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Abstract

We consider regret minimization for Adversarial Markov Decision Processes
(AMDPs), where the loss functions are changing over time and adversarially
chosen, and the learner only observes the losses for the visited state-action pairs
(i.e., bandit feedback). While there has been a surge of studies on this problem
using Online-Mirror-Descent (OMD) methods, very little is known about the
Follow-the-Perturbed-Leader (FTPL) methods, which are usually computationally
more efficient and also easier to implement since it only requires solving an offline
planning problem. Motivated by this, we take a closer look at FTPL for learning
AMDPs, starting from the standard episodic finite-horizon setting. We find some
unique and intriguing difficulties in the analysis and propose a workaround to
eventually show that FTPL is also able to achieve near-optimal regret bounds in
this case. More importantly, we then find two significant applications: First, the
analysis of FTPL turns out to be readily generalizable to delayed bandit feedback
with order-optimal regret, while OMD methods exhibit extra difficulties (Jin et al.,
2022). Second, using FTPL, we also develop the first no-regret algorithm for learn-
ing communicating AMDPs in the infinite-horizon setting with bandit feedback
and stochastic transitions. Our algorithm is efficient assuming access to an offline
planning oracle, while even for the easier full-information setting, the only existing
algorithm (Chandrasekaran and Tewari, 2021) is computationally inefficient.

1 Introduction

Markov Decision Processes (MDPs) have long been used to model problems in reinforcement
learning, where the agent takes sequential actions in an environment, leading to transitions among
different states and observations on loss (or reward equivalently) signals. While the classical MDP
model assumes a fixed loss function, there has been increasing interest in studying regret minimization
under non-stationary or even adversarial loss functions via the Adversarial MDP (AMDP) model,
starting from the work of Even-Dar et al. (2009).

Similar to other regret minimization problems, there are typically two categories of algorithms for
AMDPs: those based on the Follow-the-Perturbed-Leader (FTPL) framework (Even-Dar et al., 2009;
Neu et al., 2010, 2012; Chandrasekaran and Tewari, 2021) and those based on the Online-Mirror-
Descent (OMD) or the closely related Follow-the-Regularized-Leader (FTRL) framework (Zimin
and Neu, 2013; Rosenberg and Mansour, 2019a,b; Jin et al., 2020, 2021, 2022). FTPL methods are
usually computationally more efficient and easier to implement as it only requires solving an offline
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Table 1: An overview of the proposed algorithms/results and comparisons with related works.

Setting Transition | Feedback Algorithm Regret” Method | Effi.”
Known Zimin and Neu (2013) N@(H\/m) OMD v/
Bandit This work (Theorem 4) (0] ~( H**\/SAK) FTPL v
Jin et al. (2020) O(H?SVAK) OMD v
I?%;?i‘gn This work (Theorem 5) _ O(H2SVAK) FIPL | v
AMDPs | o Delayed HEDGE (Jin et al., 2022) E?(HZSW + HY*\/SD) OMD X
Bandit & | Delayed UOB-FTRL (Jin et al., 2022) O(H?SVAK + H/*SAVD) OMD v
Delayed | pelayed UOB-REPS (Jin etal., 2022) | O(H2SVAK + H/4(SA)Y1v/®D) | OMD | v
This work (Theorem 6) O(H2SVAK + H**\/SAD) FTPL | v
Even-Dar et al. (2009) (5(7—2 ﬁ) (Ergodic) OMD v
Full-info Chandrasekaran and Tewari (2021) (5(5’ 4\/T) (Deterministic) FTPL v
Chandrasekaran and Tewari (2021) 1) (DZ\/57T) (Commu) FTPL X
Infinite- Neu et al. (2014) O(V7T3AT) (Ergodic) oMD | v

horizon Known — -

AMDPs Dekel and Hazan (2013) O(S3AT?/*) (Deterministic) OMD v
Bandit This work (Theorem 7) O(AY2(SD)¥*T*/*) (Commu) FTPL | /!
This work (Theorem 8) O(AY3(SDT)*?) (Commu) OMD X
Dekel et al. (2014) Q(S/>T*>) (if only Commu) — —

“Here, S and A are the number of states and actions respectively, K is the number of episodes, T is the
total number of steps, D is the total amount of delay, 7 is the mixing time of an ergodic MDP, and D is the
diameter of a communicating MDP. Several related works use different notations from ours, and their regret
bounds have been converted based on our notations. For infinite-horizon AMDPs, the extra assumptions are
listed after the regret bounds, with “Ergodic” standing for ergodic MDPs, “Deterministic” standing for MDPs
with deterministic transitions, and “Commu” standing for communicating MDPs (the weakest assumption).

bThis column indicates the algorithm’s efficiency: v means polynomial (in all parameters) time complexity,
X means Q(AS) time complexity, and v'! means efficient assuming access to a planning oracle (that returns the
best policy given all the MDP’s parameters). Note that FTPL-based algorithms are usually easier to implement
compared to OMD/FTRL-based ones (both treated as OMD-based in this table as they are quite similar).

optimization problem (a.k.a. a planning problem in the MDP literature). In contrast, OMD/FTRL
methods require solving convex optimization problems over a complicated occupancy measure space.

Despite its computational advantages and ease in implementation, FTPL methods are much less
studied (especially for learning AMDPs) since they are harder to analyze, less versatile, and are
believed to suffer worse regret compared to OMD/FTRL methods. A recent work by Wang and Dong
(2020) disputes the last common belief and shows that, for episodic AMDPs with full-information
feedback, FTPL also enjoys near-optimal regret, similarly to OMD/FTRL. Nevertheless, little is
known about FTPL for learning AMDPs with the more challenging bandit feedback — to our
knowledge, the only FTPL algorithm for this case is by Neu et al. (2010). However, that algorithm is
analyzed under a strong assumption that every state is reachable by any policy with at least a constant
probability o > 0. Such an exploratory assumption is too strong to be used in realistic applications.

Motivated by this fact, we take a closer look at FTPL for learning AMDPs under bandit feedback,
aiming at showing strong regret guarantees while enjoying its computational advantages. We start with
the standard episodic finite-horizon setting and indeed find some intriguing difficulties compared to
OMD/FTRL. After addressing these difficulties, we then show critical applications of FTPL methods
to two more challenging setups: episodic AMDPs with delayed bandit feedback and infinite-horizon
AMDPs with only communicating assumptions, with the latter result advancing the state-of-the-art.
More specifically, our contributions are (see also Table 1 for a summary):

1. We start with the heavily studied episodic setting with K episodes, H steps in each episode, .S
states, and A actions. Our first intriguing observation is that: since the loss of each policy is
linear in a non-binary vector (i.e., the occupancy measure), existing analysis for the stability
term of FTPL fails, even though it works for the binary case (e.g., Neu and Bartdk (2016)). Our
next important observation is that there exists a simple fix to this issue that only leads to an
extra H factor. This eventually leads to O(H"?+/SAK) regret when the transition is known

(Algorithm 1, Theorem 4), which is only /H factor larger than the near-optimal regret achieved



by OMD (Zimin and Neu, 2013), and 6(H 26V AK ) regret when the transition is unknown
(Algorithm 3, Theorem 5), matching the state-of-the-art again achieved by OMD (Jin et al., 2020).
See Section 3 for details.

2. We next find that compared to OMD, the analysis of FTPL is much easier to be generalized to
the delayed feedback setting where losses for episode k are observed only at the end of episode
k + dy, for some dj, > 0 (Lancewicki et al., 2022; Jin et al., 2022). Indeed, these two prior works
demonstrate the difficulty of analyzing OMD with delay feedback, with Lancewicki et al. (2022)

only achieving O((K +D)¥?) regret (where © = > di is the total amount of delay; dependence

on other parameters is omitted) and Jin et al. (2022) improving it to O(v/ K + D) via either an
inefficient algorithm or an efficient OMD-based algorithm with more involved analysis and/or
new delayed-adapted loss estimators. FTPL, on the other hand, achieves O(v/ K + D) regret by a
simple extension of the analysis (Theorem 6). The dependence on S and A is also better than the
OMD method of (Jin et al., 2022) with the same kind of standard loss estimators (though worse
than their best result with the delayed-adapted estimators; see Table 1 and Section 4 for details).

3. While our results above do not improve the best existing ones, our final application of FTPL
provides the first result for learning infinite-horizon communicating AMDPs with bandit feedback
and known stochastic transitions. Specifically, our algorithm achieves O(A"/?(SD)**T/*) regret
(Algorithm 6, Theorem 7), where D is the diameter of the MDP and T’ is the total number of steps.
It is efficient assuming access to an offline planning oracle (that returns the best stationary policy
given a fixed transition function and a sequence of loss functions for each step). Previous results
either only handle deterministic transitions (Dekel and Hazan, 2013) or full-information loss
feedback (Chandrasekaran and Tewari, 2021). Moreover, the FTPL algorithm of Chandrasekaran
and Tewari (2021) for stochastic transitions is inefficient even given the same planning oracle
(since it explicitly adds independent noise to every policy). For completeness, we also provide an

inefficient algorithm (Algorithm 7) that achieves O(A"/2(SDT)**) regret in our bandit setting,
matching the Q(7"*/*) lower bound of Dekel et al. (2014) in terms of T'. See Section 5 for details.

1.1 Related Work

Follow-the-Perturbed-Leader: FTPL is first proposed by Hannan (1957) and later popularized
by Kalai and Vempala (2005). It has proven to be extremely powerful for structured online learning
problems (such as online shortest path) since its implementation is as easy as solving the correspond-
ing offline optimization problem (such as finding the shortest path of a given graph). Over the years,
FTPL has been extended to problems with semi-bandit feedback (Neu, 2015; Neu and Bartok, 2016),
contextual information (Syrgkanis et al., 2016), non-linear losses (Dudik et al., 2020), smoothed
adversaries (Block et al., 2022; Haghtalab et al., 2022), and others. However, FTPL for learning
AMDPs under bandit feedback is poorly understood, which motivates this work. As we successfully
show, improving our understanding of FTPL is indeed beneficial since it at least leads to new results
for the infinite-horizon setting (in addition to its computational advantages for other settings). Below,
we briefly review the literature of AMDDPs for the three settings we consider.

Episodic Finite-Horizon AMDPs: Earlier works on this topic focus on the easier known transition
case. In particular, the OMD-based O-REPS algorithm by Zimin and Neu (2013) achieves O(H+/K)
regret with full-information feedback and O(H v/ S AK) regret with bandit feedback, both optimal up

to logarithmic factors. On the other hand, FTPL is recently shown to achieve O (H?V/K) regret with
full-information feedback (Wang and Dong, 2020). As mentioned, the only FTPL algorithm for bandit

feedback is by Neu et al. (2010), which guarantees (5(H 2V AK /) regret assuming that all states
are reachable by any policy with a probability of at least cv. In contrast, our FTPL algorithm removes

this requirement and achieves O(H 2\/SAK ) regret, which is only v/ H away from optimal.

When the transition is unknown, with full-information feedback, the OMD-based algorithm UC-
O-REPS (Rosenberg and Mansour, 2019a) achieves (5(H 2S8\/AK) regret, while the FTPL-based
FPOP (Neu et al., 2012) is shown to achieve (5(H 26VAK ) regret as well (Wang and Dong, 2020).
With bandit feedback, the OMD-based algorithm UOB-REPS (Jin et al., 2020) also achieves the

same (5(H 2S5V AK) regret. At the same time, our algorithm enjoys the same guarantee and is the
first FTPL algorithm for bandit feedback and unknown transition. However, the current best lower

bound for this problem is Q(H**+/SAK) (Jin et al., 2018), so there is still an O(v/HS) gap.



Besides OMD and FTPL, there is, in fact, another category of algorithms for learning AMDPs: policy
optimization (Shani et al., 2020; Luo et al., 2021), which performs OMD in each state and is also
efficient. However, the regret bounds are worse by at least an H factor (Luo et al., 2021).

Delayed Feedback: The most related works are Lancewicki et al. (2022) and Jin et al. (2022),
and we refer the reader to the references therein for the literature on delayed feedback for different
problems. Importantly, Jin et al. (2022) point out the unique difficulty when analyzing OMD/FTRL
for AMDPs with delayed feedback. Circumventing this difficulty one way or another, they develop
three algorithms: the first one, Delayed HEDGE, is inefficient; the second one, Delayed UOB-FTRL,
achieves worse regret (/.S A larger for the delay-related term) compared to ours; and the third one
makes use of a delay-adapted estimator and achieves the best bound (see Table 1). We emphasize
again that our FTPL analysis is much simpler and a direct extension of the non-delayed case. The

current best lower bound for this problem is Q(H**/SAK + H+/D) (Lancewicki et al., 2022).

Infinite-Horizon AMDPs: Learning AMDPs becomes significantly more difficult in the infinite
horizon setting. As far as we know, all works in this line (including ours) assume a known transition
function. Earlier works focus on the simpler case with a strong ergodic assumption (Even-Dar et al.,
2009; Neu et al., 2014). For the more general communicating assumptions, a recent work (Chan-
drasekaran and Tewari, 2021) considers full-information feedback and develops an efficient FTPL
algorithm for deterministic transitions with O(S*y/T)) regret and another inefficient FTPL algorithm

for stochastic transitions with O(D?v/ST) regret. Under bandit feedback, prior works only study
deterministic transitions (Arora et al., 2012; Dekel and Hazan, 2013), with Dekel and Hazan (2013)
achieving O(S?3 AT %) regret, matching the lower bound (Dekel et al., 2014) for the T-dependency.
Our results are the first for bandit feedback and stochastic transitions. Note that since bandit feedback
is only more general, our oracle-efficient algorithm can also be applied to the full-information setting,
while the only existing algorithm (Chandrasekaran and Tewari, 2021) is computationally inefficient.

2 Preliminaries

General Notations: We use [N] to denote the set {1,2,...,N}. For a (finite) set X, we use
NX) 2 {z € Rlz)gl | Z‘fll x; = 1} to denote the probability simplex over the set X. We use

O(+) to hide all terms logarithmic in H, S, A, K and T'. Laplace(n) denotes the Laplace (also known
as double-exponential) distribution with center 0 and parameter 77, whose probability density is
f(x) = Fexp(—n|z|), V2 € R. For an event &£, let 1[£] be its indicator. In episodic settings, let
{Fi Y}, be the natural filtration such that F contains the history of episodes 1, ..., k. With a slight

abuse of notation, in the infinite-horizon setting, we also use {F;}7_ to denote the natural filtration.

Episodic Adversarial Markov Decision Process: An episodic Adversarial Markov Decision Process
(AMDP) is defined by a tuple M = (S, A, P, ¢, K, H, s'), where S is the state space, A is the action
space, P: [H] x § x A — A(S) is the transition function, ¢: [K] x [H] x § x A — [0, 1] is the
loss function unknown to the agent but fixed before the game (i.e., we are assuming an oblivious
adversary),1 K is the number of episodes, H is the horizon length, and st € & is the initial state.
Denote by S = |S| < oo and A = | A| < oo, the number of states and actions, respectively.

The agent interacts with the environment for K episodes. For the k-th one (k < K), she starts from
the initial state s' and sequentially interacts with the environment for H steps. At the h-th step
(where h € [H]), the agent observes state sﬁ € S, chooses an action aZ € A, observes and suffers

the loss £1'(s}', a}) (bandit feedback),? and then transits to state s/"7! according to the probability
distribution P"(- | 32, aﬁ). After H steps, the episode ends and the agent proceeds to episode &k + 1.

A (deterministic) policy of the agent is defined by 7 = {7": & — A} ne[m]- Denote the set of all
deterministic policies by II. The expected loss incurred by policy 7 € II for an episode with loss
function { is denoted by V (r; ) 2 E {zf:l (st Wh(sh))’sh"'l ~ PR(- | 5P, 7t (sh)), Vh < H}
Suppose the agent uses policies 71, s, ..., T for episodes 1,2, ..., K, respectively. The total
expected loss of the agent is then E {Zszl Vimg; £ k)} , where the expectation is taken with respect to

"Note that the loss function can vary arbitrarily for different (k, h)-pairs, instead of being stochastic.
2On the other hand, in the easier full-information setting, the entire £} is revealed.



the agent’s private randomness. The baseline is the best deterministic policy in hindsight, defined by

T € argmin, o 21521 V(m; £k). The goal of the agent is to minimize her regret over K episodes,
which is the difference between her total loss and that of 7*, formally defined as

K K
Z V(Wk;ﬁk)] - Z V(m*; Ly).
k=1

k=1

Rk £E

Episodic AMDPs with Delayed Feedback: This setup is exactly the same as the episodic AMDPs,
except that the feedback {¢(s%, a?)}2_, for episode k is only available after dy, episodes, i.e., at the

end of the (k + dj,)-th episode. Define © = Z,f:l dj, to be the total feedback delay, assumed to be
known to the agent as this assumption can be easily relaxed via a doubling trick (Thune et al., 2019).3

Infinite-Horizon AMDPs: Similar to episodic AMDPs, infinite-horizon AMDPs is defined by a
tuple M = (S, A, P, ¢, T, s'). Here, starting from the initial state s' € S, the agent interacts with
the environment for 7" total steps without any reset, under the transition model P: S x A — A(S)
(which does not vary over time) and loss functions ¢: [T] x § x A — [0, 1]. More specifically, at
time ¢ € [T, the agent observes state st € S, chooses an action a® € A, observes and suffers loss
¢%(s', at), and then transits to s'™ ~ P(- | s*, a’). Her goal is also to minimize the regret, defined as
T T
PIRACH D (st m(sh)
t=1 t=1

Rr£E st~ P( | st m(sh) |

ey
where II is now the set of all deterministic policies mapping from S to .A. As pointed out by Bartlett
and Tewari (2009), without any extra assumptions, sublinear regret is impossible for this problem
due to the lack of resets. Earlier works make a strong ergodic assumption such that, intuitively, any
mistake will be forgiven after logarithmic steps (Even-Dar et al., 2009). Here, we instead focus on
the much weaker communicating assumption as in Chandrasekaran and Tewari (2021):

Definition 1 (Communicating MDP). We call an MDP M communicating if it has a finite diameter
D £ max g mingen E[T(s" | M, ,s)] where T(s' | M,r,s) is the (random) time step when
state s' is first reached by policy 7 starting from state s.

s~ P(- | st,at)] —minE
mell

Just like Chandrasekaran and Tewari (2021), for technical reasons, we also need the following mild
assumption saying that there exists a special state for the agent to “park” there without moving.

Assumption 2. There exist state s* € S and action a* € A such that P(s* | s*,a*) = 1.

3 FTPL for Episodic AMDPs

In this section, we consider the basic (non-delayed) episodic setting. To best illustrate the unique
difficulty we meet when analyzing FTPL and the way we address it, we first discuss the known-
transition case (i.e., {]P’h}hH:1 is known to the agent), and then move on to unknown transitions.

3.1 Known Transition

Our algorithm follows the standard FTPL framework (see Algorithm 1). Ahead of time (as the
adversary is oblivious), we sample a perturbation vector z: [H] x S x A — R so that z"(s, a) is an
independent sample from Laplace(n) for some parameter 7). At the beginning of episode k, given the
loss estimators ¢1, . .., £;_1 from previous episodes (whose construction will be specified later), we
simply play the policy that minimizes the cumulative perturbed estimated loss (break tie arbitrarily):

k—1
7, = argmin | V(m;2) + Z V(W;Zk/) = argmin V (WQZO:k—l) ,
mell E—1 mell

where we use Zl:,« (where 0 < [ < r < K) as a shorthand notation for ZZ/:Z Zkr and 570 as an alias
for z for notational convenience. This optimization over 7 € II is a simple planning problem and can
be solved by dynamic programming efficiently.

3As in Jin et al. (2022), we only consider delayed loss feedback, but not delayed trajectory feedback, since
the latter only affects the transition estimation and can be handled similarly to Lancewicki et al. (2022).



Algorithm 1 FTPL for Episodic AMDPs with Bandit Feedback and Known Transition
Require: Laplace distribution parameter 7. Geometric Re-sampling parameter L.

1 Sample perturbatlon lo = z such that 2" (s, a) is an independent sample of Laplace(n).
cfork=1,2,... ,Kdo

3 Calculate 7, = argmin, oy V' (7; £o.x—1) (via dynamic programming).

4 forh=1,2,...,Hdo

5 Observe s, play a} = 7,(sh), suffer and observe loss £ (sh, a}t).

6: Calculate loss estimator @’k via Geometric Re-sampling (Neu and Bart6k, 2016):

7

8

9

for M =1,2,...,L do
Sample a fresh perturbation z in the same way as z.
Calculate 7), = argmin_ oy V(73 {1.0—1 + 2).

10: Simulate 7}, for h steps starting from s! and following transitions P*, ... P".
11: if (s}, alt) is visited at step h or M' = L then
12: Set £ (s,a) = M} - 0 (sh ah) - 1[(sh, al) = (s,a)] and break.

Upon seeing 5’,3, aZ, and EZ(SZ, aZ), we construct the loss estimator @kl using the Geometric Re-
sampling technique (Neu and Bartdk, 2016). The idea is to repeat the sampling procedure (Line 8
to 10) until the same pair (s?,alt) is visited again at step & or this has been repeated L times
for some parameter L. Let the total number of trials be M, ,?, then the estimator is defined as
@,z(s, a) = MpP- 0o (st alt) - 1[(st, a}) = (s,a)] (Line 12). Note that the sampling procedure can be
done freely without interacting with the environment as the transition is known. The rational behind
this estimator is that as long as L is reasonably large, M ,? is a good approximation of the inverse
probability of visiting (:sfj.7 aZ) (which is hard to calculate directly for FTPL), making @’k a good (and
efficient) approximation of the standard importance weighted estimator (Zimin and Neu, 2013).

Analysis Sketch: While our algorithm follows the standard FTPL framework, we find some in-
triguing difficulty in the analysis that is unique to MDPs and undiscovered before. To illustrate this
difficulty, let us first describe an overview of the analysis. First, since the loss estimators are almost
unbiased (as shown by Neu and Barték (2016)), we only need to focus on the regret with respect
to the estimated losses, that is, E [Zk 1 Vi Ek) Zk L V(r* €k)] Adding and subtracting

[Z b1 V(mkt1; Zk)] (the loss of an imaginary “leader” that looks one episode ahead), our next

goal is to bound the so-called stability term E [Zszl V(mk; Zk) - Zszl V(m@H;tﬁk)] (the rest,
usually referred as the error term, can be bounded by the standard “be-the-leader” lemma).

For the stability term, fix an episode k and define p () as the probability of selecting 7 as 7y W.r.t.
the randomness of the perturbation z. Further introduce the notion of occupancy measures (Altman,
1999; Neu et al., 2012): each policy = € II induces H occupancy measures ! € A(S x A),
Vh € [H], where p1” (s, a) denotes the probability of visiting (s, a) at step h if one executes policy
starting from the initial state s. With these notations, each summand for the stability term becomes:

>~ (te(m) = presa () <um?k>] ,

mell

E {V(ﬂ'k%é\k) - V(Trk+1§zk)} =E

where (fir, 0p) 2 SO0 {ul %> This stability term is exactly in the same form as that in Lemma 8
of Neu and Barték (2016) or Lemma 10 of Syrgkanis et al. (2016) for (contextual) semi-bandit
problems, except that in their contexts, p, is a binary vector. This seemingly slight difference turns
out to be important! Specifically, in these two prior works, they both show (using our notations):

P (m) = pr(m) exp (= (. ) @

which, together with the fact exp(—z) > 1 — z, implies

E [V(Wk;fk) - V(ﬂk+1;?k)] <nE lz Pr(T) <uﬂ,l7k>2] . 3)

mell

Readers familiar with the online learning literature would have recognized the last expression,
since it is also the standard stability term achieved by (inefficiently) running the classical HEDGE



algorithm (Freund and Schapire, 1997) over all policies (see e.g. Theorem 7.3 of Bubeck (2011)).
Indeed, this term is small enough and can be shown to be of order O(nHSA) in our context after
plugging in the definition of the loss estimators, which would then basically complete the proof.

However, not only do we realize that the proof of Eq. (2) heavily rely on the binary nature of p,,
we in fact also find a counterexample where Eq. (3) is simply incorrect when pi; is non-binary (see
Appendix B.1.5 for the counterexample). We find this fact intriguing, because Eq. (3) holds for the
aforementioned inefficient HEDGE algorithm regardless whether 1. is binary or not.

Further examining the proof of Neu and Bartok (2016) and Syrgkanis et al. (2016), however, one can
prove the following weaker version of Eq. (2) and Eq. (3) (namely Eq. (4) and Eq. (5) respectively).

Lemma 3 (Single-Step Stability). For all k € [K] and w € TI, we have

Pt () > pi(m) exp ( nzneknl> , )

and thus

E [V(Wk,zk) - V(ﬂ'}c+1§£k :| <nk

(Z ||1>Zpk <uz7k>] 5)

mell

Fortunately, while Eq. (5) looks seemingly much larger than the classic bound Eq. (3), it is in fact at
most larger by an H factor, that is, the right-hand side of Eq. (5) can be shown be of order O(nH?S A)
(see Lemma 12 in the appendix). Putting everything together, this allows us to prove the following
regret guarantee for Algorithm 1, which is v/H larger than the optimal bound (Zimin and Neu, 2013)
due to the weakened stability bound. One may refer to Appendix B.1 for the formal proof.

Theorem 4. For episodic AMDPs with bandit feedback and known transitions, Algorithm 1 with

n = 1/VHSAK and L = \/SAK[H ensures Ry = O (H*/*\/SAK).

3.2 Unknown Transition

To handle unknown transitions, we mostly follow existing ideas. First, for each episode k£ we maintain
a confidence set Py of the transition function as Jin et al. (2022), whose construction is given in
Appendix B.2.1. These confidence sets ensure that i) P € Py, with high probability and ii) Py1 C Pk.
Generalizing the notation V(7r Z) we use V (; t, P) to denote the expected loss of policy 7 for an
episode with loss function ¢ and transition P (so V (m;¢) = V (m; ¢, P)). Then deploying the idea

of optimism, we replace Line 3 of Algorithm 1 with 7, = argmin . minpep, V(7; lo.—1, P),
which can be efficiently found using Extended Value Iteration (Jaksch et al., 2010). As Wang and
Dong (2020) argues, this is far more efficient than performing OMD over occupancy measure spaces.

We also need to modify the Geometric Re-sampling procedure accordingly since Line 10 requires
using the true transition. To do so, we combine the procedure with the idea of upper occupancy
measures from Jin et al. (2020). Specifically, in each trial we sample 7}, in the same way as 7y, but
with a fresh perturbation, then find the optimistic transition within Py, that maximizes the probability
of 7, visiting (SZ, aZ) (which can be done efficiently using dynamic programming as shown by Jin
et al. (2020)), and finally simulate }, for h steps following this optimistic transition.

Due to space limit, the full algorithm, Algorithm 3, is deferred to Appendix B.2. The analysis of
the extra regret caused by the transition estimation error can be handled similarly to Jin et al. (2022)
(more specifically, their Delayed HEDGE algorithm). As in previous works, this happens to be of
order O(H?2S+/AK) and becomes the dominating term of the regret. This makes our final regret the
same as the state-of-the-art (Jin et al., 2020), despite the weaker single-step stability lemma discussed
in Section 3.1 (since this part is dominated now). Formally, we have the following regret guarantee.
Theorem 5. For episodic AMDPs with bandit feedback and unknown transitions, Algorithm 3 with

n = 1/VESAR and L = \/SAK]H ensures Ry = O (H*SVAK).

4 FTPL for Episodic AMDPs with Delayed Feedback

In this section, we show how our FTPL algorithm and analysis can be easily extended to the delayed
feedback setting where the losses for episode k are only observed at the end of episode & + dj.



The only change to the algorithm is to naturally delay the loss estimator construction until the
loss feedback is received, and at each episode k only use the estimators constructed so far, i.e.,

Q. = {K' | k¥ + di < k}, to compute the current policy 7. See Algorithm 4 in Appendix C.

To show how the analysis works, we focus on the known transition case at this moment for
simplicity. Similar to the non-delayed case, the key is to bound the stability term, which was
E [Zszl V(mg; b)) — Zszl V (415 £x)] in Section 3.1, but now becomes E [Zszl V(mg; b)) —
Z,[le V (Tq1; L)) where 1 = argmin, ¢ V(m;loy) is a “cheating policy’ (Gyorgy and
Joulani, 2021; Jin et al., 2022) that uses all loss estimators from the first £ episodes (which matches
m+1 for the non-delayed case). By the exact same analysis as Eq. (4) and Eq. (5), one can show

E[Vimi B = VFernil)] <nE[ (2 f)n@z,l) > pu(m) (1 ) |,

k' €[]\ h=1

DIFF
where the DIFF term is the cumulative ¢; norms of all the estimators used in computing 741 but
not 7y, (again, a direct generalization of Eq. (5) where only k satisfies such conditions for k). It is
then not hard to imagine that when summed over k, the DIFF term is eventually related to the total
amount of delay ® = ), dj. Indeed, the sum of all stability terms over K episodes can be shown to
be of order O(nH2SA(K + D)). This is basically all the extra elements we need in the proof. More
generally for unknown transitions, we prove the following guarantee (see Appendix C for the proof).

Theorem 6. For episodic AMDPs with delayed bandit feedback and unknown transitions, Algorithm 4

withn = 1/\/HSA(K+®) and L = \/HSA/H ensures Rt = 0] (H?SVAK + H3/2\/SA®).

The simplicity of our analysis is similar to the Delayed HEDGE algorithm (Jin et al., 2022), but the
latter is inefficient with time complexity Q(A®). The efficient Delayed UOB-FTRL algorithm (Jin

et al., 2022) requires a more complicated analysis and only achieves O (H 2SVAK + HY 2SA\/@)
regret (which is worse than ours), while its improved variant Delayed UOB-REPS with a new delay-

adapted estimator achieves the current best bound O(H2SVAK + H/4(SA)"/*\/D). However, it
is unclear to us whether such delay-adapted estimators can help improve FTPL. Finally, we again
remark that the current best lower bound is Q(H%>\/SAK + H+/®) (Lancewicki et al., 2022).

5 FTPL for Infinite-Horizon AMDPs

At last, we discuss how FTPL can be used to derive the first no-regret algorithm for infinite-horizon
communicating AMDPs with bandit feedback and (known) stochastic transition. Note that learning
infinite-horizon AMDPs is much more difficult due to the lack of resets (in a sense, this is like a
finite-horizon problem but with only one long episode with 7" steps). Another way to see the difficulty
is that the benchmark in the regret definition Eq. (1) is evaluated on states generated by following 7*
repeatedly for 7" rounds, without any resets. From a technical viewpoint, this requires the algorithm
to also make sure that, when following a policy 7, its suffered loss is indeed close to the total loss if
7 has been followed since the very beginning, which is unnatural without ergodic assumptions.

Chandrasekaran and Tewari (2021) resolve this issue by the combination of two ideas. First, under the
mild Assumption 2, they show that whenever the agent wants to switch the current policy to another
policy 7, there exists a procedure to make sure that after O(D?) steps of a transition phase, the agent’s
state distribution is exactly the same as that induced by following 7 from the very beginning. That is,
after this switching procedure, the agent can “pretend” that she has followed 7 all the time. Second,
since this procedure requires a cost of O(D?) steps (where the loss of the agent can be arbitrarily bad
and only trivially bounded by O(D?)), the algorithm needs to switch its policy infrequently.

Our algorithm follows the same ideas. However, while low-switching is relatively easy to ensure in
the full-information case without paying extra regret, it is known that with bandit feedback there
is an unavoidable trade-off between the number of switches and the regret, which can be optimally
balanced via a simple epoching scheme (Dekel et al., 2014). To this end, we divide the total T" steps
into J = o(T') epochs, each with length H = T/ = w(D?). At the beginning of the j-th epoch, we
compute a new policy 7;, apply the switching procedure of Chandrasekaran and Tewari (2021) to
adjust the state distribution (see Algorithm 5), and finally follow the same policy 7; for the rest of the
epoch. This clearly only introduces .J switches, which contributes to at most O(J D?) extra regret.



It remains to specify how to find 7; in epoch j using FTPL. The key difference compared to the
episodic case is that, due to the lack of resets, we need to add perturbation to every time step instead of
just to each of the H steps of an episode. We then still play the policy that minimizes the cumulative
estimated losses plus all the perturbed losses. Formally, 7; is defined as:

(G=0)7T/s
mj=argmink | Y P(sha(sh) + Y 2 (st ()]s~ P | s w(sh), Ve (6)
mell t=1 t=1

where {2 : § x A — R},¢(q is such that each 2’ (s, a) is an independent sample of Laplace(n),

and each ¢ is the estimator of ¢! constructed from the Geometric Re-sampling procedure.

Unfortunately, as far as we know, there is in fact no existing polynomial time algorithm for solving
Eq. (6) (the difficulty comes from the restriction on stationary policies whose behavior does not vary
over time). Even if the losses are stochastic, the problem is only known to be P-hard (Papadimitriou
and Tsitsiklis, 1987; Mundhenk et al., 2000) and no polynomial algorithm has been developed.

However, note that this optimization is exactly in the same form as the benchmark in the regret
definition Eq. (1). Following many prior works such as Dudik et al. (2020); Block et al. (2022);
Haghtalab et al. (2022), we thus assume access to a planning oracle that solves this offline problem,
making our algorithm only oracle-efficient instead of truly polynomial-time-efficient. Note that even
given this oracle, the algorithm of Chandrasekaran and Tewari (2021) is inefficient since it creates
independent perturbation for each of the A° policies, while our perturbation is much more compact.

In terms of the analysis, the key extra challenge is caused by having T" perturbed losses. Indeed, the
same analysis from the episodic case (Lemma 44) would lead to a term of order (5(T /n), which
is prohibitively large. Instead, inspired by Syrgkanis et al. (2016), we provide a different analysis
showing that this can be improved to (5(5 VAT /m), which has worse dependencies on S and A
but better dependency on 7', the key to ensure sub-linear regret eventually. To conclude, our FTPL
algorithm achieves the following guarantee (see Appendix D.1 for the full algorithm and analysis).

Theorem 7. For infinite-horizon AMDPs with bandit feedback and known transitions, Algorithm 6

g3 /3 AY/25/6 S8 AY2plYe ensures Ry = (5 (Al/Z(SD)2/3T5/6).

H — _ _ S
withn = LT J = e and L = e

We emphasize again that this is the first (oracle-efficient) algorithm for this setting. Even in the easier
full-information setting (where £¢ is fully revealed at the end of time ¢), our algorithm also has its
computational advantages compared to that of Chandrasekaran and Tewari (2021), since, as mentioned,

their algorithm requires Q(A°) complexity (albeit with a better regret bound o (D?+/ST)).

The best lower bound for this setting is Q(S/*T%/*) (Dekel et al., 2014). Dekel and Hazan (2013)

achieve (5(53AT2/ %) but only when the transition is deterministic. For completeness, we provide a
HEDGE-based inefficient algorithm (Appendix D.2) for general stochastic transitions, which achieves
the optimal regret in terms of the dependence on 7', improving our oracle-efficient FTPL algorithm.

Theorem 8. For infinite-horizon AMDPs with bandit feedback and known transitions, Algorithm 7

2 1 ~
and J = DAL opsures Ry = O (AV3(SDT)3).

DY/3

. g/
withn = A5 (DT

6 Conclusion

In this paper, we designed FTPL-based algorithms for adversarial MDPs with bandit feedback in
various settings, including episodic settings, delayed feedback settings and infinite-horizon settings.
Our algorithms are easy to implement as they only require solving the offline planing problem, and in
some cases they match the state-of-the-art performance or are even the first ever no-regret algorithms.

One interesting open question is whether, despite our counterexample, Eq. (3) can still hold with a
larger constant for the right-hand side, either with our current algorithm or via some modified versions
(for example with a different kind of perturbation). Achieving this would lead to an improved version
of Lemma 3 and thus give the near-optimal delay-related regret term O(H*/®) for the delayed
feedback setting, which is not currently achieved by any existing algorithms.

An alternative direction is to try to equip our Algorithm 4 (for episodic AMDPs with delayed
feedback) with the “delay-adapted” loss estimators proposed by Jin et al. (2022). As their analysis



heavily relies on the exponential weight scheme (see their Lemma D.7, which bounds KL divergences
between consecutive policies), it is unclear to us whether FTPL enjoys a similar property.

Another important future direction is to improve our results in the infinite-horizon setting, such as

improving the o (T °/ %) oracle-efficient regret upper bound, removing the usage of oracles, or dealing
with the unknown transition case (which has not yet been studied at all).

There are also several possible generalizations of our setting. For example, we only assume the losses
to be adversarial. Further incorporating evolving transition is an important next step. There is already
an FTPL-based algorithm (Yu and Mannor, 2009) for evolving dynamics (though they are assuming
ergodic infinite-horizon MDPs), which builds upon the FTPL analysis by Even-Dar et al. (2009) (see
their Lemma II1.3). Although our work directly improves the performance guarantee of Even-Dar
et al. (2009), it is highly unclear whether we can adopt the algorithm of Yu and Mannor (2009) for
unknown-transition episodic MDPs (they assumed the transitions to be revealed after each episode)
or infinite-horizon weakly communicating MDPs. Solving either case will be interesting. Moreover,
considering dynamic regret instead of static regret can also be challenging.
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A Notations

We summarize our notations used in the appendix below:

* For a policy € II and a transition P: [H] x § x A — A(S), the occupancy measure of
m at the h-th step (h € [H]) is defined as

(s, a; P) = Pr{(s",a") = (s,a) | a" = 7" (s"), s" ™" ~ P"(- | s",a"),s'}.
We will use 1”2(P) to denote the vector {4 (s, a; P)}(5.0)esx.4. Specifically, if P is the

true transition IP, we will abbreviate it as u” for simplicity.

* With a slight abuse of notation, for infinite-horizon AMDPs, we will also use the same
notation pt. € A(S x A) (t € [T)) to refer to the occupancy measure of 7 at time slot ,
starting from the first state s' and following the transition P (as we do not consider unknown
transition cases for infinite-horizon AMDPs, we will always abbreviate the transitions).

* For a policy w € II, a transition P: [H] x § x A — A(S) and a loss function 0 [H] x
S x A — Ry, the value function is defined as

H
V(W@P) =K [@(shvah)’ah = W(sh)vsh—i_l ~ Ph(sh7ah)vsl} = Z</j‘7};(P)az\h>
h=1

XSxA

* A perturbation z: R[] is a fresh sample such that

2" (s, a) ~ Laplace(n) and each entry is independently sampled.

For simplicity in notations, we use ¢ as an alias of z.

) o~ —~ —~ PN
* For a sequence of loss functions ¢4, {o, . .., {i, we use {1., to denote Zk,ZI by .
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Algorithm 2 FTPL for Episodic AMDPs with Bandit Feedback and Known Transition
Require: Laplace distribution parameter 7. Geometric Re-sampling parameter L.

1: Sample perturbatlon lo = z such that 2" (s, a) is an independent sample of Laplace(n).
2. fork=12...,Kdo

3: Calculate 7, = argmin,_ o V (m; EAo:k,l) (via dynamic programming).

4: forh=1,2,...,H do

5: Observe s, play a} = 7,(sh), suffer and observe loss £ (sh, a}t).

6: Calculate loss estimator @’k via Geometric Re-sampling (Neu and Bart6k, 2016):
7: for M =1,2,...,L do

8: Sample a fresh perturbation z in the same way as z.

9: Calculate 77}C = argmin_cp; V(m; 21:;@_1 +2).

10: Simulate 7}, for h steps starting from s! and following transitions P*, ... P".
11: if (sk,ak) is visited at step h or M}' = L then

12: Set Ek(s,a) = M} h(sh,al) - 1[(st, al) = (s,a)] and break.

B Analysis of Episodic AMDP Algorithms

B.1 Known Transition Case (Theorem 4)

For convenience, we restate the algorithm for episodic AMDPs with bandit feedback and known
transitions in Algorithm 2. As shown by Syrgkanis et al. (2016, Appendix A.2), for an oblivious
adversary (which is our case), it suffices to draw the perturbations once at the beginning of the
interaction (i.e., the perturbation z is fixed throughout the game).

Then we give the proof of Theorem 4. As sketched in the main text, we define the following
probability, as-if we are resampling a purturbation z for each round:

pr(m) =Pr.{m, = | Z175?27 e 72k—1}~

Note that, as mentioned in (Syrgkanis et al., 2016, Appendix A.2), py, is just the probability of picking
7 at episode k given all history from episodes 1,2, ...,k — 1. Now, we decompose our regret R i
into the following three terms:

K H K H
R —E |55 pem i ) — 55 eh]
k=1 h=1well k=1 h=1
K H K H
=K ZZ< Z_k,fh k +ZZ Mﬂ.*,ek—fh‘|
k=1 h=1 k=1 h=1

GR error term

[ K H K H
E Y SS  peea (@)l ) = D0 (ke

Lk=1 h=1rm€ll k=1h=1

Error term
[ K H
oh

B33 Y i —pk+1<w>><uz,ek>] .

Lk=1h=1mell

Stability term

B.1.1 Bouding the GR Error Term

Lemma 9 (Bounding GR Error Term). The GR error term is bounded by

K H

SAHK
ZZ :u’7rka‘€ k + </‘Z*7%_€Z>‘| < el .
k=1 h=1 k=1h=1
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Proof. First notice that, from Lemma 38, ]E[@,;(s,a) | Fr—1] < €8(s,a). Moreover, as 7* is
deterministic (i.e. it does not depend on the randomness from the algorithm), the second term

Z ,u‘7'r*>€k

For the first term, again by Lemma 38, we have

K H
Z /ffmm @13] = Z Z Z E [:uiflrk,(sva) (1- QIQL(Sﬂa))LEZ(&a)] )

k=1h=1 (s,a)eSx.A

Z ﬂﬂ*v gk | Fr— 1]*£k>

k=

where ¢'(s, a) is the probability of visiting (s, a) in a single trial of the Geometric Re-sampling
process, which is just (note that qZ itself is also a random variable as pj, is non-deterministic)

ar(s,a) =E[p, (s,a)] = Y pr(m)ul(s, a)
well

Ln our case. By noticing that ¢(1 — q)L < qe*Lq < i for all ¢ > 0 (Neu and Bartéok, 2016), we
ave

K H
EL > (ul o m] HESA— <

as claimed. O

B.1.2 Bounding the Error Term

Lemma 10 (Bounding Error Term). The error term is bounded by

K H 2
£35S e B - 3 k) < 2 s,

k=1 h=1=w€ell k=1h=1 n

Proof. The proof uses the standard “be-the-leader” technique. For simplicity, we rewrite the error

term as
K R K R
E > V(meas b, P) = > V(x4 P
k=1 k=1

Now consider the summation inside the expectation. If we add an extra term V(?Tl;z\o,]P)) —
V(7*; o, P) where £y = z is the perturbation, we will have

K
> V(mkir; b, P) = V(" Lo, P)

- K ) ~ K-1 R .

< D Vsl P) = Virkins o, B) = 3 V(s b, P) = V(s lo -1, P)
poe k=0

by K ) - K—2 ~ N

< VTt e, P) = Vimges o -1, P) = V(mta; bk, P) = V(mses i 2, P)
— k=0

R . ©
S...SV(ﬂ'l;éo,P)*V(ﬂ?;emP) S 07

where (a) used the optimality of mx 1 w.r.t. Z(): K, (b) used the optimality of mx w.r.t. Zo: K—1 and so
on, until the last step (c) where the optimality of m; w.r.t. £; is used. So we have

K K
E > Vim0 P) = Y V(r* 14, P) | <E[V(x*; L0, P) — V(w15 4o, P)).
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By the notation of occupancy measures, we can rewrite it as

St ) —Z<u21a@8>] <2 S B[R

h=1 h=1 h=1

E

Recall that £2 (s, a) ~ Laplace(n), so we have

1+ In(SA
] = & [maxitf s, 0| < L)

where the last step is due to the fact that |¢% (s, a)| is an exponential distribution and Lemma 44. [J

B.1.3 Bounding the Stability Term

For the stability term, we first prove the following “single-step stability” lemma that we stated without
proof in the main body.

Lemma 11 (Single-Step Stability). Forall k € [K] and (s,a) € S x A,

H
P () > pi() exp <n2||@,z|1> , Wrell
h=1

Proof. For simplicity, we use m = best(¢) to denote 7 = argmin .y V(m; ¢, P). Then we have

pr(m) = /z]l {w = best (21;1@71 + z)} f(2) dz

/
/

where f(z) is the probability density function of z and the second step made use of the fact that
z + ¢}, is still linear in z. Moreover,

Progr (7) = / 1 [77 — best (ZM + z)} f(2) dz.

best (leszl + (Z +Zk))} f (Z +£7k) dz

1 {7‘(
1 {7‘(‘ = best (EAM + z)} f (z + Zk) dz,

Recall that the definition of f(z) is just f(z) = H{Ll Y. aexp(—n|z(s,a)]) =

Hle exp(—n||z"||1) as each entry of z is i.i.d. We thus have

f(z+0) = ] e (= (1" + Bl = 12"11) ) £,
h=1

which gives
f (Z + Zk)

H H
—— 72 ¢ |exp —UZHZZHI , eXP UZH?L;HI
f(Z) h=1 h=1

by triangle inequality. Therefore, Pr+1(7)/p, () lies in this interval as well, which is just our claim. [

Lemma 12 (Bounding Stability Term). The stability term is bounded by

E

K H
DX k() = prra(m)) (el ?Z>] < 3nH2SAK.

k=1 h=1mell
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Proof. By summing up Lemma 11 for all 7 € IT and using the fact that 1 — exp(—2) < x, we have

H

> (o) = prsa Zwk <n2||eku1 S op(m) Y k), Vee K] (D)

mell h'=1 mell =1

To proceed, we need to investigate the Geometric Re-sampling process. Consider the random variable
M, ,? whose value is determined in the last line of Algorithm 1. One may view it as a “truncated”
geometric random variable, where Geo(q) is a geometric random variable with parameter ¢, i.c.,
Pr{Geo(q) = n} = (1 — q)" 'q. Formally, we have:

M} = min{Geo(q}(s",a})), L}, where ¢} (s,a) = ]E uw s,a)] Zpk (s, a). (8)
mell

So if we calculate the expectation of @,; (s,a) only with respect to M]*, we will have

Z}k‘(s, a)
qr(s,a)’

Let 17 (s, a) be the shorthand notation of 1[(s}, al') = (s, a)]. Then for those k' # h in the RHS of
Eq. (7), we have

nkE ZZZP% ™)l (s,a) 0 (s,a) Y N (11| Fea

E [Bi(s,)|(st.af) = (s.0)] <

h=1 s,a mell W %h
(a) H h h Eﬂenpk( 7h’
<nE ZZ]lk(s,a)Ek(s,a) Z 125 11| Fr—1
h=1 s,a 4 (s, a) h=h

®) , ©)
<HE | Y 10 1| Feor | < nH?SA.
h'!+h

where (a) is taking expectation w.r.t. M ,? (b) used the definition of qZ together with the fact that
2 (s.0) 1%(s,a) = 1, and (c) used the fact that E@;/(s’, a') | Fe_1] < £ (s',a’) <1 (Lemma 38).

For those terms with i = A’ in Eq. (7), by direct calculation and the fact that ?,g is a one-hot vector,
we can write them as

ZZ Zpk ™l (s, a (@\Z’(s,a))

h=1 s,a well

Fre 1] <2nE Z Zk( ;]:k—l <2nHSA
k

h,s,a

where we use E[(¢(s,a))? | Fr_1] < 2(¢/"(s,a)) ™" (Lemma 39). Combining the terms with i’ # h
and the ones with h’ = h gives our conclusion. O

B.1.4 Proof of Theorem 4

Proof of Theorem 4. From Lemmas 9, 10 and 12, we have

AHK 2H
Rk < 5 (1 +1n(SA)) + 3nH*SAK.
el n
Therefore, if we pick ' = VHSAK and L = \/SAK/H,
/2 A
Ry < LV o e SAR(1 + 1n(5.4)) + 317V/SAR ~ 6 (#**V/SAK),
e
as desired. L
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Algorithm 3 FTPL for Episodic AMDPs with Bandit Feedback and Unknown Transition
Require: Laplace distribution parameter 7. Geometric Re-sampling parameter L.
1: Initialize Py < (A(S))[H [x8xA (the set of all possible transition functions).
Sample perturbation 60 = z such that 2" (s, a) is an independent sample of Laplace(n).
fork=1,2,...,Kdo
Let (mk, Pr;) = argmin ;. pyenixp, V(7 Cripr +2, P) by Extended Value Iteration (Jaksch
et al., 2010). (See also Remark 16 for more details.)

BN

5: forh:1,2,...,Hdo

6: Observe s, play a} = 7,(sh), suffer and observe loss £ (s?, a}t).

7: for M}' =1,2,...,Ldo

8: Sample a fresh perturbation Z in the same way as z.

9: Calculate (7, Py) = argmin , perxp, V(7 lp—1 + 2, P).

10: Pick the transition P} € Py such that z”(sl, al'; P}) is maximized via the COMP-
UOB procedure proposed by Jin et al. (2020).

11: Simulate 7}, for h steps starting from s' and following transitions (13,2)1, ce (ﬁé)h

12: if (s, al) is visited at step h or M}' = L then

13: Set (1 (s,a) = M} - £ (sh al) - 1[(sh, al') = (s,a)] and break.

14: Calculate P41 according to Eq. (10).

B.1.5 Comparism with the CONTEXT-FTPL algorithm

One may think that our algorithm together with its analysis looks quite similar to the CONTEXT-FTPL
algorithm (Syrgkanis et al., 2016, Algorithm 2) for adversarial contextual bandits. In fact, we can
even convert the episodic AMDP problem with known transition as an instance of their contextual
semi-bandit problem: for time slot (k, k), the “context” is h and the loss vector is @kb A policy 7
under context 2 = h will then give an “action” w(h) = u” (the occupancy measure), which means
it will suffer loss (u”, @,;) Both algorithms add perturbations to each of the contexts, 1,2,..., H,

denoted by 2%, 22, ..., 211 € R34 respectively.

However, there is a main differences between our setting and theirs: in their setting, the action space
(where 7(x) belongs) is binary. However, in our case, ! € [0,1]%4 is continuous. Though this
difference may look tiny, it actually induces extra difficulties: this subtle difference will make their
Lemma 10, stated as follows, no longer hold.

Lemma 13 (Syrgkanis et al. (2016, Lemma 10)). For any contexts x*,z2,...,xT and non-negative
linear loss functions £*, (2, ... (T, suppose that z"(s,a) ~ Laplace(n), CONTEXT-FTPL satisfies
E. [(n"(2"),0") = (x"*1 ("), )] <n-E[(n'(a"),£1)%], VI<t<T. ©)

To see this, consider the simple case that there is only one possible value of the context together
with two policies, each associated with action vectors (0.1,0.1,0.2) and (0.2,0.1,0.1), denoted by
m1 and 7o, respectively. Set the cumulative (perturbed) loss vector £y.:—1 as (0.75,0.2,0.6) and
¢, = (0.1,0,0) (this is set to be one-hot, so it can be yielded from our Geometric Re-sampling
process). Set the Laplace distribution parameter n = 3. Then, by direct calculation via integration,
pe(m1) = 0.609453 and pyy1 (1) = 0.675248. As (1, ¢*) = 0.01 and (72, ') = 0.02, the LHS of
the Eq. (9) will be 0.00065795 while the RHS will be 0.000651492. Therefore, Eq. (9) simply does
not hold, even if there are only 2 policies, 3 dimensions and 1 context.

Fortunately, as explained in the main text, though this strong version of “single-step stability lemma”
does not hold, we are still able to prove a weaker version, Lemma 3 (which is restated as Lemma 11 in

the appendix), to bound the stability term, which is worse only by a factor H, instead of ||Zg loo < L.

B.2 Unknown Transition Case (Theorem 5)

We first present our algorithm for the unknown transion case in Algorithm 3.
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B.2.1 Transitions’ Confidence Set Construction

We first discuss our construction of transitions’ confidence sets. As in Jin et al. (2022), we maintain a
confidence set of transitions 7}, for each episode k € [K] as Eq. (10), where Py = (A(S))HIxSxA,

As mentioned in the main text, we also want to ensure that Py, 1 C Pj. Instead of taking Py N
P2 N --- Py, when doing the optimization, we directly ensure Py C Pj, when constructing the
confidence sets, such that they are always shrinking. This is to ensure a well-bounded error term, as
we will illustrate in Lemma 18.

Prs1 = PN {13; [H] xS x A — A(S)Hﬁh(s’ | s,a) — Pr(s | s,a)| < et(s' | s,a),Vs,8' € S,a € A},

(10)
—h ,

where £ (s' | s,a) — 4 P.(s'| s,a) 1n(}1LOHSAK/5) 410 1n(1OHSilK/5) ’ (11

max{1, N;(s,a)} max{1, N;'(s,a)}
—h NP (s' | s,a
and P, (s’ | s,a) = ’;\W,
k k
NP (s, a) Z (st ah) = (s,a)], N} (s'| 5,a) Z [spHt =8 (sl al) = (s,a)).

By the following lemma from Jin et al. (2020), we define K good events, &1, &, . .., Ex, where &
means P € Py. From the following lemma, we can conclude that Pr{&;,&,,...,Ex} > 1 — 46.
For simplicity, we also denote & = £; A& A - -+ A Ek. Hence, Pr{€} > 1 — 46 (in fact, we have
£ = EK as 'Pk Q Pk—1)~

Lemma 14 ((Jin et al., 2020, Lemma 2)). With probability 1 — 46, we have PP € Py, for all k € [K].

Remark 15. Note that the original definition is slightly different from ours, where there is no
intersection operations taken with previous confidence sets. However, as long as P belongs to all the
confidence sets, it clearly belongs to the intersection of them.

Remark 16. Note that the Extended Value Iteration (Jaksch et al., 2010) approach works as long
as Py, has the form{P | P"(s' | s,a) € [L"(s' | s,a),R"(s' | s,a)]}, but does not require

—h . ..
[Lh(s' | 5,a), RM(s' | s,a)] to be centered exactly at Py,(s' | s,a) (which is indeed the case for our
algorithm due to the intersection operations).

B.2.2 Regret Decomposition

For the unknown-transition cases, we first do the following regret decomposition as Jin et al. (2020):

K K
Ric =E |37 (V(mi b, B) = V(mii o, Pu) | +B | 3 (Vimis b o) = V(mis b P) | +

k=1 k=1
ERROR Biasl

K N N K N

ENY (V(wk;ﬁk,Pk) - V(vr*;ﬁk,IP’)> +E Y (V(w*;ﬁk,IP’) - V(n*;ek,ﬂm))] .

k=1 k=1

ESTREG Bias2

Intuitively, the ERROR term is due to the transition estimation, BIAS1 and BIAS2 terms are due to
loss estimation for 75 and 7*, respectively, and ESTREG is the regret of our FTPL algorithm on the

estimated transitions P, and the estimated losses Zk.

B.2.3 Bounding the ESTREG Term
Theorem 17 (Bounding ESTREG Term). The ESTREG term is bounded by

ESTREG = E

K
- - 2H
3y (V(wk;ﬁk,Pk) - V(w*;ek,m)] < In(SA))+3nH*SAK+85KHL.
k=1
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Proof. For the ESTREG term, we will also decompose it into an error term (not to be confused
with the ERROR term which occurs in the decomposition of ‘R ; this error term appears in the
decomposition of ESTREG and is related to the ‘be-the-leader’ lemma) and a stability term (as it is
defined for the estimated losses, there is no GR error term anymore). However, here we should define
our “leader” as

(Tk+1, Pry1) = argmin V (W;€0:k,P) .
(m,P )EHXPK»
Instead of directly using (741, Pr+1) as the leader (as we did in the known transition case), we
allow the transition Py selected from Py O Pj1. This is critical to ensure a low stability term,
as we can only derive the “single-step stability lemma” (Lemma 19 in this case) for two probability
distributions sharing a same support (Il x Py, here).
As an analog to the known transition case, we define py (7, P) as the probability density function

(with respect of the perturbation z) of (7, Pi) conditioning on £;, {s, . .., ¢;_1. Note that as there
are infinitely many transitions, we cannot directly write Pr, as in the known-transition setting.

Moreover, as explained before, we allow ?;Hl to be picked from Py instead of Py, so the
probability of picking (741, ﬁkﬂ) as (m, P) is not simply pgy1(m, P). Therefore, we have to
define another notation representing the probability density of picking each (m, P) as (71, ﬁkﬂ),
namely Dkt1 (717 P), which is the probability density of (71, ]Skﬂ) with respect to z, conditioning
onﬂl,ég, .o ,Ek.

Hence, we can write

K H
ESTREG = E [Z Dk (Peg1) — pla (P), 01)

Error term

K H
E[ZZZ/ (pi(m. P) — g (. P)) (u(P), T1) AP

Stability Term

For the error term, we only need to verify that the “be-the-leader argument” that we used in Lemma 10
still holds. Fortunately, it turns out as long as P; 2 Py D - -+ O Pg D {P}, we can always conclude
the following lemma, whose proof is presented later.

Lemma 18 (Bounding Error Term). The error term in this case is bounded by

~ 2H
BSOS (e (Pey) - ui‘r*(ﬂ”),@] < = 2(1+ n(S4) + 43K HL,
k=1h=1

For the stability term, we need a similar but different single-step stability bound, as
Lemma 19 (Single Step Stability). Forall k € [K], (s,a) € S x Aand (7, P) € I X Py,

Pr+1(m, P) > py(m, P) exp ( UZHEkl)

h=1

With this lemma, our derivation for the stability term in known-transition cases (Lemma 12) also
holds, except that we are using the upper occupancy measures in the Geometric Re-sampling process,
instead of the actual occupancy measures. Technically, this means that the event (s}, al) = (s, a)
will happen with a probability

G (s, a) = Pr{(st,af) = (s,a) | Fima} = D pr(m)ul(s, a5 P), (12)

mell
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where py(7) = ka pi(m, P) dP is the marginal probability of picking 7 for episode k (with a slight
abuse of notation). However, in each execution of the Geometric Re-sampling process, the probability
of visiting (s, a) is another probability

h _ h . p/ ~h
ai(s,a) = Y pilm) max (s, a; P') # Gi(s, a), (13)
well
which means we cannot use Lemmas 38 and 39 anymore.

Fortunately, we are able to derive Corollaries 40 and 41 in such a case, which actually implies the
previous two lemmas, given that the actual occupancy measure (A]A,’;(s7 a) is bounded by the upper

occupancy measure q,’g(s, a) (which is indeed this case as long as P € Py, i.e., event & holds).
However, for the BIAS1 term (Theorem 22), as we will see later, this inconsistency will indeed induce

extra difficulties, leading to a 6(H 25V AK ) dominating term as in Jin et al. (2020).
The detailed proof of Lemma 20 will be presented after the proof of this theorem.
Lemma 20 (Bounding Stability Term). The stability term in this case is bounded by

K H
E lZZ > / (pr(m, P) = Prsa (m, P)) (e (P), £})) AP | < 3yH*SAK + 46K HL.
k=1h=1rel1” Pk

Combining them together gives

2H
ESTREG < ~— (1 +1In(SA)) + 3nH*SAK + 80KHL,
n

as claimed. O

Proof of Lemma 18. The proof still follows the idea of Lemma 10. We rewrite the error term as

K K
(Z V(Fas1s by Pegr) — Y V(™ Zk,P)> 1[€]
k=1

k=1

E +

E

K H _
( (1%, 1, (Prs1) = uﬁ*(P),%) ﬂ[ﬁgll :

k=1h=1

For the second term, since by definition 0 < @g(s, a) < L for all k, h, s, a and both ,u%kH (ﬁk.}rl)
and ", (P) are probability distributions, we can bound it as

KHL-Pr{~£} < 46KHL.

Now consider the summation inside the first expectation. If we add an extra term V' (7y; 207 ﬁl) —
V(7*; £y, P) where ¢y = z is the perturbation. The following deduction holds under the event &:

K
> V(@Eriai b, Pryr) = V(™5 b, P)
k

(@)

Il
=)

K-1

IN
Ik

k=0
() K= S = 7 R o 0, P 2 P
< V(Tkt1; b, Pev1) = V(Tk; lo.k -1, Pr) = V(Tr1; ey Pry1) — V(Tx; bo.rc—2, Prc)
— k=0
L (@
<o < V(71 bo, Py) — V(Ra3 4o, Py) < 0.

Here, (a) used the optimality of (T 41, ﬁKH) over the set II x Pg w.r.t. losses 170: K, which is valid
due to &; (b) used the optimality of (7, Pk ) over the set IT x Px_1 w.r.t. losses £o. 1, which is

22
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again valid since 13K+1 € Px € Pk _1; similarly (c) used the optimality of (71, 131) over IT x Py,
which again holds as P, € Py (which is the set of all transitions). So we still have the following
inequality as Lemma 10:

K K
<ZV(7Tk+1;fk7Pk+1 ZVW g, P )1[5]
=1

k=1

S E[V(’]T*;Z(),P) - V(%l;ZO,ﬁl)].

By the notation of occupancy measures, we can rewrite the last term as

H

Z 70 Zum P170‘|<2Z]E||€0HOC
h=1

h=1

E

which is again bounded by % (1 4+ In(SA)) due to Lemma 44. Combining these two parts (with or
without &) together gives our conclusion. O

Proof of Lemma 19. We follow the proof of Lemma 11. For a fixed episode k¥ € [K], we con-
sider any (m,P) € II x P;. We use the notation (7, P) = best(¢; P) to denote (m, P) =
argmin ;. pycrxp V(73 €, P). Then we have

(i, P) :/211 [(W,P) — best (lek_l +z;73k)] F(2) dz
= / 1 |:(7T,P) = best (!71;;@_1 + (z +Zk) ;Pk)} f (z +Zk) dz
= / 1 |:(’/T,P) = best (th + Z;Pk)] f (Z +Zk) dz,

where f(z) is the probability density function of z and the second step made use of the fact that
z + £}, is still linear in z. Moreover,

Pra(m P) = [ 1[(n.P) = vest (B 5 P2)| £ ) s
Again by the fact that f(z) = HhH:1 exp(—n||z"||1), which we used in the proof of Lemma 11, we

have
7 (2 +1) = Hexp( n (11" + 2l = 12411) ) £,

f Z+ 0 H H
(Mk) € [exp (—nZn?Zh) exp <n Zu?’ml)]
h=1 h=1

by triangle inequality. Therefore, Pr+1(7.P)/p, (x,P) lies in this interval as well, which is just our
claim. O

which gives

Proof of Lemma 20. Let us focus on a single episode, say k € [K]. We should first make sure that
gl (s,a) < q}(s,a) (defined in Equations (12) and (13)), which happens when P € Py, i.e., & holds.
Therefore, we rewrite the k-th summand of the stability term as

B[S [ nrP) s, P4 B aPred

h=1mell

1)5> [ 0 P) = B, Pk () ) dPLE

h=1mrell

(14)
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For the second term, we will bound it trivially as HL Pr{—&,} < 46HL as pg, pr+1 € AL X Py)
and p € A(S x A). For the first term, we will do something similar to Lemma 12, as follows:

Summing up Lemma 19 for all (7w, P) € II x Py, and using the fact that exp(—z) > (1 — z) gives

Z / — Prya(m Z ph (P dpP
P h=1

mell
H
<nZHek I - Z/ pr(m, P) S (ul(P), 22 aP. (15)
h/=1 mell h=1

By considering the randomness of M, we will still have the following property, except for a different
definition of ¢:

h
E Zﬁ(s,a) (sh,al) = (s,a)| < E,Z(s,a)’ where ¢ (s, a) Zpk ax pl(s,a; P,
4k (5:0) et

(16)

as when doing the Geometric Re-sampling process, we are picking the transition in Pk that maximizes
the probability of reaching (s, a). Still use 1%(s, a) as the shorthand notation of 1[(s}, al') = (s, a)].
Then for any history Fj_; and those k' # h in Eq. (15),

nE ZZZ/ pu(m, Yl (5,05 PYE(s,0) AP S 2 14114 | Fi s

h=1 s,a w&ll h'#h

(a) Yoren J pr(m, P)pl (s, a; P) AP ,
<k ZZH’L s, )00 (s, a) =T TP D B 11 [ER] | Frs

h
h=1 s,a i (s, a) hiZh
® m - dr(s.0) @
<nHE | Y (16 1L LER] | Fra < nHY E th( o116 Fa | < iS4
h'#h s,a h=1 dk\5:

where (a) is taking expectation w.r.t. M b (b) used the (new) definition of q,’;‘ together with the fact
that 3°, .y 1}(s,a) = 1, (c) used Corollary 40 and (d) used gj!(s,a) < q;:(s,a) (which is due to
1[Ek]).

For those terms with b’ = h in Eq. (15), by direct calculation and the fact that ZZ is a one-hot vector,
we can write them as

ZZZ/ pr(m, P) (s, a; P) (@,ﬁ(s,a))2 dP1[&k]

h=1 s,a well

-7:1@—1]

Z ZTI’GH ka pk(’”aP)/LZ(Saa; P) dp(/]\h(s,a)]l[gk} Fos

<2E k
qp(s,a) qp(s,a)

h,s,a

H
<2172E qu}i 4 1[&]

1 qk Y
by applying Corollary 41 together with the fact that g} (s, a) < g¢}(s, a) when & happens. Combining
the terms with ' # h and the ones with A’ = h gives

Eq. (14) < 3nH?SA + 46HL.

;Z

-/T"k 1‘| S 277H5Av

Therefore, the stability term is bounded by 3nH?SAK + 45K H L, as claimed. O

B.2.4 Bounding Other Terms

The terms other than ESTREG can be bounded similarly to Jin et al. (2020), as follows:
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Theorem 21 (Bounding ERROR Term). The ERROR term is bounded by

K
ERROR = E (V (ks i, P) — V(73 L, Pr))

k=1

<0 (H2S\/M + 5KH) .

Theorem 22 (Bounding B1As1 Term). The BIAS term is bounded by

K
Z (V(wk;ék,Pk) - V(ﬂ'k;zka Pk))
k=1

~(HKSA
L

Biasl = E

<O

< + H*SVAK + H*S®A + 5KH> :

Remark 23. This term looks quite similar to the GR error term (Lemma 9). However, they are in
fact different as we will have some extra terms due to the UOB technique. In other words, we are
having different probabilities when reaching (SZ, aZ) and when doing Geometric Re-sampling (c.f.
Lemma 38 and corollary 40). Therefore, this term will be further decomposed into two parts, where
the first one is due to bias of the GR estimator and the second one is due to the UOB technique and
can be bounded similar to Jin et al. (2022, Lemma A.3). Check the proof below for more details.

Theorem 24 (Bounding BIAS2 Term). The BIAS2 term is bounded by

K
Bias2 =E |3 (V(w*;Zk,JP) - V(w*;ﬁk,P)) = O(SKHL).

k=1

Proof of Theorem 5. By combining Theorems 17, 21, 22 and 24 together, we will have
HSAK
L

Rr <O (HQS\/AK + A +nH?SAK + + H?SVAK + H?S3A + 5KHL> .
n

-1
Picking 7 = (VHSAK) ,L=/SAK/H and § = 1/K gives

Ry <O (H2S\/AK + H*VSAK + HVK + H3S3A) -0 (HQS\/AK n HSSSA) ,
which finishes the proof. O

Proof of Theorem 21. We need the following key lemma from Jin et al. (2020):*

Lemma 25 (Jin et al. (2020, Lemma 4)). Conditioning on &, for any set of policies {my, € }jc(x]
and any collection of transitions {P§7h}ses,he[H] such that P,j’h € Py, with probability 1 — 26,

K H
SN Y k(s P = il (s,0P)| < O (HSVAK).

k=1h=1 (s,a)eSx.A

As all losses are in [0, 1] (note that in the ERROR term we are considering true losses), we have

K K H
(V (i s P) = Vimii b, P)) S YD Y ik, (.03 P) = i, (s, a5 P),
k=1 k=1h=1(s,a)eSxA

which is bounded by 5(H 28V AK) with probability 1 — 24 by the previous lemma. Let the event
(i.e., it is bounded by O(H?Sv/ AK)) be £'. Then

Pr{ NE} =Pr{€ |} Pr{E} > 1 —65.

*The original paper has a slightly different notation as they assumed the states to be ‘layered’, i.e., S =
S1 US2 U - - - USH such that the states in Sy, can only transit to Sp4+1, V1 < h < H. Therefore, their S should
be H times larger than ours. They also used 7" for our K, L for our H and X for our S.
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Therefore, we write
K
E (V (75 i, ) — V(75 L, Pr))
k=1

K
Z (7 b, ) — V (7g; L, Pr)) L[E A ET

K H
[z S (B) — i (P, Y[ v ﬂm]

k=1h=1

— O (H?SVAK + 5KH) ,

where the last step used the fact that p” (P) and ., (Py) are both probability distributions and
0 < h(s,a) <1. O

Proof of Theorem 22. Write our BIAS1 term in terms of occupancy measures:

3)9) S ) SRR R R

k=1n€ell =1

Biasl =

Consider the k-th summand of it, denoted as BIAS1;. We decompose it into two parts, depending on
whether &£, holds:

H
Biasl, <E Z/ pi(m, P) ZE[ P), 0t — 2y | Fi_ 1} dP1(&] | +
rell ¥ Pr h=1
H
E> / P)Y (ki (P), (1) dP]l[ﬁ&c]]
ret” Pk h=1

£ Biasl{ + Bias1;®

For Bias1;%, we bound it trivially as H Pr{—=&;} < 46H as py, € A(m x Py), p(P) € A(S x A)
and (7 (s,a) € [0, 1]. For BIAs1%, we still adopt the notations of g} (s, a) and g} (s, a), which are
defined as

(s, a) = Z/pkﬂP,uwsaIE”)dP
mell

q (s, a) E /pkagnax,uﬂ(saP)dP
"E€EPr
well

Applying Corollary 40 to ]E[E (s,a) | Fx—1], ¥(s,a) € S x A then gives

Z/P 2 1<MZ(P),( o +qk (1 —qp) >£2> dP1[&]

mell

Bias1é =

(every operation for the second term of the inner product is element-wise). As 1[&] implies
(s, a) < ql'(s,a), we can further bound B1As1% as

h _h
Biaslé <E Z Z Z/ pr(m, Pl (s, a; P)qk(s,alz qk(sﬂ)ﬁﬁ(s,a) dP1[&] | +

h=1 (s,a)eSx A m€Il qk(sﬂa’)

3y Z/ pi(m, P)ul(s, a5 P)(1 = g} (s, ))" dP1[&,]

h=1 (s,a)eSxAmell

For the second term, we can simply make use of the fact that

Ekf1:>2/ P)ul(s,a; P) dP < ¢l'(s,a) (17)

well
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together with the condition that £/ (s, a) € [0, 1] and consequently bound it by

2| X dto-sdeayal] €25

h=1 (s,a)eSx.A

where (c) used the fact that ¢(1 — q)* < ge= %7 < L 7, just as what we did in Lemma 9. For the first
term, with a slight abuse of notations, we still use pk( ) to denote the probability of playing 7 at
episode k, i.e., pg (7 fPeP pi (7, P) dP. Then again by Eq. (17), we are actually facing

Z > (ah(s,a) — Gi(s,a)) 1[E] (18)

h=1 (s,a)eSx A

H
5| S amy ¥ (pedtar) - dean)usl). a9

mell h=1 (s,a)eSx.A

Then we follow the idea of Jin et al. (2022, Lemma A.3). We fix the step & € [H] and the state-action
pair (s,a) € S x A. Therefore, for each policy = € II, we can define 1377 € Pi, to be transition
corresponding to the upper-occupancy bound, i.e., it maximizes u" (s, a; P) over all transitions
P € Py. Therefore, with the help of the so-called “occupancy difference lemma” (Jin et al., 2021,
Lemma D.3.1), we can write the summand in Eq. (19) corresponding to k, h, s, a as

ah(s,0) = G (s.0) = Y pi(m) (s, Prsa) = (s, a:P))

mell

= Zpk Z Z pul (z,y;P) (]P’h/ (2| z,y) — PV (2| x,y)) pM (s a | 2 Py,

mell =0z€eS,ycA,zeS

where /,Lﬁ‘hu’l (s,a | z; P) is the so-called “conditional occupancy measure”, which is defined as the
conditional probability of reaching the state-action pair (s, a) at step h from state z at step b’ + 1
with policy 7 and transition P. By &, we have P € Pj,. Therefore, by the definition of confidence
radii, we can further bound

h—1
|47 (s, ) = @i (s, a)] < Zpk Z Z,u,r 2,y P (2 | @, y) (s a | 2 Py),
mell h'=0z,y,z

where €?! is defined as in Eq. (11).

Then, we consider the conditional occupancy measure u,rl et JS,F. We can still use occupancy
difference lemmas (but now we only consider steps between k' + 1 and h) to write its difference with
the conditional occupancy measure w.r.t. [P as

pth (s a | 25 Pr) — plM (s, | 2 P)

h—1
" ’ " " fn
> Yo M | 5P (w ] u o)™ (s a ] w; Pr)

h""=h'+1ueSveEAWES

-1
Yoo > MM sB) (w]u (] s),
h''=h'+1ueS,ve A, weS
where the first step follows from the same reasoning as the unconditioned ones and the second step,
,u';‘h ts,a | w; Pr) =7"(a|s)Pr{s" = s | s = w,w,ﬁw} <7als).
Hence, plugging back into Eq. (19) gives its bound as

h—1
SN @ DT il @y Per (2 | @yl (s,a | 2 Pr)

h,s,a mell h'=0x,y,z
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h—1

SR k(@) D0 D il @y P (2 | ay) kM (s, | 2 P)

h,s,a mell h'=0z,y,2
zElzpk D3P IIENEE RPN D UL EE AP E
h,s,a well =0x,y,2 h''=h'4+1 u,v,w

The remaining part of the proof is exactly the same as that for Lemma A.3 of Jin et al. (2022), which
eventually shows,

HSAK
ZBIASIS— ( SL +H2S\/AK+H3S3A+6HK>. (20)

Combining the two parts together (with or without &) gives,
HSAK

Biasl = O ( + H2SVAK + H3S3A + 5HK> ,

as claimed. O

Proof of Theorem 24. This proof is quite simple. We still decompose BIAS2 into two parts:

K

Z (V(W*;Zk,]P’) — V(ﬂ'*;ékap)ﬂ

k=1

_ f:]E (V730 P) = V(s 00, P)) 1] + iE (V3 0,P) = V(7" 00, P) ) T[EL]

k=1 k=1

Bias2 = E

For the first term, as 1[&;] infers g} (s, a) < ¢(s, a), from Corollary 40, we have
E[l(s, a) | Foa] < li(s.a), Vk € [K],(s,a) €S x A.

Therefore, as both 7* and IP are deterministic, this term is upper bounded by 0. For the second term,

we trivially bound each of the summand by HL Pr{—&} < 46HL as |[((s,a)| < L. Therefore,
combining two terms together completes the proof. O

C Analysis of Episodic AMDP Algorithms with Delayed Feedback
(Theorem 6)

In this section, we consider episodic AMDPs with delayed bandit feedback and unknown transitions.
The algorithm is presented in Algorithm 4, which is very similar to Algorithm 3 except for the part
on handling delayed feedback, highlighted in violet.

C.1 Regret Decomposition

Proof of Theorem 6. For this case, we still use the regret decomposition as Theorem 5, as follows:

K
Ri = Z (i3 U, P) — V(mg; b, Pr)) | +E Z (V(Wk;gk,Pk) — V(?Tk;fk,Pk)> +
Pt =1
ERROR Bias1
K R K R
E Z < Wk,fk,Pk V(W*;Ek,P)> +E Z (V(W*;€k7P) - V(W*;Emp))} .
k=1 k=1
ESTREG BiAs2
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Algorithm 4 FTPL for Episodic AMDPs with Delayed Bandit Feedback and Unknown Transition
Require: Laplace distribution parameter 7. Geometric Re-sampling parameter L.
1: Initialize Py < (A(S))[H]XSXA
Sample perturbation lo = z such that z h(s,a) is an independent sample of Laplace().
fork=1,2,...,K do
Let (mg, Py) = argmin ,: pyenxp, V(™5 D peq, U + =, P) by Extended Value Iteration
(Jaksch et al., 2010), where Qj, = {k’ | k' + di» < k}. (See also Remark 16 for more details.)

BN

5: forh=1,2,...,H do

6: Observe si', play aff = m;,(sl), suffer loss £ (s}, alt).

7: for All £’ < k such that k¥’ + dj» = k do

8: forh=1,2,...,H do

9: for M’ =1,2,...,Ldo

10: Sample a fresh perturbation z in the same way as z.

11: Calculate (m,, Py,) = argmin . pycrxp,, V(T2 cq,, 6 + 2)-

12: Pick the transition P/, € Py such that zu(s%,, al; P/,) is maximized via the
CoMP-UOB procedure proposed by Jin et al. (2020).

13: Simulate 7}, for h steps starting from s' and following transitions
(PINY, . (PN

14: if (s, all) is visited at step h or M], = L then

15: Set @g/(s, a) = M}, -8, (sh, al) - 1[(st, all,) = (s, a)] and break.

16: Calculate P41 according to Eq. (10).

Note that as delays will not affect transitions as well as the loss estimators (viewed in hindsight, i.e.,
the sequence {/} }c[x] Will be the same as if there is no delays), so the ERROR, BIAS1 and BIAS2
can still be bounded by Theorems 21, 22 and 24, respectively. The only difference occurs when
bounding ESTREG, which we show as follows.

Lemma 26 (Bounding ESTREG Term with Delayed Feedback). The ESTREG term is bounded by

K
E

~ ~ 2H
(V(ﬂk;ék, P) — V(w*;ék,P))] <= (1+In(SA)+5nH?SAK+nH?*SAD+126 KHL.
Ui
k=1
As mentioned in the main body, the key difference is that, we will compete a learner that is not only

cheating but also stepping one episode further. However, as it is still using FTPL, we can still bound
the stability term as in Lemma 20. Therefore, the proof is postponed to the end of this section.

Combining the bounds for the four terms together, we will have
SAHK

~ H
Rr <O (HQSA\/T( - o +nH?SAK + ) + + 6HKL) .

Therefore, picking n = ( HSA(K + @)) L=./SAK/H and 6 = 1/K gives
Ry < O (H*SAVE + HY*VSAD),
as claimed. 0

Proof of Lemma 26. Slightly different from the main text, we now consider the following rwo learners,
where the first one is a “cheating learner” that does not suffer any delays, and the second one is a
“cheating leader” that not only does not suffer any delays, but also looks one step further.

(ﬁk,f’k)é argmin V(Wgzo;k,l,P), (%k+1,ﬁk+1)é argmin V(ﬂ';zo;k,P).
(m,P)EILX Py, (m,P)eIIX Py,

Note that both of them are defined w.r.t. transitions in Py instead of the subset Py 1, which is
the same as Appendix B.2. We also define the following three density functions with respect to
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the perturbation z: p(w, P) for (my, Pi) conditioning on 21,172, . fk,l, D (m, P) for (7, ﬁk)
conditioning on ¢1, {5, ..., £;_1 and Pgy1(m, P) for (Tp41, Pr+1) conditioning on £1, fa, ..., {.

The purpose of defining two learners is to decouple the effects from delays and the inherent FTPL
regret. One can see that our (7, Pk) is equivalent to (7, Pk) in Appendlx B.2 while (71, Pk+1)

remains the same. Therefore, the difference between (71, Py,) and (7, P;) can be bounded exactly
the same as Appendix B.2 and we only need to care about delays, i.e., the difference between (7, Pj;)

and (T, 131@) Formally, we decompose the ESTREG into three terms:

K

E (Ul (Pe) — plo (P),02)| =E

H
>k (Py) — k(P 00
1 h=1

k=

Cheating regret

K H
E ZZ :LLTI'k+1 Pk-‘rl IU“Z* (]P))7@lz>‘| .

k=1h=1

K H
E (YD (uh (Py) — pk, . (Phsr), 01

Stability term Error term

Note that the error term and the stability term are exactly the same as Appendix B.2, so we can
directly make use of Lemmas 18 and 20 and bound them by 2 (1 + In(SA)) + 46KHL and

3nH2SAK + 40K H L, respectively. Now consider the cheating regret. Similar to the stability term,
we will have the following single-step stability lemma:

Lemma 27. Forany k € [K], (s,a) € S x Aand (7, P) € Il X Py, we have
H
Pr(m, P) > pr(m, PYexp [ —n > S 01 | .
ke, h=1

where Qi 2 [k — 1)\ Qi = {K' < k | k' +di > k}, i.e., the first k — 1 rounds excluding those
where the feedback is available before round k.

Proof. Note that the proof of Lemma 19 does not rely on the concrete choice of 7, and 7g 1.
Therefore, adopting the proof of Lemma 19 with 7, as 71 will complete our proof. O

With the help of Lemma 27, we can bound the cheating regret similar to the stability term. To see
this, consider a fixed k € [K], we have

B3 [ (n(n.P) = Biln. P Y (a(P).B) P
well Pr h=1
H
2|3 [ (ulr.P) = fulm, P) Y (P). B} dP1EL]
el Pr h=1
H
E|S [ (ulrP) = Bulm P) Y (b (P), B) il
et Pr h=1
H
<E[n Y S Z/ m P)S G P), ) aPLIE | + 40K L

kleﬂ h'=1 mell h=1

<nE Z ST W ) EEDNG Y (s, a)li(s,a)1[E] | +

h=1 (k' h')eQy x [H] (s,a)eSx.A

H 2
nE| Y Yaksa) (fis,a) 1&)| + WKHL,
(s,a)eSx.Ah=1
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where g (s, a) is the actual probability of reaching (s, a) and q} (s, a) is the probability of reaching
(s, a) in a single Geometric Re-sampling trial, as defined in Equations (12) and (13). Note that 1[]
implies g7 (s, a) < q(s, a).

For the second term, using Lemma 39 and g}! (s, a) < q?*(s, a) gives 2nSAH. For the first one, taking
expectation w.r.t. M["in 01'(s,a) = 1[(s", al) = (s,a)]¢}(s,a) M} (s, a) and then w.r.t. ||( ]|, as
in Lemmas 12 and 20 gives nH QSAKNZk |. Further noticing that

K _ K k-1 K—-1 K K—1
NI =SS W +de 2k =3 S 1K +dp k=) dv=D,
k=1 k=1k'=1 k'=1k=k'+1 k'=1

we have the cheating regret is bounded by

K H
EY S Tk (P — il (P, 01 | < nHSAD + 2HSAK + 46K HL.
k=1h=1

The ESTREG term is then consequently bounded by

ESTREG < gu +1In(SA)) + 3nH2SAK + nH*SAD + 2nHSAK + 126 KHL,
U

which is at most %(1 +1In(SA)) + 5nH2SAK +nH?SAD + 126 K HL, as claimed. O

D Analysis of Infinite-horizon AMDP Algorithms

D.1 FTPL-Based Efficient Algorithm (Theorem 7)

In this section present our Algorithm 6 together with its analysis. As described in the main body,
we will divide the time horizon [T into J epochs and fix a policy 7; for the j-th epoch, namely
T, ={(G—-1)H+1,(j—1)H+2,...,jH} where H = L is the length of each epoch (overloading
the notation H from the episodic setting since they have a similar meaning).

D.1.1 Switching Procedure

The most significant difference between infinite-horizon AMDPs and episodic AMDPs is that the
agent will not be reset to s! at the beginning of an “epoch”. To formalize our problem as a online

linear optimization problem (i.e., the total loss represented as Zle (,ufn , 1)), we have to ensure
the distribution over all states is exactly ufrj for most ¢ € 7;. Before presenting the switching
procesure from Chandrasekaran and Tewari (2021), we first restate the assumption together with

several properties that they used. For the sake of completeness, we also include their proofs here.

Assumption 28 (Existance of a Staying State, Restatement of Assumption 2 and Chandrasekaran
and Tewari (2021, Assumption 5.1)). The MDP M has a state s* and an action a* such that
P(s* | s*,a*) = 1.

Lemma 29 (Chandrasekaran and Tewari (2021, Lemma 5.2)). For any two distinct states s,s' € S,
there exists a policy 74 o and ls ¢ < 2D such that

1
Pr{T ! s,8"y :lss/ > —.
r{T(s" | 75,5, 5) s/} > D

Proof. By definition of diameter (as in Definition 1), there exists a policy 7 ¢ such that E[T'(s" |
>

M, 75 ,5)] < D. By Markov’s inequality, this implies Pr{T'(s' | M, 7, ,s)] < 2D} > 1.
By pigeonhole principle, there consequently exists [ s < 2D such that Pr{T(s' | M, 7 s, ) =
Lo} 25 55 = 15"
Lemma 30 (Chandrasekaran and Tewari (2021, Theorem 5.3)). For an MDP that satisfies As-
sumption 28, there exists I* < 2D such that for all states s' # s*, there exists policy 7y such
that

1

Pr{T(s' L) =1 > —
t{T(s" | M, 7y, s") l}_4D
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Algorithm 5 Policy Switching in Infinite-Horizon AMDP (Chandrasekaran and Tewari, 2021)

Require: Current state s € S. Goal policy 7 € II. Current time .

1: while true do

2: Move to state s* using policy 7 .~ as defined by Lemma 29 and update s, ¢ concurrently.

3 Sample the target state g ~ pl.

4 Use policy 4 from Lemma 30 to move [* steps from s* and update s, ¢ concurrently.
5: if s = g then
6
7
8

Sample a Bernoulli random variable I ~ Ber(;j—*).

if I = 1 then

return
" > The while loop will repeat if s # gor I # 1.

Furthermore, denote pg as the probability above. Let p* = mingcs ps. Then p* > ﬁ.

Proof. From the previous lemma, there exists an [, < 4D for all s’ # s* such that there is a policy

Ts+ s hitting s’ from s* in time exactly [, with probability at least ﬁ. Let [* = maxy 44+ [ and

me be the policy that first stays at s* for (I* — [,/) steps and then follows 7 for [, steps suffices. [

Now we are able to present the switching procedure from Chandrasekaran and Tewari (2021), as in
Algorithm 5.

Theorem 31 (Correctness of Algorithm 5, Chandrasekaran and Tewari (2021, Lemma 5.6)). Let the
random variable denoting the time that Algorithm 5 terminates be tgicp. Then for any state s € S

Pr{s; = s | tywien =t} = pt(s), Vt e [T].

Proof. The key idea is to write

_ Pr{s; = 5,9 = 8, tsyiten = t}
Pr{tswitch = t}

PI‘{St =S | tswitch = t}

and then bound the numerator and denominator separately. For the denominator,
Pr{tswitch = t}
= ZPr{st =8,9=258,8—_1» =8} X Pr{tsyiren =t | St = 8,9 =8, 841> = "}
seS

:ZPI‘{St = 8 | g =8,8_|x = S*} X PI‘{g T S*}X
seS
Pr{tswitch =1 ‘ St = 8,9 = S, St_|x = 8*}

:Zps x Pr{g=s,8_1- = "} P p* X Pr{s;_;- = s},
sES Ps

where the last step used definition of ps and I. For the numerator,
Pr{g = 8,8t = S, tswicch = t}
= PI‘{g =5,5;=8,5(1* = 5, lswitch = t}
= Pr{tswitch = t,St =S ‘ g =8,85_1» = 5*} X Pr{g =8,81_|x = 5*}
=Pr{s;=s5|g=s5,85_1+ =} X Pr{tswith =t | 5t = 85,9 = 8,801+ = s"} X
PI'{St_l* = 5*} X Pr{g =8 | St_|x = S*}
p* «
= ps X o x Pr{s;_- = s*} x pk.(s).

S

Plugging them back gives our desired result. O

Theorem 32 (Efficiency of Algorithm 5, Chandrasekaran and Tewari (2021, Lemma 5.7)). The
expected time spent on Algorithm 5 is bounded by 12D? for each execution.
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Algorithm 6 FTPL for Infinite-horizon AMDPs with Bandit Feedback and Known Transition

Require: Laplace distribution parameter 7). Geometric Re-sampling parameter L.
1: Sample perturbations {z* € RS>}, (7 where 2! (s, a) ~ Laplace(n).
2: forj=1,2,...,J do
3: Calculate the policy 7; for this epoch as

T
T = argmln Z Z > + Z(/Li,;f} . (21)
t=1

J'=1teTy

Execute Algorithm 5 with parameters s’, 7;, ¢ (note that Algorithm 5 will update ¢ internally).
for All remaining time slots in 75, i.e., 7; N [t,T] do
Play a' = m;(s"), observe the loss ¢! (s’, a') and the next state st € S.
for Mt =1,2,...,Ldo
Resample a fresh perturbation and get new policy 7r3 from Eq. (21).
Draw a sample from Ber(ul, (s',a";P)). If itis 1 or M" = L, terminate and set

ek

0(s,a) = 1[(s,a) = (s, a")]l'(s',a")M?, V(s,a) €S x A.

Proof. Every time we try to catch the policy from s*, we succeed with probability p* > ;5. Thus,
the expected number of times we try is 4D and each attempt takes [* < 2D steps. Between each of
these attempts, we move at most D steps in expectation to reach s* again. Thus, in total, we have

Eltswieh — to] < 4D(2D + D) < 12D?,

as claimed. O

D.1.2 The Algorithm

With the help of Algorithm 5, we now present our algorithm, Algorithm 6. As mentioned in the main
text, another important difference due to the “non-resetting” nature of an infinite-horizon AMDP is
that, we have to generate 7" perturbations z', 22, ..., 27, whereas only H perturbations is needed in
the episodic settings. For each FTPL update, we will include all of them in the argmin operation, as

in Eq. (21).

This difference can be explained from the contextual bandits’ point of view (c.f. Appendix B.1.5). In
infinite-horizon AMDPs, the possible number of “contexts” is now 7, as for each policy 7, it will
have T distinct features pl, p2, ..., puI. In contrast, for episodic AMDPs, there are only H different
contexts as only { uﬁ}thl can appear. Therefore, as noticed by Syrgkanis et al. (2016), we have to
add perturbations to each of the contexts, which are in total 7" of them.

D.1.3 Proof of Main Theorem

Proof of Theorem 7. To calculate the regret guarantee of Algorithm 6, we consider the following

quantity Rp defined as if there is no cost for a policy switching. By Theorem 32, there can be at
most JD? time slots spent on executing Algorithm 5. Henceforth, the difference between R and

Ry is at most J D2,
T

T
D k0 — %ﬂ]— ZZpJ ) > (k) ;uw* M, 22

t=1 j=1rmell teT;

Rr2E

where p; () is the probability of plckmg T w.I.t. 2, conditioning on ]-"(J 1y# and j(t) is the epoch

that ¢ belongs to, namely j(t) = [4]. Then, we can decompose Ry into three terms exactly the
same as what we did in Appendix B. 1

T
Ll -]+

Z (o O = 0Y+> (it

t=1

GR error term
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[
E >N i) Y (uh — ke, 0| +
|j=1mell teT;
Error term
[ s
Vi
E DD (0i(m) = pja(m) Y (uh, 7))
_j:l well teT;
Stability term

The GR error term is quite similar to Appendix B.1:
Lemma 33. The GR error term is bounded by

T T
SAT
B> (b =)+ (ke 0= 0| < 2=

L
t=1 t=1 ¢

For the error term, we still use the similar “be-the-leader” analysis as Lemma 10, except for we
are now facing a slightly different V-function (which is defined for infinite-horizon). Moreover, as
mentioned in the main text, we are using a different bound when facing 7" different perturbations. As
a result, we will have worse dependency on S and A, but with better dependency on the number of
contexts, which is 7" here (and is H in episodic settings). The result is stated as follows:

Lemma 34. The error term is bounded by

J
10
E Z ij+1<7r) Z(u; — ko Y| < —SVATIn A.
j=1mell teT; "
For the stability term, again much similar to Appendix B.1, we have

Lemma 35. The stability term is bounded by

J
E > jualm) —pi(m) Y {uk, )| < 2mH?SAJ.

j=1mell teT;
Therefore, our regret is bounded by
— AT 1
Ry <Ry +JD? < ST + —OS\/ATlnA +2nH2SAJ + JD?.
€ Ui
Picking n = SY/2D=*T=/3, J = S5 AY>D=**T%% and L = S/*A/*D~*/*T"/* gives Ry =
O (S A2 D*1%°). O

Proof of Lemma 33. We follow the proof of Lemma 9 by replacing K with J and the GR estimator @kl

with Z;. First notice that, from Lemma 38, E[E (s,a) | Fj—1yu) < £'(s,a) forall t € T;. Moreover,
as * is deterministic (i.e., it does not depend on the randomness from the algorithm), the term related
to pt . is bounded by

J J
BN N (b, =) | =E | (b B[ | Fynyu) - £9)] <0,
J=1teT; J=1teT;

For the first term, again by Lemma 38, we have

J

BN DG =) =320 > Bl (s.0)- (1= q'(s,0) ¢ (5.0)]

Jj=1teT; J=1t€T; (s,a)eSx A
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where ¢*(s, a) is the probability of visiting (s, a) in a single execution of the Geometric Re-sampling
process, which is just

¢'(s,a) =Bl (s,a)] = Y p;(m)pk(s,a)
well

in our case. By noticing that ¢(1 — ¢)* < ge= %4 <z L 7 (Neu and Bartok, 2013), we have

J
SNt -] < HJSAiL _ sAT
’ (&

el
j=1teT;
as claimed. O

Proof of Lemma 34. The proof still uses the standard “be-the-leader” technique, but in a slightly
different manner as we are adding perturbations to all time indices. Instead, we follow the idea of
Syrgkanis et al. (2016, Lemma 7) and prove by induction that the following inequality holds for all J
and any policy 7 € II:

T T J
> (2 +ZZ ey ) S D (il 2+ D0 ) (i €).
t=1 J=11teT; t=1 J=1t€T;

Obviously, for J = 0, this inequality holds. Suppose that this inequality holds for .J, then we consider
J+ 1. Letm = myyo. Adding 37, . (17, ¢") to both sides gives

T J4+1 T J4+1
PZRELED DD DL RS BTN D DL N
t=1 j=11teT; t=1 j=1t€T;

However, by definition of 7 ;4o (which is the argmin of the right-handed-side for all policies), it is
further bounded by

T J+1 T J+1
PR R D SR L B N (AL B N R (T i
t=1 J=11teT; t=1 j=1teT;

for any policy 7 € II, which means that the induction hypothesis for J + 1. Therefore, by picking
7 = m* for the real J, we can conclude that

T

J T
DD ) Z D (e ) <Y ik ) =Y (e, 2

J=1t€T; J=1t€T; t=1 t=1

Then taking expectation on both sides gives the error term is bounded by
T

E, ngﬁ(hzl<u;’2t>ilﬂpeill'}t_l<ﬂi’2t> )

which is bounded by 12/T'SA-In[lI] = 2SvATIn A by Lemma 45 (note that as In|II| =
SlnA < SAT, the condmon of applying Lemma 45 indeed holds). O

Proof of Lemma 35. This follows directly from Lemma 12 with some slight modifications as well.
For clarity, we rewrite the full proof here.

We first give the single-step stability lemma for infinite-horizon AMDPs, whose proof will be
presented later:

Lemma 36. Forall j € [J] and (s,a) € S x A,

pj+1(m) > p;(m)exp —nZHE 1|, vrell
teT;
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By summing up Lemma 36 for all = € IT and using the fact that 1 — exp(—z) < z, we have

S )
D i) = piea () D (e By < DN - Y pi(m) Dk ), Vie ] (@23)
mell teT; t'eT; mell teT;

Again noticing that M* = min{Geo(q"(s*, a")), L} where ¢* (s, a) = > . pj(m)pL (s, a) ift € T;.

Then calculate the expectation of 7t (s, a) only with respect to M*, we will have

0 (s, a)

q'(s,a)

E {@(s, a)

(s,a) = (s,a)] <

Let 1*(s, a) be the shorthand notation of 1[(s*,a’) = (s, a)]. Then for those ¢’ # t in Eq. (23),

nE | YD pimut (s, ) (s,a) D 1 4| Fiynym

teT; s,a well t/#t
(a) - D ren Pi(m)pk (s, a)
<nE ZZ]lt(s,a)ét(s,a) S Z 18111 F -1y
h=1 s,a q (S a) t'#t

, (o)
< HE SN | Fymvu | < nH2SA.
t'eT; s,a

where (a) is taking expectation w.r.t. M¢, (b) used the definition of ¢' together with the fact that
> (o) 11(s,0) = 1, and (c) used the fact that E[¢*' (s, a) | F(;_1)n] < ¢"(s,a) < 1 (Lemma 38).

For those terms with ¢’ = ¢ in Eq. (23), by direct calculation and the fact that 7t is a one-hot vector,
we can bound them as

7 ? q'(s,a)
7’]E Z Z Zp] /J’Tr $,a (Z (S,CL)) ]:(jfl)H S 277E Z qt(s a) JT"(jfl)H S 277HSA
h,s,a ’

teT; s,a well

by noticing ]E[(Zt (s,a0))? | Fj—1yu) < 2(¢'(s,a)) ™" (Lemma 39). Combining the terms with ¢’ # ¢
and the ones with ¢ = ¢ gives our conclusion. O

Proof of Lemma 36. The proof will be similar to, but different from Lemma 11, as we are now
adding different perturbations. We now use a slightly different definition of the best-function. Let

7 = best(¢, z) where £ = {¢*, /2 ... ¢m}and z = {2},2%,..., 2T} to denote
m T
T = argmin (Z(ufﬂﬁt + Z (pe, 2 ) .
mell - \i=1 t=1

Then we have

p;(m) :/]l [Wzbest ({@,...,Z(j_l)H},{zl,z2,...,zT})} f(z) dz

z

Zf<z+{0,...,o,Z(j—”H“,...,@H,o,o,...,O}) dz
= [ [r = et (.. B0 oo )]

f(z+{0,...,o,Z(J'—UH“,...,ZJ’H,O,O,...,O}) dz
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Algorithm 7 Hedge for Infinite-horizon AMDPs with Bandit Feedback and Known Transition

Require: Learning rate 7. Number of epochs .J.
1: forj=1,2,...,J do
2: Calculate the distribution of policies for the j-th epoch as

(-HH

pi(m) ocexp [ —n Y (k0] (24)
t=1

Sample the policy m; ~ p; for this epoch.
Execute Algorithm 5 with parameters s?, 75, t (note that Algorithm 5 will update ¢ internally).
for All remaining 7; N [¢, 7] do

Play a' = m;(s"), observe loss (s’ a’) and the next state s'™!. Set

(st at

)
Yren Pi()pk(s,a)”

AN AN

'(s,a) = 1[(s,a) = (s', a")] V(s,a) € S x A.

where f(z) is the probability density function of z and the second step makes use of the fact that
2 + #7 is still linear in z. Moreover,

pjsi(m) = /Zn [w:best ({@,...,@H},z)] £(2) de.

For simplicity, denote & = {0, ...,0,0U—DH+L _ 7iH 00 . 0} ={l[te T]Et T . Again
using the fact that f(z) = HhH:1 exp(—n||z"||1), we have

£(=+B) = T e (=0 (1 + 21 - 121)) 562,

teT;

which gives
flz+0
(f() )e exp [ =0 D 100 | vexp {0 D 1L

teT; teT;

by triangle inequality. Therefore, Pi+1(7)/p; (x) lies in this interval as well, which is just our claim. [

D.2 Hedge-Based Inefficient Algorithm (Theorem 8)
In this section, we present our Hedge-based inefficient algorithm for infinite-horizon AMDPs with
bandit feedback and known transitions. We still use the same epoching mechanism as Algorithm 6.

For Hedge, which is different from FTPL, we will explicitly maintain a distribution p; € A(II) over
all policies for each epoch, and randomly draw one 7; ~ p; for the j-th epoch. As the distribution
p; can be directly calculated (we do not care about computational efficiency now), we can use
importance weighting estimator to estimate the losses. The algorithm is presented in Algorithm 7.

Proof of Theorem 8. As Appendix D.1, we still define ﬁ; as Eq. (22). We can still conclude that

Rr < Rt + JD?. We first show that the importance weighting estimator is indeed unbiased. Notice
that the probability of visiting (s,a) at some slot t € T; is exactly Y p;(m)pk (s, a), which
means, by Lemma 42, we have

E {@(s,a)’]—'(j_l)H} = (!(s,a), Y(s,a)eSxAteTjelJ].

Let ZJ (7) be the random variable denoting the total loss of policy 7 for epoch j:

G(m) =3 (uk, 1.

teT;
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So Eq. (24) is just p;(m) o exp(—n Zg,;ll ZJ/(W)) Therefore, by standard properties of Hedge
(Lemma 37), for any realization of {Zj} jels) (and also {Zt }eer))» we will have
J

J
IORERD I ln'ﬂ'mzzm 2(r es)
j=1

Jj=1 j=1mnell

Consider the second term of the right-handed-side. For a fixed j € [J], it becomes

YopmBm =Y pim [ > Y ph(s,0)l(s,a)

well mell teT; (s,a)eESxA

<HY @Y | Y ws ol

Tell teT; \(s,a)eSx.A

HY Y Y (healea)

mell teT; (s,a)ESXA
where the first inequality made use of Cauchy-Schwartz inequality while the second equality used the

fact that Zt is one-hot. Plugging back into Eq. (25) and taking expectation on both sides,
J

J
Z pj’ - j(ﬂ-*)

=1

J
@ SIn A Z @Y Y wsa) (P, a))2 Fi-vm

TE teT; (s,a)ESXA
SlnA 1
TIH E p(ﬂ-) ,LL;.(S,CL) . ]:(',1)].[
Z 71'621_1 ’ 25627—7 (s’a)ze;ng ZTA’EH pj('/T)/L;.(S,a) !
InA

where (a) used pf (s, a) < 1 and (b) used Lemma 43. Moreover, for the left-hand side, we have
J
E > 05 ly) Zf ZE 2 ps(m 3 e = e, )| Py
j=1 mell teT;
By using Lemma 42, this is exactly
J
ZE ij Z 7”2*az}>]:(j—1)H =E ZZ [, = Hres U) | = R
mell teT; Jj=1t€T;

Therefore, we will have

__ InA
Ry < Rp+JD? < 22

which gives Ry = (5(52/3A1/3D2/3T2/3) when picking J = SY*AY3D=Y*T** and n =
Si/s A=/ D=2 p=s, O

Lemma 37 (Property of Hedge). Suppose that we are using Hedge for T'-round online learning
problem that has K actions, i.e., at time slot t € [T, picking i; according to the probability
distribution p, € A([K]) which is defined as:

Pt (i) ocexp( nZé ), Vi € [K],t € [T,
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where £,(i) > 0 is the non-negative loss associated with action i at time slot t. Then, for all i* € K],

we have
T In K
Z (pe, be) — <7+7722pt )03 (i)
t=1

t=1 i=1

Note that here we are considering non-randomized loss functions here.

Proof. For simplicity, define L; (i) as S-_, £, (i). Let

1 K
d, = 5 In <Z exp (—T]Lt(i))> ,

i=1

then

S L exp(—nLi—1(4))

< Zfil exp(—nLq(7)) )
K
In <Z (i) exp(—nt; (@))

K
In (Z Pe(i)(1 — by () + 772&%("))>
) K
5 In (1 n(ps, be) + n* Zpt(i)gf (Z)>

i=1

®) K
< —(pt, b)) + 1 Zpt(i)ff(i),

=1

where (a) used exp(—x) < 1 —x+ 22 forall z > 0 and (b) used In(1 +x) < . Therefore, summing
over t gives

T T N
D e l) <o — B0 Y pi(i) (i)
=1 t=1 i=1
T N
InN 1
< T - Eln (exp(—nLr(i* Z Zpt(z)ff(l)
t=1 i=1

IN

T N
L RO
t=1 i=1

Moving Lr(i*) to the left-handed-side then gives our conclusion. O

E Auxiliary Lemmas

E.1 Geometric Re-sampling Properties

In this section, we list two properties of the Geometric Re-sampling estimator (Neu and Bartdk, 2013)
that we used in the analysis. For the sake of completeness, we also include their proofs here.

Lemma 38 (Neu and Bart6k (2013, Lemma 1)). Consider the Geometric Re-sampling estimator
Or(s,a) = 1[(si, aft) = (s, @) M} (s, a) (s, a). (26)

Let Pr{(s},al') = (s,a) | Fr_1} = q'(s,a). Suppose that the probability of visiting (s, a) in the
re-sampling process is also qZ (s,a), then we have

E [27,3(5, a)‘fk,l] = (1= (1= ql(s,a)") (s, ).
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Proof. By direct calculation, we have

E[Mk S a |fk 17(8270“16 Z 1_(] 1 - Z(n_L)(l_q)n_lq

So we have

E[£(s,0)| Foor | = Pr{(st, k) = (5,a) | Fioa} (s, @) B [M] (5, @)| For, (st af) = (5,0)]
= (1= (1= gi(s,0))") i (s, a),
as desired. O

Lemma 39. For the Geometric Re-sampling estimator as defined in the previous lemma, we have
2 Eh 2
& (@ (s, )| 7] < 2t
qk (87 (l)

Proof. By definition, write
E[(Bh(s,0))|Fion | = EILI(s}, af) = (5, )2 (0h(5, @) 2 (M (s, ))?]
= Pr{(sl, al) = (s,a)} (1} (s,0))* E [(Mk s,a) ‘]:k 1, (st ahy = (s,a)] ) 27

Simply write g}!(s, a) as g. Note that M} (s,a) = min{L, Geo(g)}, it is stochastically dominated by
the geometric distribution with parameter g, whose second moment is bounded by

E [(M}(s,a))?| Fi-1, (s}, ar) = (s,a)]

< B{(Geo(q))?] = Var(Geo(y)) + (ElGeo(q)])* =~ + = < =, 28)
which means 2 » 2
E [(%(S’Q))Q‘fk—l] < Cl(fﬁ(s,a)ﬁ;2 = M7
as claimed. .

Corollary 40. Still consider the GR estimator defined in Eq. (26). Suppose that Pr{(sz, aﬁ) =
(s,a) | Fr—1} = q'(s,a) and the probability of visiting (s,a) in each re-sampling procedure is
Qi (s, a) (where @ (s, a) # qi'(s,a)). We then have

ar S,a
B[] Fics] = 0 (1= (1= (s, 0)") ).

Proof. The calculation of E[M[(s,a) | F—1, (s}, al') = (s,a)] is the same as the one in Lemma 38.
Therefore,

E [0 (5, @)| Fuea] = Pr{(sf af) = (5,0) | Feor }ei(s,0) B [ M} (5,0)| Fir, (sh af) = (5,0)]

(s, a
N ZZLES: ai (1 - (1= ql}CL(S,a))L) ﬁZ(s,a)7

as claimed. O

Corollary 41. Suppose the same condition as the previous corollary, i.e., still considering the GR
estimator defined in Eq. (26) where Pr{(s},al) = (s,a) | Fx—1} = qi*(s, a) and the probability of
visiting (s, a) in each re-sampling procedure is ql' (s, a). We have

2 20l(5,0) 85, 0)
B @t 0?7 | < =R O ey
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Proof. Still decompose the variance as Eq. (27). Still write g}'(s,a) as 7 and g}!(s, a) as g. Then we
still have M} (s, a) = min{L, Geo(q)}, which gives E[(M}*(s,a))? | Fr—1, (s}, a}) = (s,a)] < q%
by Eq. (28). Therefore,

B (100,007 < ek o, 007 = 2L ),
as claimed. O
E.2 Importance Weighting Properties
Lemma 42. For the Importance Weighting estimator
(ot qt
P(s,a) = 1[(s', a') = (87a)]Pr{(3t,f;t§s:’ng)7 ST V(s,a) € S x A,

where F is a filtration, we will have

E[¢*(s,a) | F] = l'(s,a), V(s,a) €S x A.
Proof. For simplicity, denote ¢*(s,a) = Pr{(s’,a’) = (s,a) | F}. Then

E[@(s,a) | F] = ¢'(s,a) - m =('(s,a)
forall (s,a) € S x A. O

Lemma 43. For the same Importance Weighting Estimator, we will have

l*(s,a))?

E {(Zt(s,a)y’}-] — (qt(s,a) , V(s,a) €S x A,

where ¢t(s,a) 2 Pr{(st,a?) = (s,a) | F}.

~ o 2 g
Proof. Direct calculation gives E {(ét(s,a))Q‘]:} =q'(s,a)- (z (é’a)) = Lo V(s,a). O

q*(s,a) qt(s,a) >

E.3 Auxiliary Lemmas for Error Terms
In this section, we present two lemmas that will play an important role when bounding the error terms
(as used in Lemmas 10, 18 and 34).

Lemma 44 (Wang and Dong (2020, Fact 2)). Let X1, Xs, ..., X, be i.i.d. random variables drawn
from Exp(n) which is the exponential distribution, then

E [max X;

} < 1+Inn
1<i<n

Ui

Lemma 45 (Generalization of Syrgkanis et al. (2016, Lemma 8)). Let {zt € Rd}le be a sequence
of d-dimensional random variable such that z! ~ Laplace(n) for all i € [m] and t € [T). Let X be a
set of sequences of the form {x* € [0,1]¢}I_,. As long as In|X| < dT, we have

T
10
E, 3 min (mt,zt)] < —+/dTIn|X].
e n
t=1

zeX
t=1

T
max Y (a', zt>1 -E,

Proof. Note that the key difference between this theorem and Syrgkanis et al. (2016, Lemma 8) is that,
their theorem assumed a binary decision set, i.e., zf € {0, 1} instead of [0, 1]. However, their proof
still holds with only a little modification. The first step is still noticing that the distribution of Laplace
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random variables is symmetric around 0, so we only need to bound 2E, {maxxe X Zthl (xt, 2%,
which is bounded by, for any A > 0,

T 1 T
rgﬂnea)%(;@t,zt)} =5 In (exp (IEZ lrxne%)(()\Z@t,th))

E.
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where the last step used the fact that ¢ < 1 (and thus y“f is a concave function in y). Furthermore, by
using the fact that E, [exp (A\z})] is just the moment generating function of Laplace random variables

evaluated at ), it is just (1 — ;\]—z)‘l as long as A < 7. As it is always larger than 1, we can directly
bound

zeX

E. lmax 3 (mt,zt)] < 13" (B [exo (Azg)])ﬁ)

A

\

=
8
m
b
=~
i

T d 1‘7
1 1 1
(S () ) <3m (ST
reX t=1:=1 n? reX t=1i=1
1 " dT 1
=—In[|X 71 Xl+—h|——].
() ()

By using the fact that ﬁ < exp(2z) forall z < }1, as long as A < 2, we will have

d 1 1\ 2dT %
max (xt,zt>] < Xln |X| <_>\2> = 71 | X|+ — NP
,'72

By picking A = ¥ WX 7 (according to the assumption that In|X| < dT) gives the bound

2VdT
%\ /dT ln| X|, which is what we want. O

42



	Introduction
	Related Work

	Preliminaries
	FTPL for Episodic AMDPs
	Known Transition
	Unknown Transition

	FTPL for Episodic AMDPs with Delayed Feedback
	FTPL for Infinite-Horizon AMDPs
	Conclusion
	Notations
	Analysis of Episodic AMDP Algorithms
	Known Transition Case (thm:regret of episodic AMDPs known)
	Unknown Transition Case (thm:regret of episodic AMDPs unknown)

	Analysis of Episodic AMDP Algorithms with Delayed Feedback (thm:regret of delayed AMDPs)
	Regret Decomposition

	Analysis of Infinite-horizon AMDP Algorithms
	FTPL-Based Efficient Algorithm (thm:regret of infinite-horizon AMDPs)
	Hedge-Based Inefficient Algorithm (thm:regret of Hedge)

	Auxiliary Lemmas
	Geometric Re-sampling Properties
	Importance Weighting Properties
	Auxiliary Lemmas for Error Terms


