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LOVD: Large-and-Open Vocabulary Object Detection
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1 BUILDING LARGE VOCABULARY
The number of object categories in both COCO and LVIS is limited
for large-and-open vocabulary evaluation. To augment the existing
vocabulary for these datasets, we apply two principled criteria: (1)
The newly added categories must not overlap or be synonymous
with any categories of vocabulary in the validation set. (2) They
should be absent from all images in the validation set.

We initiate our selection by extracting over 10,000 categories
from the OpenImages and ImageNet-21K databases as our starting
point. These categories are encoded together with the vocabulary
from the validation set using the CLIP text encoder to filter out those
with significant semantic similarities. A multi-modal large language
model then examines the validation set images with prompts like
’Is there a <category>?’. Categories that are positively identified
undergo a manual re-examination and are discarded if confirmed.
The final step involves a thorough manual refinement to create a
refined list of 2,000 categories.

2 MORE RESULTS ON LVIS
The quantitative results of RegionCLIP, enhanced by integrating
LOVD, are detailed in Table 1. This integration on the LVIS bench-
mark dataset results in substantial performance enhancements for
RegionCLIP.

Method LOV OV DR (%)

RegionCLIP [5] (RN50) 12.9 14.2 91.5
RegionCLIP [5] (RN50) + LOVD 15.5 16.3 95.1

RegionCLIP [5] (RN50x4) 17.9 19.7 91.0
RegionCLIP [5] (RN50x4) + LOVD 21.1 22.0 96.0

Table 1: More results on the LVIS dataset for large-and-open
vocabulary setting. We report mAP as the evaluation metric.

3 SCALE OF VOCABULARY
We show more detail result of introducing a variable size of large
vocabulary on model performance, as depicted in Table 2. As we
incrementally increase the count of extra categories from 0 to 2000,
the performance of OVD methods consistently worsens. However,
our LOVD model exhibits negligible impact, indicating superior
adaptability and robustness in handling the increase of potentially
distracting categories in real-world scenarios.
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