A Ablation Study

BB-ANS (Alice: compress) BB-ANS (Bob: decompress) Bit-Swap (Alice: compress) Bit-Swap (Bob: decompress)
l:l initial extra bits l:l received bitstream D initial extra bits l:l received bitstream
l:’ ——— decode 21 with ¢, (21[x) l:’ — decode 22 with p(2z2) —— decode Z1 with ¢,(z1|x) l:’ — decode 22 with p(2z2)
——— decode 22 with ¢4 (22|z1)] — decode 1 with py(z1]z2) [— encode x with py(x|z1) [— decode z1 with p(z1]22)
[——— encode x with py(x|z1) ——— decode X with py(x|z1) [l — decode 22 with g¢(22|21) [0 — encode 22 with g(22|21)
[l— encode 21 with py(z1(2z2) [——— encode 22 with q,(z2|z1) [T} encode 21 with po(z1|z2) — decode x with pg(x|z1)

|:|« encode 22 with p(z2) l:}— encode Z1 with ¢, (21/x) E encode 22 with p(z2) D~— encode 21 with ¢, (21|x)
Figure 1: BB-ANS V.S. Bit-Swap

Number of Latent Variables: The difference between how BB-ANS [1]] and Bit-Swap [2] compress
is shown in Figure[I] We can see these two compressors are only different when there is more than
one latent variable, and by utilizing encoded bitstreams from previous latent variables, Bit-Swap
can reduce the cost of initial bits significantly. We carry out experiments on CIFAR-10 and keep
the aggregation method constant. We can see in Table[T} Bit-Swap performs better with more latent
variables. But Bit-Swap with eight latent variables is still worse than BB-ANS with two.

Aggregation Methods: We also evaluate how different aggregation methods affect the classification

LLENTE

accuracy, shown in the right hand side of Table[I] We aggregate two images by “average”, “‘mini-
mum”, “maximum”, “concatenation”, and “greyscale+average”. For “concat”, the actual operation is
that we compress one image after another in a way that the compressed bitstream of the first image
could be used as the “extra” bits for the second image. “gs+avg” means we use greyscale of the
image and then average pixel values. Obviously, “greyscale” is not a way of aggregation, but we
notate it in the table this way for simplicity and comparison, and also to stress that this operation is
only used during compression. That is, the generative model is trained on the original images instead
of on greyscale images. By applying simple image processing methods during compression, we find
that combining aggregation with image manipulation can be effective as no compressor needs to
be changed, and thus no retraining for generative models is needed. We also plot their bitrate vs.
classification accuracy for various aggregation methods. Figure[2]shows “concat” for images is an
outlier - lower bitrate with low accuracy. We will show in Appendix [B|that “concat” disqualifies
BB-ANS and Bit-Swap from being a normal compressor. Please note the special case of “concat”
doesn’t apply to other compressors like gzip which treat images as bytes in the first place.

Bit-Swap [2] achieves the new state of the art

bitrate but why doesn’t it surpass BB-ANS for

classification? One of the reasons that Bit-Swap T BBANS
achieves a better compression rate than BB-ANS 0w gs+avg Bit-Swap
is because Bit-Swap requires fewer initial bits,
details shown in Appendix [F| However, initial
bits can only be amortized when multiple data
points need to be compressed. But in our appli-
cation, at most two data points need to be com-
pressed sequentially. This leads us to choose the
net bitrate, which excludes the length of the ini-
tial bits, and makes Bit-Swap less advantegeous.
Theoretically, net bitrate should be the same for e v oneat
both methods. However, empirically we can see Net Bitrate
in Figure 2] Bit-Swap uses slightly more net bits

than BB-ANS. Figure 2: Bitrate versus Accuracy on CIFAR-10
with various aggregation methods.

gs+avg avg

o
@
&

avg

min

Accuracy

.
max min
0.25

o
concat max

5.0 55 6.0

Although we cannot draw a definite conclusion,
it appears that the more a compressor can com-
press, the more accurate of classification NPC
can obtain with the compressor. We can see that given a compressor, there is a correlation between
bitrate and accuracy even with different aggregation methods, except for aggregation methods that
alter a compressor to be not normal (e.g., “concat’).

Other Alternatives: In this work, we don’t go thoroughly through all the state-of-the-art compressors,
but only focus on the VAE-based lossless compressors. For this specific category, there are already

latent variables z 1 2 8 aggregation | gs+avg | avg min max | concat
Bit-Swap 0.226 | 0.339 | 0.348 Bit-Swap 0.369 | 0.339 | 0.291 | 0.233 | 0.207
BB-ANS 0.226 | 0.369 | 0.356 BB-ANS 0.408 | 0.369 | 0.284 | 0.283 | 0.235

Table 1: Effects of the number of latent variables and aggregation method.

numerous important factors: the choice of architectures, the choice of the number of latent variables,
the choice of the hierarchy topology (e.g., asymmetrical tree structure or symmetrical one) and the
choice of discretization method. Beyond this line of compressors, deep learning based compressors
discussed in Section 3.3 can also be used under our framework.

Beyond compressors, aggregation methods also cause diverging differences in the final classification
accuracy. We cover a few basic ones but there are other non-training-required aggregation methods
like linear blend operator and even completely different aggregation strategies (e.g., using conditional
VAE). On colored real-world images like CIFAR-10, image manipulation can be another easy and
effective way to improve the accuracy. In effect, “greyscale” can be viewed as “lossy compression”
and this opens up the question of how lossy compressors perform under NPC framework.

B Normal Compressor

Definition 1 (Normal Compressor). A compressor is normal if it satisfies, up to an additive O(logn)
term, where n. means the maximal binary length of an element of).

1. Idempotency: C(zx) = C(z) and C(e) = 0 where € is the empty string
2. Symmetry: C(zy) = C(yx)
3. Monotonicity: C(xzy) > C(x)

4. Distributivity: C(xy) + C(z) < C(xz) 4+ C(yz)
Definition 2 (Metric). A distance function D : Q x Q0 — R is a metric if it satisfies the following

three criteria for any .y, z € S, where §) is a non-empty set, R represents the set of non-negative
real number:

1. Hdentity: D(z,y) =0iffx =y
2. Symmetry: D(z,y) = D(y, x)

3. Triangle Inequality: D(x,y) < D(x,z) + D(z,y)

Definition 3 (Admissible Distance). A function D : Q x Q — R is an admissible distance if
for every pair of objects x,y € Q, the distance D(x,y) is computable, symmetric and satisfies the

density condition 2-Ply) < 1.

Cilibrasi and Vitanyi [3] formally prove that if the compressor is normal, NCD is a normalized
admissible distance satisfying the metric inequalities, which is shown in Definition [2] Cebridn
et al. [4] systematically evaluate how far real world compressors like gzip, bz2, PPMZ can satisfy
the idempotency axiom. Here we empirically evalute all 4 axioms on MNIST with the BB-ANS
compressor. We randomly take 100 samples and plot C'(-) on LHS as x-axis, C'(-) on RHS as
y-axis. For simplicity, we use one latent variable, under which BB-ANS equals Bit-Swap. As shown
in Figure [3) BB-ANS satisfies monotonicity, symmetry and distributivity. However, it fails on the
identity axiom, with C'(zz) ~ 1.988C/(x). Unlike gzip, bz2, or 1zma, BB-ANS doesn’t treat the
concatenation of two images as a sequence of bytes but images, similar to PNG and WebP, making it
hard to satisfy identity axiom. By default, the aggregation method refers to “concatenation”. But
simple concatenation does not perform well. Practically, BB-ANS fails the identity test when using
“concatenation”. Without changing the compressor, is it still possible to satisfy the above conditions
so that NCD can be used as a normalized admissible distance metric?

We can change the aggregation method. We investigate whether BB-ANS with average can satisfy
the above conditions. Obviously, identity and symmetry axioms can hold, as C(avg(z,z)) =
C(%£2) = C(z). We empirically evaluate monotonicity and distributivity, and find that they are both

satisfied with “average”. Figure []illustrates that C(avg(z,y)) > C(z) and C(avg(z,y)) + C(z) <
C(avg(z, z)) + C(avg(y, z)) always hold. Given the compressor is normal under “average” function,
we now prove NCD is an admissible distance metric.

Definition 4. Ler D be an admissible distance. D% (z) is defined as D" (z) = max{D(x,z) :
C(z) < C(2)}, and D (z,y) is defined as D" (z,y) = max{D*(z), D" (y)}

Lemma 1. If C is a normal compressor, then E.(x,y) + O(1) is an admissible distance, where
E.(z,y) = C(zy) — min{C(z) — C(y)} is the compression distance.

Lemma 2. If C is a normal compressor, then ET (z,y) = max{C(z),C(y)}

Theorem 1. If the compressor is normal, then the NCD is a normalized admissible distance satifying
the metric (in)equalities.

Proof. Lemma(l]and Lemma 2] show that NCD is a normalized admissible distance. We now show
how NCD satisfies the metric (in)equalities.

1. For identity axiom,

Clavg(z, z)) - C(x)
C(x)

NCD(z,z) = =0. (1)

2. For symmetry axiom,

C(avg(z,y)) — min{C(x),C(y)}
max{C(z), C(y)}

NCD(z,y) = = NCD(y, z). 2

3. For triangle inequality, without loss of generality, we assume C(z) < C(y) < C(z2).
As NCD is symmetrical, there are three triangle inequalities that can be expressed
by NCD(z,y),NCD(y,z),NCD(z,z). For simplicity, we prove one of them,
NCD(z,y) < NCD(z,z) + NCD(z,y) as the procedure for the other two is sim-
ilar. Since BB-ANS is a normal compressor under “avg”, we have distributivity:
C(avg(z,y))+C(z) < C(avg(x, z))+C(avg(z,y)). Subtracting C(z) from both sides and
rearraging results in C(avg(z,y)) — C(z) < C(avg(x, 2)) — C(z) + C(avg(z,y)) — C(2).
Dividing by C(y) on both sides, we have

Clavg(z,y)) — C(x)
C(y)

We know LHS< 1 and RHS canbe < 1 or > 1.

Cl(avg(z,2)) — C(x) + Clavg(z,y)) — C(2)
C(y) '

IA

3)

(a) RHS< 1: Let C(z) = C(y) + A; adding A to both the numerator and denominator of
RHS increases RHS and makes it closer to 1.

Cave(w.y) ~ Cla) _ Clavg(s,2)) = Clo) | Clave(zp) ~C)+4
C(y) - Cly)+A (y) +A
_ Clavg(z,2) - Clz) | Clavg(z,y)) — C(y)
=) *) - O

(b) RHS> 1: The procedure is similar to the case when RHS< 1. The difference is that
adding A to both numerator and denominator makes RHS decrease instead of increase.
But RHS cannot decrease less than 1. Thus, we still have

Clavg(z,y)) = C(z) _ Clavg(,2)) - Clx) | Clave(z,y)) = Cy)
Cly) - C(z) (2) '

(6)

O

Identity Symmetry

ol °
550 Py w .
o -
o il
P 450 &%
450 ?;% (o
ég 400 ‘.,’.v,f.v
= 400 3 = <%
E ":%‘ . g 350 .8.0
Q 350 & O és‘
s &
A
200) 300 P
<
rJ L]
250 s 250
&
(.
.
200 200
150
150 200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
C(x) Clxy)
Monotonicity Distributivity

1008

932

856

N
400 > 780
o~ §]
>
5 350 + 704
© N
X
200 G 628
250 552 °
476
200
400
200 250 300 350 400 450 500 550 400 476 552 628 704 780 856 932 1008
C(x) Clxy) +C(2)
Figure 3: BB-ANS Normal Compressor Test for “concatenation”
Monotonicity Distributivity
850
L
800 1250
750 1200 » (]
700 a 1150
650 1100
600 hi ~— 1050
N
550 b 1000 L]
: U 950
X 50 + .
U 450 "\T 90
400 5 850
L4 © 800
350
750
300 L2
700
250
650
200
600
1501 50 200 250 300 350 400 450 550 600 650 700 750 800 850 900 950
C(x) Clxy) + C(2)

Figure 4: BB-ANS Normal Compressor Test for “average”

C Training Details

For both CNN and VGG, we tune hyperparameters on a validation set to obtain the optimized
performance. The reason that we use VGGI11 instead of VGG16 or VGG19 is because VGG11
performs the best in the low data regime in our experiments. For CNN, we first normalize MNIST,
FashionMNIST and CIFAR-10. We use batch size = 4, epoch number = 14, Adadelta [3] as
the optimizer with learning rate = 1, decaying learning rate by v = 0.7 every step for MNIST
and FashionMNIST. Some of hyperparameters are from PyTorch’s official MNIST example. We
use the same hyperparameters except we increase the number of epochs to 20. For VGGI11 on

https://github.com/pytorch/examples/tree/master/mnist

MNIST and FashionMNIST, we use epoch number = 20 when given 50 samples per class, and use
epoch number = 40 when given less. We use Adam [6] with learning rate = 0.0001 as the optimizer,
and batch size = 4. For CIFAR-10, we use learning rate = 0.00001, epoch number = 80.

For MeanTeacher and VAT, we follow Zhang et al. [[7]]’s implementation| and hyperparameter settings.
We use WideResNet [8] with depth = 28 and widen factor = 2 as the architecture for all three
datasets and iterate 60,000 for MNIST and FashionMNIST, and iterate 200,000 for CIFAR-10. SGD
with momentum is used for all three datasets, with learning rate = 0.03, momentum = 0.9.

For latent variable models used in this paper, we follow the training procedure and hyperparameters
in Kingma et al. [2] — four ‘Processing’ Residual blocks at the beginning of the inference model and
the end of the generative model; eight ‘Ordinary’ Residual block in total for all latent layers in both
inference model and generative model. The Dropout [9] rate is 0.2 for MNIST and FashionMNIST,
0.3 for CIFAR-10. The learning rate for all datasets is 0.002 with Adam optimizer. Dimension of
latent variables for MNIST and FashionMNIST is 1 x 16 x 16 while dimension of latent variables
for CIFAR-10is 8 x 16 x 16. During kNN, we use k& = 2 for MNIST and FashionMNIST and £ = 3
for CIFAR-10.

We use one NVIDIA Tesla P40 GPU for training and compression. For pairwise computation in
50-shot setting, it takes roughly ten hours to calculate distance matrix on MNIST and FashionMNIST;
it takes about thirty hours for CIFAR10. But once the distance matrix is calculated, evaluation on
5-shot or 10-shot just takes seconds. For both CNN and VGG, it takes about half an hour to train on
50-shot for one experiment. For VAT and MT, we need to re-train for every shot setting. For MNIST
and FashionMNIST it takes about three hours to run one experiment in a single shot setting and for
CIFARIO it takes about twelve hours. The time that VAT and MT take positively relate to the number
of iterations, which makes them slower than our method in the 5- and 10-shot setting but faster in the
50-shot setting.

D Details of ANS

We briefly introduce ANS and show the proof of the optimal code length obtained from ANS. The
essence of ANS is to encode one or more data points into a single natural number, called state s € N.
Depending on different vocabularies and manipulations, there are different variations of ANS (details
can be seen in Duda et al. [10]). We introduce one of them - rANS (range ANS), which is the variant
we use in this paper. The notation we use here is unconventional in order to be consistent with the
main part of the paper.

Let’s notate our state at timestamp ¢ as s; € N, and notate our symbol/message at t as z;, x; € V,
where V' = {0, 1} is the vocabulary set. We have two simple methods to encode a binary sequence
into a natural number bit by bit — s; = 2s;_1 + x; or 8 = S$;—1 + 2™ x;. The former means
appending information to the least significant position while the latter is adding information to the
most significant position. It’s obvious that encoding a new symbol into the most significant position
requires remembering m while encoding in the least significant position only needs the previous state
s¢—1 and new information z;. It’s also easy to decode: depending on whether the current state s; is
even or odd, we not only know if the last encoded symbol z; is 0 or 1, but we can also decode the

state following s;_1 = % ors;_1 =

st—1

The above example illustrates encoding and decoding methods when there are two elements in the
vocabulary with uniform distribution p(0) = p(1) = 3. In this case, it's optimal to scale up s; to two
for both 0 or 1 as we essentially only spend 1 bit per encoded symbol. However, when the probability
is not uniformly distributed, the entropy is smaller, and scaling up by 2 for both symbols will not be
optimal anymore. rANS generalizes the process to any discrete probability distribution and any size
of vocabulary.

Intuitively, scaling up by a smaller factor for a more probable symbol and scaling up by a larger
factor for a less probable symbol will provide us with a more efficient representation. Concretely,
we have a sequence of messages X = (x1,Z2, X3, ..., T,), and a vocabulary V' = {v1, va, vs, ..., Vg },
with size k, z; € V. We also have probability mass distribution of V:: P = {py,, Pvg, Pvsy --s Doy, |-
Correspondingly, let’s define frequency counts F' = {fu,, fvs, fogs s for }» fv; = Pu; X M where

M = Zle fv;- M can be viewed as a multiplier, demonstrating the precision of ANS, which is a
predefined variable in the implementation. We can also get cumulative frequency counts from F'

https://github.com/TorchSSL/TorchSSL

as follows B = {by,, by, , bys, .., by, } Where b,, = Z;;ll fv;- Now we get everything we need to
define the encoding function G:

st = G(s5¢-1,2¢),

)

G(sp—1,2¢) = \‘StlJ X M + by, + s;—1 mod f, .

Tt

The procedure can be interpreted as follows: We have various M -sized blocks partitioning natural
number N. Encoding can be viewed as finding the exact location of the natural number that represents
the state, by first finding the corresponding block (“ﬁ—‘lj x M) followed by finding the sub-

range representing that symbol within M (b,) and finding the exact location within that sub-range
(s¢—1 mod f,). The decoding function H (s;) is the reverse of the encoding:

st—1, T = H(sy),
xy = argmax {b,, < (s mod M)}, ®)
s
St—1 = fa, {MtJ + s, mod M — by, .
We first find the precise location within the sub-range using inverse function of cumulative counts
(argmax {b,, < (s mod M)}). With x; we can reverse steps in Equation to get the previous

state. As we can see, ANS decodes in the reverse order of encoding (i.e., last in first out), which
makes it compatible with bits-back argument.

From encoding function, we know that:

M 1
ton = ©)
St—1 fwt Dz,
Encoding a sequence of symbols x results in:
sy 0 (10)
Pz, Pxsy---Px,
Thus, the total coding length is:
- 1
logs,bzlogso—i—Zlog—, (11)

: T
=1 *

where s(refers to the initial state. Dividing by n we will get the average coding length that
approximates the entropy of the data.

E Discretization

ANS is defined for symbols in a finite alphabet; bits-back coding works for discrete latent variables.
However, continuous latent variables have proven to be powerful in many latent variable models. In
order to use those latent variable models for lossless compression, discretizing continuous variables
into discrete ones is a necessary step. Townsend et al. [1]] derives, based on MacKay [11], that
using bits-back coding, continuous latent variables can be discretized to arbitrary precision without
affecting the compression rate. Suppose a probability density function p is approximated using a
number of “buckets” of equal width oz. For any given bucket j, we can know its probability mass
p(z1))oz where zU) is some point in the bucket j. Let’s notate the discrete distribution as P and
Q for both prior and posterior distribution. Then for any given bucket j, P(j) ~ p(z"))oz. The
expected message length with a discretized latent variable is:

p(x|z(j))p(z(j))oz
—Eg@ix) | . . 12
QUi 108 q(z(7)|x)az (12)

The width of buckets oz is cancelled. Therefore, as long as the bins for inference models match the
generative models, continuous latent variables can be discretized up to an arbitrary precision.

In this paper we only consider basic discretization techniques like dividing continuous distribution
into bins with equal width or equal mass. We discretize the prior (top layer) with equal mass and
all subsequent latent layers with equal width. As Equation (I2) shows, ideally we want the dis-
cretization to align between inference models and generative models. However, discretization of
z; ~ po(2zi|zi41) relying on z; ~ g, (2;|z;_1) is not possible without sampling. In the compression
stage, when decoding z;, z;1 is not available and so is py(2z;|2;+1). In the decompression stage, sim-
ilarly, g, (2;|z;—1) is not available for pg(z;|z;+1) to match with. Therefore, we need to sample from
training dataset beforehand to get unbiased estimates of the statistics of the marginal distribution [2].
This process only needs to be done once and can be saved for the future use.

F Initial Bits of BB-ANS and Bit-Swap

The main difference between BB-ANS and Bit-Swap is that BB-ANS requires the sender Alice to
decode z;1 with g4 (2;41|2;) for i from 1 to L — 1 first, and then encode z; with pg(2z;|z;41) for ¢
from 1 to L — 1. While Bit-Swap interleaves this encoding and decoding procedure and applies it
recursively for latent variables, as illustrated in Figure[T] The advantage of Bit-Swap’s procedure is
that, after decoding z1, the bits encoded from x can be used in decoding zs; then bits encoded from
z; can be used for decoding z3. As a result, the initial bits required for Bit-Swap is much less than
BB-ANS. Concretely, for BB-ANS, the minimum initial bits required:

L-1

—log g¢(z1]x) — Zlogq¢(zi+1|zi)‘ (13)

i=1

For Bit-Swap, the minimum initial bits required:

L—1
Po(Zi—1]Zi)

—max (0,loggy(z1|x)) + E max (O,log)
ol G (Zit1]2i)

i=1
1 (14)
< —loggy(z1[x) — Z l0g ¢y (2i+1]2:).
i=1

The initial bits Bit-Swap required is less than BB-ANS, making Bit-Swap reach the optimal compres-
sion rate.

G Hierarchical Latent Variable Models

The hierarchical autoencoder in the paper uses deep latent Gaussian models (DLGM) [12] following
the sampling process based on Markov chains, whose marginal distributions are:

po(x) = / po(x|z1)po(z1)da1,

po(z1) = / po(21|22)po (22)dzs,

15)
po(ZL—1) = / po(zL—1|21)pe(zL)dzL.
Combining the above equations, the marginal distribution of x is:
po(x) = [poCxlzn)pa(m[a2)-.0(m1) o paar o (16)

Accordingly, inference models g4(2z;+1|2z;) need to be defined for every latent layer. ELBO that
includes multiple latent variables then becomes:

Eq,(-1x) [log pe(x, 21.1.) — log q4(21.[x)]. A7)

In this paper, we use Logistic distribution (x = 0,0 = 1) as the prior p(zr,), and use condi-
tional Logistic distribution for both inference models ¢4 (2;+1|2;), g4 (21|x) and generative models
po(2i|Zi+1). These distributions are modeled by neural networks, which is stacked by Residual
blocks [13]] as hidden layers. More architecture details can be referred to Kingma et al. [2], where
they also discusses other possible topologies regarding to hierarchical latent variable models.

H A Brief Proof of Universality of Information Distance

Information Distance F(x,y) refers to the length of the shortest binary program generated by
universal prefix Turing machine, that with input x computes y, and with input y computes z. It’s
shown that E(z,y) = max{K (z|y), K (y|x)}. We now prove Theorem 1, based on Lemma 3] [14].

Lemma 3. For every upper-semicomputable function f(x,y), satisfying Zy 2= F@y) <1, we have
K(ylz) < f(z,y).

To prove that E(z,y) is a metric, we show it satisfies metric (in)equalities. We can infer the non-
negativity and symmetry directly from the definition E(x,y) = max{K (z|y), K (y|x)}. For triangle
inequality, given z,y, z, without loss of generality, let E(x,z) = K(z|x). By the self-limiting
property, we have

E(z,z) = K(z|z) < K(y, 2|z) < K(y|z) + K(z]z,y)

(18)

< K(ylz) + K(zly) < E(z,y) + E(y, 2).

To prove E(x,y) is admissible, we show it satisfies density requirement:
Z 2= E(@y) < Z 2~ Kle) < 1, (19)

yiyF£T YyiyF£T
The second inequality is due to Kraft’s inequality for prefix codes.

To prove the minimality, as for every admissible distance metric D(x, y), it satisfies Y. 2P@¥) < 1.
YYFET
According to Lemma 3] we have K (y|z) < D(z,y) and K (z|y) < D(y, z).

I Potential Negative Social Impact

We propose a general framework for classification and clustering tasks with minimum assumption
about the dataset. We don’t foresee any negative social impact itself. However, our framework uses
generative models for their explicit density estimation and the development of generative models may
be used by people with ulterior motives to generate fake data.

References

[1] James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent
variables using bits back coding. In International Conference on Learning Representations,
2019.

[2] Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding for
lossless compression with hierarchical latent variables. In International Conference on Machine
Learning, pages 3408-3417. PMLR, 2019.

[3] Rudi Cilibrasi and Paul MB Vitanyi. Clustering by compression. [EEE Transactions on
Information theory, 51(4):1523-1545, 2005.

[4] Manuel Cebrian, Manuel Alfonseca, and Alfonso Ortega. Common pitfalls using the normalized
compression distance: What to watch out for in a compressor. Communications in Information
& Systems, 5(4):367-384, 2005.

[5] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /ICLR
(Poster), 2015.

[7] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo
labeling. Advances in Neural Information Processing Systems, 34, 2021.

[8] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

[10] Jarek Duda, Khalid Tahboub, Neeraj J Gadgil, and Edward J Delp. The use of asymmetric
numeral systems as an accurate replacement for huffman coding. In 2015 Picture Coding
Symposium (PCS), pages 65-69. IEEE, 2015.

[11] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

[12] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278-1286. PMLR, 2014.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[14] Charles H Bennett, Péter Gacs, Ming Li, Paul MB Vitanyi, and Wojciech H Zurek. Information
distance. IEEE Transactions on information theory, 44(4):1407-1423, 1998.

	Ablation Study
	Normal Compressor
	Training Details
	Details of ANS
	Discretization
	Initial Bits of BB-ANS and Bit-Swap
	Hierarchical Latent Variable Models
	A Brief Proof of Universality of Information Distance
	Potential Negative Social Impact

