

fs[s
′
] =

∑
s′∈S

p>πθ
(s)(1− γλ)

(
I− γλPπ

θ
′

)−1

[s
′
] = 1.

Thus, the difference (137) is bounded as follows,∑
s′∈S

∑
s1∈S

(
Fπ

θ
′ [s1, s

′
]− Fπθ

[s1, s
′
]
)(∑

a∈A
πθ(a|s)P(s1|s, a)

)
≤ 2γλ

(1− γλ)2

∑
s∈S

DTV(πθ′ , πθ)[s].

Step 3: Bound the difference (136).

We turn to consider (136):∑
s′∈S

∑
s1∈S

Fπ
θ
′ [s1, s

′
]

(∑
a∈A

(
πθ′ (a|s)− πθ(a|s)

)
P(s1|s, a)

)

=
∑
s′′∈S

∑
s′∈S

Fπ
θ
′ [s
′
, s
′′
]

(∑
a∈A

(
πθ′ (a|s)− πθ(a|s)

)
P(s

′
|s, a)

)

=
∥∥∥F>π

θ
′ (pπθ

′ (s)− pπθ
(s))

∥∥∥
1

≤
∥∥∥F>π

θ
′

∥∥∥
1

∥∥∥pπ
θ
′ (s)− pπθ

(s)
∥∥∥

1

=
∥∥∥pπ

θ
′ (s)− pπθ

(s)
∥∥∥

1
≤ 2

1− γλ
DTV(πθ′ , πθ)[s], (141)

where the last Eq.(141) holds since: ∥∥∥F>π
θ
′

∥∥∥
1

=
1

1− γλ
,

and ∥∥∥pπ
θ
′ (s)− pπθ

(s)
∥∥∥

1
=
∑
s′∈S

∣∣∣Pπ
θ
′ (s
′
|s)− Pπθ

(s
′
|s)
∣∣∣

=
∑
s′∈S

∣∣∣∣∣∑
a∈A

P(s
′
|s, a) (πθ′ (a|s)− πθ(a|s))

∣∣∣∣∣
≤
∑
a∈A

∑
s′∈S

P(s
′
|s, a) |πθ′ (a|s)− πθ(a|s)|

=
∑
a∈A
|πθ′ (a|s)− πθ(a|s)| = 2DTV(πθ′ , πθ)[s].

Step 4: Put all the result together.

Finally, according to (136), (137), (140), and (141), we obtain

‖Ddλπθ
‖1 =

∑
s∈S

∣∣∣∣∣∣(1− γλ)

∞∑
t=0

(γλ)t
∑
s′∈S

(
Pπ

θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
)∣∣∣∣∣∣ dλπθ

(s)

≤
∑
s∈S

dλπθ
(s)

[
2γλ

1− γλ
∑
s∈S

DTV(πθ′ , πθ)[s] + 2DTV(πθ′ , πθ)[s]

]

=
∑
s∈S

dλπθ
(s)

[
2γλ|S|
1− γλ

DTV(πθ′ , πθ)[s] + 2DTV(πθ′ , πθ)[s]

]
=
γλ(|S| − 1) + 1

1− γλ
Es∼dλπθ (·) [2DTV(πθ′ , πθ)[s]] .

This concludes the result of Lemma 3.

39

G Proof of Theorem 2

Before we present the main result, we define some notations.

χk =Es∼dλπθk (·)

[
KL
(
πθk , πθk+1

2

)
[s]
]
, (142)

ι =
γ̃ (γλ(|S| − 1) + 1)

(1− γ̃)(1− γλ)
. (143)

Proof. (of Theorem 2)

According to Bregman divergence, if policy πθk is feasible, policy πθk+1
is generated according to

(15), then the following

KL
(
πθk , πθk+1

2

)
≥ KL

(
πθk , πθk+1

)
+ KL

(
πθk+1

, πθ
k+1

2

)
implies

χk = Es∼dλπθk (·)

[
KL
(
πθk , πθk+1

2

)
[s]
]
≥ Es∼dλπθk (·)

[
KL
(
πθk+1

, πθk
)

[s]
]
.

According to the asymptotically symmetry of KL divergence if we update the policy within a local
region, then, we have

χk ≥ Es∼dλπθk (·)

[
KL
(
πθ

k+1
2

, πθk

)
[s]
]
≥ Es∼dλπθk (·)

[
KL
(
πθk+1

, πθk
)

[s]
]
.

Furthermore, according to Proposition 1 and Proposition 3, we have

J(πθk+1
)− J(πθk)

≥ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
AGAE(γ,λ)
πθk

(s, a)− ιεVπθk+1
(πθk)DTV(πθk , πθk+1

)[s]
]

≥ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
−ιαkεVπθk+1

(πθk)

√
1

2
KL(πθk , πθk+1

)[s]

]
≥− ι

1− γ̃
αk
√

2χkε
V
πθk+1

(πθk).

Similarly, according to Proposition 1 and Proposition 2, and since policy πθk+1
satisfies

Jc(πθk) +
1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]

+ βk
√

Es∼dλπθk (·)
[
KL(πθk , πθk+1

)[s]
]
≤ b,

(144)

and

Jc(πθk+1
)− Jc(πθk) (145)

≤ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a) + ιβkε
C
πθk+1

DTV(πθk , πθk+1
)[s]
]
.

Combining (144)- (146), we have

Jc(πθk+1
)− Jc(πθk) (146)

≤b+
1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
ιβkε

C
πθk+1

√
1

2
Es∼dλπθk (·)

[
KL(πθk , πθk+1

)[s]
]]

≤b+
1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
ιβk
√

2χkε
C
πθk+1

]
. (147)

40

H Experiments

The Python code for our implementation of CUP is provided along with this submission in the
supplementary material.

All experiments were implemented in Pytorch 1.7.0 with CUDA 11.0 and conducted on an Ubuntu
20.04.2 LTS (GNU/Linux 5.8.0-59-generic x86 64) with 40 CPU cores (Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz), 251G memory and 4 GPU cards (GeForce RTX 3080). The baseline
algorithm FOCOPS based on the open-source https://github.com/ymzhang01/focops, which
were offical code library. The other baseline algorithms include CPO, TRPO-L, PPO-L based on
https://github.com/openai/safety-starter-agents, which published by openai.

H.1 Algorithm Parameters

Hyperparameter CUP PPO-L TRPO-L CPO FOCOPS

No. of hidden layers 2 2 2 2 2
No. of hidden nodes 64 64 64 64 64
Activation tanh tanh tanh tanh tanh
Initial log std -0.5 -0.5 -1 -0.5 -0.5
Discount for reward γ 0.99 0.99 0.99 0.99 0.99
Discount for cost γC 0.99 0.99 0.99 0.99 0.99
Batch size 5000 5000 5000 5000 5000
Minibatch size 64 64 N/A N/A 64
No. of optimization epochs 10 10 N/A N/A 10
Maximum episode length 1000 1000 1000 1000 1000
GAE parameter (reward) 0.95 0.95 0.95 0.95 0.95
GAE parameter (cost) 0.95 0.95 0.95 0.95 0.95
Learning rate for policy 3× 10−4 3× 10−4 N/A N/A 3× 10−4

Learning rate for reward value net 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for cost value net 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for ν 0.01 0.01 0.01 N/A 0.01
L2-regularization coeff. for value net 10−3 3× 10−3 3× 10−3 3× 10−3 10−3

Clipping coefficient N/A 0.2 N/A N/A N/A
Damping coeff. N/A N/A 0.01 0.01 N/A
Backtracking coeff. N/A N/A 0.8 0.8 N/A
Max backtracking iterations N/A N/A 10 10 N/A
Max conjugate gradient iterations N/A N/A 10 10 N/A
Iterations for training value net 1 1 80 80 1
Temperature λ 1.5 N/A N/A N/A 1.5
Trust region bound δ 0.02 N/A 0.01 0.01 0.02
Initial ν, νmax 0, 2 0, 1 0, 2 N/A 0, 2

Table 3: Hyper-parameters for robots.

H.2 Environment

H.2.1 Environment 1: Robots with Speed Limit.

We consider two tasks from MuJoCo [Brockman et al., 2016]: Walker2d-v3 and Hopper-v3, where
the setting of cost follows [Zhang et al., 2020]. For agents move on a two-dimensional plane, the cost
is calculated as follows,

C(s, a) =
√
v2
x + v2

y;

for agents move along a straight line, the cost is calculated as

C(s, a) = |vx|,

where vx, vy are the velocities of the agent in the x and y directions respectively.

41

https://github.com/ymzhang01/focops
https://github.com/openai/safety-starter-agents

H.2.2 Environment 2: Circle.

The Circle Environment follows [Achiam et al., 2017], and we use open-source implementation of
the circle environments from https://github.com/ymzhang01/mujoco-circle. According to
Zhang et al. [2020], those experiments were implemented in OpenAI Gym [Brockman et al., 2016]
while the circle tasks in Achiam et al. [2017] were implemented in rllab [Duan et al., 2016]. We also
excluded the Point agent from the original experiments since it is not a valid agent in OpenAI Gym.
The first two dimensions in the state space are the (x, y) coordinates of the center mass of the agent,
hence the state space for both agents has two extra dimensions compared to the standard Ant-v0 and
Humanoid-v0 environments from OpenAI Gym.

Now, we present some necessary details of this environment taken from [Zhang et al., 2020].

Figure 4: In the Circle task, reward is maximized by moving along the green circle. The agent is not
allowed to enter the blue regions, so its optimal constrained path follows the line segments AD and
BC (figure and caption taken from [Achiam et al., 2017; Zhang et al., 2020]).

In the circle tasks, the goal is for an agent to move along the circumference of a circle while remaining
within a safety region smaller than the radius of the circle. The exact geometry of the task is shown
in Figure 4. The reward and cost functions are defined as:

R(s) =
−yvx + xvy

1 + |
√
x2 + y2 − r|

, C(s) = I(|x| > xlim),

where x, y are the positions of the agent on the plane, vx, vy are the velocities of the agent along
the x and y directions, r is the radius of the circle, and xlim specifies the range of the safety region.
The radius is set to r = 10 for both Ant and Humanoid while xlim is set to 3 and 2.5 for Ant and
Humanoid respectively. Note that these settings are identical to those of the circle task in Achiam et
al. [2017]; Zhang et al. [2020].

H.3 Safety Gym

In Safety Gym environments, the agent perceives the world through a robot’s sensors and interacts
with the world through its actuators [Ray et al., 2019]. In this section, we consider two robots: Point
and Car, where the presentation of those safety environments are taken from [Ray et al., 2019], for
more details, please refer to [Ray et al., 2019, Page 8–10]. In this section, we experiment with the
Safety Gym environment-builder two tasks: Goal, Button.

H.3.1 Safety Gym Robots

We consider two robots: Point and Car. All actions for all robots are continuous and linearly scaled to
[−1,+1], which is typical for 3D robot-based RL environments and (anecdotally) improves learning
with neural nets. Modulo scaling, the action parameterization is based on a mix of hand-tuning and
MuJoCo actuator defaults, and we caution that it is not clear if these choices are optimal. Some safe
exploration techniques are action-layer interventions, like projecting to the closest predicted safe
action [Dalal et al., 2018], and these methods can be sensitive to action parameterization. As a result,
action parameterization may merit more careful consideration than is usually given. Future work on

42

https://github.com/ymzhang01/mujoco-circle

(a) Point (b) Car

Figure 5: Fig (a): a 2D robot that can turn and move; Fig (b): a wheeled robot with a differential
drive control, in “Button”, the objective is to press the highlighted button (visually indicated with a
faint gray cylinder), where figures and caption taken from Safety Gym [Ray et al., 2019].

(a) Goal (b) Button

Figure 6: Fig (a): In “Goal,” the objective is to move the robot inside the green goal area; Fig (b): In
“Button”, the objective is to press the highlighted button (visually indicated with a faint gray cylinder),
where figures and caption are taken from Safety Gym [Ray et al., 2019].

action space design might be to find action parameterizations that respect physical measures we care
about—for example, an action space where a fixed distance corresponds to a fixed amount of energy.

Point: A robot constrained to the 2D plane, with one actuator for turning and another for moving
forward/backward. This factored control scheme makes the robot particularly easy to control for
navigation. Point has a small square in front that makes it easier to visually determine the robot’s
direction and helps the point push a box element that appears in one of our tasks.

Car: The car is a slightly more complex robot that has two independently-driven parallel wheels
and a free-rolling rear wheel. The car is not fixed to the 2D plane but mostly resides in it. For this
robot, both are turning and moving forward/backward require coordinating both of the actuators. It is
similar in design to simple robots used in education.

H.3.2 Tasks

Tasks in Safety Gym are mutually exclusive, and an individual environment can only use a single
task. Reward functions are configurable, allowing rewards to be either sparse (rewards only obtained
on task completion) or dense (rewards have helpful, hand-crafted shaping terms). Task details are
shown as follows.

Goal: Move the robot to a series of goal positions. When a goal is achieved, the goal location is
randomly reset to someplace new, while keeping the rest of the layout the same. The sparse reward
component is attained on achieving a goal position (robot enters the goal circle). The dense reward
component gives a bonus for moving towards the goal (shown in Figure 5).

Button: Press a series of goal buttons. Several immobile “buttons” are scattered throughout the
environment, and the agent should navigate to and press (contact) the currently-highlighted button,
which is the goal button. After the agent presses the correct button, the environment will select and
highlight a new goal button, keeping everything else fixed. The sparse reward component is attained

43

Environment CPO TRPO-L PPO-L FOCOPS CUP
Safexp-PointGoal1-v0 Return 21.29± 3.49 19.23± 1.45 16.17± 5.89 12.46± 1.49 23.74 ± 0.12

Cost limit (25.0) Constraint 39.00± 5.19 28.20± 5.21 21.82± 6.31 34.67± 2.62 24.74± 0.91
Safexp-PointButton1-v0 Return 17.69± 1.22 5.39± 1.02 4.74± 2.73 8.36± 0.34 19.52 ± 1.38

Cost limit (25.0) Constraint 69.61± 8.29 25.15± 4.88 30.37± 7.58 18.56± 1.31 26.67± 1.84
Safexp-CarGoal1-v0 Return 33.00 ± 0.00 17.78± 2.34 19.93± 1.13 17.73± 3.50 27.41± 1.80

Cost limit 25.0) Constraint 30.50± 1.44 23.00± 4.11 29.64± 4.79 25.50± 1.43 30.81± 1.60
Safexp-CarButton1-v0 Return 5.80± 1.06 0.48± 0.15 0.41± 0.13 9.47± 1.67 12.12 ± 1.91

Cost limit (25.0) Constraint 93.88± 13.90 23.17± 9.76 16.23± 15.55 19.60± 1.52 29.41± 0.40

Table 4: Average results for CPO, PPO-L, TRPO-L, FOCOPS, CUP over 10 seeds after 500 iterations
on Safety-Gym. The agent interacts with the environment 5000 times per iteration. Constraint limits
are in brackets under the environment names.

0 100 200 300 400 500
Epoch

0

250

500

750

1000

1250

1500
Av

er
ag

eE
pR

et
Ant-v3

=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

50

60

70

80

90

100

Av
er

ag
eE

pC
os

t

Ant-v3

=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

0

200

400

600

800

1000

1200

1400

Av
er

ag
eE

pR
et

Hopper-v3
=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

70

80

Av
er

ag
eE

pC
os

t

Hopper-v3

=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

100

200

300

400

500

600
Av

er
ag

eE
pR

et

Humanoid-v3
=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
eE

pC
os

t

Humanoid-v3

=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
eE

pR
et

HumanoidCircle
=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

10

20

30

40

50

Av
er

ag
eE

pC
os

t

HumanoidCircle

=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

10

0

10

20

30

40

Av
er

ag
eE

pR
et

Swimmer-v3

=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

0 100 200 300 400 500
Epoch

20

30

40

50

60

70

80
Av

er
ag

eE
pC

os
t

Swimmer-v3
=0.05
=0.1
=0.15
=0.2
=0.25
=0.3

Figure 7: Performance with respect to penalty factor ε appears in Algorithm 1.

on pressing the current goal button. The dense reward component gives a bonus for moving towards
the current goal button. We show a visualization in Figure 6).

H.4 Discussions

Results of Figure 7 show that the performance of CUP is still very stable for different settings of ε.
Additionally, the constraint value of CUP also still fluctuates around the target value. The different
value achieved by CUP in different setting ε is affected by the simulated environment and constraint
thresholds, which are easy to control

The results of Table 4 show that the proposed CUP significantly outperforms all the baseline algo-
rithms except on the Safexp-CarGoal1-v0 task. Notably, on the Safexp-PointButton1-v0 task, CUP
achieve 21.27 ± 1.42 within the safety region, while the best baseline algorithm is CPO that only
obtains a reward of 17.69± 1.22 but it violates the cost limit 25 more than a value of 44. This result
is consistent with the result of Figure 2. Besides, from Table 4, we know although CPO achieves a
reward of 33± 00 significantly outperforms the proposed CUP in Safexp-CarGoal1-v0, CPO needs a
cost 30.50± 1.44 higher than CUP.

44

	Introduction
	Preliminaries
	Policy Gradient and Generalized Advantage Estimator (GAE)
	Safe Reinforcement Learning

	Generalized Policy Performance Difference Bounds
	Some Additional Notations
	Main Results

	CUP: Constrained Update Projection
	Algorithm
	Practical Implementation

	Related Work
	Local Policy Search and Lagrangian Approach

	Experiment
	Evaluation CUP and Comparison Analysis
	Sensitivity Analysis for Hyper-Parameters Tuning

	Conclusion
	Notations
	Matrix Index
	Key Notations of Reinforcement Learning
	Value Function and Dynamic System of MDP.
	Extend them to -version.
	 TD error w.r.t. any function ().

	Additional Discussion about Related Work
	CPO AchiamHTA17
	PCPO yang2020projection
	FOCOPS zhang2020first

	Constrained Update Projection Algorithm
	Practical Implementation of Performance Improvement
	Sample-based Performance Improvement
	Clipped Surrogate Objective
	Learning from Sampling

	Practical Implementation of Projection

	Preliminaries
	Strong Duality via Slater's Condition
	State Distribution
	Objective of MDP
	-Return

	Proof of Theorem 1
	Proof of Theorem 1
	Proof of Proposition 4
	Proposition 3

	Lemma 2
	Norms Induced by p-norms for Matrix
	Lemma 2

	Proof of Theorem 2
	Experiments
	Algorithm Parameters
	Environment
	Environment 1: Robots with Speed Limit.
	Environment 2: Circle.

	Safety Gym
	Safety Gym Robots
	 Tasks

	Discussions

