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CAPE: CHANNEL-ATTENTION-BASED PDE PARAMETER EMBEDDINGS FOR
SCIML - SUPPLEMENTARY MATERIAL

A ADDITIONAL RELATED WORK

Parameter Embedding There has been an interest to put additional information to DNN. For
example, Transformer-type models take into account the information of the position of words in the
sentence using positional encoding (Vaswani et al., 2017; Shaw et al., 2018; Huang et al., 2018).
In the case of data generation, cGAN (Mirza & Osindero, 2014) accepts a conditional parameter to
the generator network. In the case of SciML, PINN (Cai et al., 2022) and PINO (Li et al., 2021b)
can explicitly take into account PDE parameters during training but cannot change them during the
test time. Recently Message-passing PDE solver (Brandstetter et al., 2022) was proposed in which
PDE parameters and boundary conditions can be freely embedded into the network. However, this
is specialized only for these models, and cannot apply the other models as our proposed method.

B DETAILED TRAINING SETUP

B.1 GENERAL SETUP

As is explained in Sec. 3, we used datasets provided by PDEBench (Takamoto et al., 2022) a bench-
mark for SciML from which we downloaded datasets of the following PDEs: 1D Advection equa-
tion, 1D Burgers equation, and 2D compressible NS equations. For 1-dimensional PDEs, we used
N = 9000 training instances and 1000 test instances for each PDE parameter with spatial resolution:
128 (�x = 1/128) and temporal step-size: �t = 0.05. For 2-dimensional NS equations, we used
N = 900 training instances and 100 test instances for each PDE parameter with spatial resolution:
64⇥ 64 (�x = �y = 1/128) and temporal step-size: �t = 0.05.

Concerning the training, the optimization was performed with Adam (Kingma & Ba) for 100 epochs.
The learning rate was set as 3⇥ 10�3 which is divided by 2.0 every 20 epochs. The mini-batch size
we used was 50 for all the cases. To stabilize the CAPE module’s training in the initial phase,
we empirically found it is a little better if we have a warm-up phase during which only CAPE
module is updated. We performed warm-up for the first 3 epochs, which slightly reduce the final
performance fluctuations resulting from the randomness of the initial weights of the network. In the
CAPE module, the kernel size of the depth-wise convolution was set as: 5. In our experiments, we
stacked 3 CAPE modules before providing the output with the BASE networks. Note that the channel
parameter c of the second and 3rd network were set as: 2c. The training was performed on GeForce
RTX 2080 GPU for 1D PDEs and GeForce GTX 3090 for 2D NS equations. For PINO loss, we set
the coefficient 1 following the original implementation.

The hyper-parameters and the BASE network parameters are listed in Tab. 5;

Dimension Model width mode d mode (CAPE) ↵

1D
FNO 36 12 – – –
FNO w.t. CAPE 20 12 64 12 5.7⇥ 10�5

2D
FNO 28 12 – –
FNO w.t. CAPE 20 12 64 9 8.3⇥ 10�5

Dimension Model init features d mode (CAPE) ↵

1D
Unet 32 – – –
Unet w.t. CAPE 32 64 12 5.7⇥ 10�5

2D
Unet 32 – –
Unet w.t. CAPE 30 64 9 8.3⇥ 10�5

Table 5: FNO Network Parameters
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B.1.1 NETWORKS’ SIZES COMPARISON

The networks’ structures of the BASE models are presented in Tab. 5, while the resulting network
size is listed in Tab. 6.

Dimension Model # Parameters

1D
FNO 73K
FNO w.t. CAPE 68K
Unet 2.71M
Unet w.t. CAPE 2.75M

2D
FNO 0.91M
FNO w.t. CAPE 0.82M
Unet 7.8M
Unet w.t. CAPE 7.2M

Table 6: Model Size

B.2 CONDITIONAL MODELLING

Here we provide a more detailed explanation for the conditional models in Sec. 3. In this paper, the
conditional models have the same model structures as the vanilla ones, but we only change the input
data as:

uk 2 RC⇥N1⇥... ! concatenate(uk,�) 2 R(C+1)⇥N1⇥..., (17)

where the PDE parameter are taken as a part of the input by concatenating it to the field data’s new
channel dimension. Although it is possible to consider a more elaborate method, such as performing
an MLP on the PDE parameters, we avoid those cases for simplicity.

B.3 MODIFICATION ON THE MESSAGE-PASSING PDE SOLVERS

In Sec. 3, we consider the Message-Passing PDE Solvers (Brandstetter et al., 2022) as a baseline
model that accepts PDE parameters. For a fair comparison, we are forced to modify the model as
(1) accepting only 1-time step data, (2) adding a case of ”time-window” parameter with 10 for the
decoder. Concerning the first case, the original model assumes to accept sequential data whose time-
step size must be equal to the size of the ”time-window” parameter. For the second modification, we
added a new 1D-convolution layer accepting the ”time-window” parameter equal to 10. The detailed
structure of the new decoder is provided in Tab. 7.

Module in-channel out-channel kernel size stride

1D Conv-1 1 8 18 5
1D Conv-2 8 1 14 1

Table 7: Decoder CNN structure for Message-Passing PDE Solvers

C DISCUSSION OF RESULTS FOR THE PINO LOSS

Reason why PINO loss does not work The PINO loss function is an emulation of the PINO loss
function using ML’s output. For example, the PINO loss function of the 1D Advection equation case
is:

LPINO =
un+1

j � un�1

j

2�t
� �F�1(ikF(u)). (18)

On the other hand, the usual spectral method solves the equation as:

ũn+1

j = un�1

j + 2�t�F�1(ikF(u)). (19)
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By substituting Eq. 19, Eq. 18 reduces to:

LPINO =
un+1

j � ũn+1

j

2�t
. (20)

This shows that the PINO loss function penalizes the machine learning model prediction to be close
to the spectral method prediction. However, in general, the classical direct simulation methods
have to use the time-step size �t restricted by the theoretical stability condition, such as the CFL
condition. And the prediction ũn+1

j becomes completely wrong if the used �t does not satisfy
the stability condition, resulting in the PINO loss function leading to a completely harmful effect
for the ML models. In our experiments, �t = 0.05 is larger than the time step demanded by the
stability condition, e.g., �t < �x/� ⇠ 0.0025 if we set �x = 1/128,� = 1. So, we consider
that our experiment result showing worse error from PINO loss function is a natural result from this
consideration.

D DETAILED ABLATION STUDY RESULTS

D.1 PDE PARAMETER DEPENDENCE STUDY

� 0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0
PDE type

Advection BASE 0.716 0.700 0.638 0.680 0.714 0.721 0.700 0.729
CAPE 0.846 0.056 0.040 0.035 1.218 0.046 0.049 3.300

⌫ 0.001 0.002 0.004 0.007 0.01 0.02 0.04 0.07 0.1
PDE type

Burgers BASE 0.223 0.216 0.218 0.201 0.198 0.173 0.138 0.134 0.124
CAPE 0.185 0.179 0.167 0.155 0.155 0.138 0.127 0.106 0.107

⌫ 0.2 0.4 0.7 1.0 2.0 4.0
PDE type

Burgers BASE 0.168 0.335 0.458 0.674 1.626 2.460
CAPE 0.081 0.094 0.113 0.104 0.079 0.253

D.2 CURRICULUM STRATEGY STUDY

E DETAILED DESCRIPTION OF THE CURRICULUM STRATEGY

Fig. 6 plots the profile of Eq. 12 in terms of the epoch number where the maximum epoch number
is assumed 100. We also provided the detailed algorithm of our curriculum strategy in terms of
epochs and temporal steps in Algorithm 1. In our all the calculation with curriculum strategy, we
set: � = 0.2.

F ABLATION STUDY FOR CAPE MODULE STRUCTURE

In this section, we provided results of ablation study for our CAPE module’s internal structure to
provide an insight of the inductive bias of CAPE. In this study, we performed training without
(1) spectral-convolution, (2) 1 ⇥ 1-convolution, and (3) depthwise-convolution. The results were
provided in Tab. 9 that indicates that all the 3-convolution layers and LayerNormalization play im-
portant roles on the error, but the spectral-convolution has the strongest impact. However, it also
shows that the important factor depends on PDEs because of the difference of PDE natures (e.g.,
advection, diffusion, or non-linear system equations, and so on). It also indicates that our selection
always shows a better result, though not always the best.
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⌘ = ⇣ 10�8 0.001 0.004 0.007 0.01 0.04 0.07 0.1
PDE type

2D NS (M = 0.1) BASE 0.508 0.500 0.488 0.491 0.529 1.447 3.132 5.228
CAPE 0.516 0.487 0.482 0.462 0.486 0.965 1.692 2.582

2D NS (M = 1.0) BASE 0.579 0.545 0.495 0.471 0.453 0.635 1.141 1.962
CAPE 0.569 0.544 0.501 0.485 0.474 0.494 0.585 0.779

PDE Model Ablation nMSE

Advection FNO
curriculum strategy 0.04
pure Autoregressive 0.11 (+0.07)
pure Teacher-Forcing 0.04 (±0.00)

Advection Unet
curriculum strategy 0.11
pure Autoregressive 0.21 (+0.10)
pure Teacher-Forcing 0.10 (�0.01)

Burgers FNO
curriculum strategy 0.13
pure Autoregressive 0.16 (+0.03)
pure Teacher-Forcing 0.13 (+0.00)

Burgers Unet
curriculum strategy 0.45
pure Autoregressive 0.92 (+0.47)
pure Teacher-Forcing 0.75 (+0.30)

2D NS FNO
curriculum strategy 8.0⇥ 10�1

pure Autoregressive 1.3⇥ 10+0 (+0.5)
pure Teacher-Forcing 3.2⇥ 10+0 (+2.4)

2D NS Unet
curriculum strategy 7.0⇥ 10�1

pure Autoregressive 1.0⇥ 10+0 (+0.3)
pure Teacher-Forcing 1.0⇥ 10+0 (+0.3)

Table 8: Ablation study for the Advection, Burgers and 2D CFD equations with FNO as BASE
model.
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Figure 6: A plot of an instance of the function defined in Eq. 12 where we set: � = 0.25.
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Algorithm 1 Algorithm of the curriculum training strategy
Input model parameters ✓, training epoch number n, total training epoch number M , Training
samples: {ui}i=0,··· ,N , temporal index k, final time step of the training sample N , ✏ is the random
noise.

1: for n = 0 to M do

2: Calculate ktrans following Eq. 12,
3: for k = 0 to N � 1 do

4: if k  ktrans then

5: ũk+1 = NN(ũk + ✏;✓)
6: else

7: ũk+1 = NN(uk + ✏;✓)
8: end if

9: Lk  MSE(ũk+1,uk+1)
10: end for

11: ✓  Optimizer (
PN

k=1
Lk)

12: end for

PDE model Ablation nRMSE

1D Advection FNO BASE 0.04
w/t Spectral Convolution 0.06 (+0.02)

w/t 1⇥ 1 Convolution 0.05 (+0.01)
w/t Depthwise Convolution 0.05 (+0.01)
w/t LN 0.03 (-0.01)

1D Burgers FNO BASE 0.13
w/t Spectral Convolution 0.12 (-0.01)
w/t 1⇥ 1 Convolution 0.13 (+0.00)
w/t Depthwise Convolution 0.13 (+0.00)
w/t LN 0.08 (-0.05)

2D CFD FNO BASE 0.80
w/t Spectral Convolution 1.03 (+0.23)
w/t 1⇥ 1 Convolution 0.69 (-0.11)
w/t Depthwise Convolution 0.80 (+0.00)
w/t LN 1.25 (+0.45)

Table 9: Ablation study of CAPE internal Structure.
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