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Table 4: Details of the pretrained language models considered in this study. MLM, NSP, SOP, and
NTP stand for masked language modeling, next sentence prediction, sentence order prediction, and
next token prediction, respectively. It should be noted that ALBERT employs weight sharing, and
its memory consumption is similar to BERT and RoBERTa.

Model #Parameters dhidden dembedding Pretraining task Pretraining data

BERT base 110M 768 768 MLM & NSP BookCorpus, English Wikipedialarge 340M 1024 1024

RoBERTa base 125M 768 768 MLM BookCorpus, English Wikipedia,
large 355M 1024 1024 CC-News, OpenWebText, Stories

ALBERT base 12M 768 128 MLM & SOP BookCorpus, English Wikipedialarge 18M 1024 128

GPT-2
small 117M 768 768

NTP WebTextbase 345M 1024 1024
large 774M 1280 1280

A IMPLEMENTATION DETAILS

A.1 DETAILS OF THE MODELS

Table 4 provides an overview of the language models used in this study, including base and large
variants of BERT, RoBERTa, and ALBERT. Each model is trained with distinct pretraining tasks
and datasets. In this study, we focus on transferring continuous prompts between masked language
models, as this fill-in-the-blank mechanism is a natural way to probe knowledge (Shin et al., 2020).
We also provide a preliminary empirical investigation of transferring continuous prompts between
different model structures, e.g., from the encoder-only BERT model to the decoder-only GPT-2
model, which is discussed in §B.1.

Due to the variations in pretraining datasets and tokenizing methods, the language models in differ-
ent families (e.g., BERT vs. RoBERTa) have different vocabularies. We obtained a shared vocabu-
lary of tokens by taking the intersection of these individual vocabularies. During the transfer, we first
encode the source prompt embeddings to the entire relative space. Then, we pick top-k dimensions
of highest values (k = 8192) and set the rest of zero, which follows Norelli et al. (2022).

A.2 DETAILS OF THE PROJECTOR BASELINE

One of our baselines is a projector that maps the source embedding space to the target one. We
trained a two-layer neural network as the projector based on the shared vocabulary. Specifically, we
have

Proj(es
i) = W2(f(W1e

s
i + b1)) + b2, (8)

where f is the Leaky ReLU activation function (Xu et al., 2015). For some anchor word i, we denote
by es

i and et
i the word embeddings of the source model and target model, respectively. We train the

projector by minimizing the mean squared error loss:

LMSE =
1

k

k∑
i=1

(Proj(es
i)− et

i), (9)

where k is the size of shared vocabulary between two language models. We trained the neural
network with 10 epochs using the Adam optimizer (Kingma & Ba, 2014). The learning rate was
5e-3 and the batch size was 16. The hidden dimension of this two-layer neural network was 768.
We ran the validation on target models after each training epoch with the projected target prompt
embeddings. We chose the projector with the highest validation performance and used it for test.

B ADDITIONAL RESULTS

In this appendix, we report preliminary results of the additional experiments conducted during the
author response phase based on the reviewers’ suggestions. In particular, we show the adaptability
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Table 5: Results on transferring prompts between encoder and decoder models.

Method
Target BERTbase RoBERTabase GPT2small GPT2medium GPT2large

Direct tuning 50.56 46.24 31.62 32.23 34.44
Manual 30.64 20.48 4.73 8.01 10.23

So
ur

ce
BERTbase - 17.68 10.46 11.52 5.50
RoBERTabase 31.33 - 14.06 13.70 14.33

GPT2small 6.58 0.39 - 13.72 2.34
GPT2medium 4.06 0.50 5.02 - 1.79

Table 6: Results of transferring prompts from source models to RoBERTalarge on the SST-2 and
DPpedia classification tasks.

Method SST-2 (accuracy) DBpedia (accuracy)

Direct tuning 90.94 84.92
Manual 69.95 72.28

Source: BERTbase 82.45 77.05
Source: RoBERTabase 84.63 80.81

of our method to different model architectures in §B.1, and experiment with classification tasks in
§B.2.

B.1 TRANSFER BETWEEN DIFFERENT MODEL ARCHITECTURES

We first demonstrate the feasibility of transferring continuous prompts across different model archi-
tectures. This experiment explores the transferability between encoder and decoder models, focusing
on generative GPT-2 models of varying sizes: small, medium, and large, as detailed in Table 4. We
selected BERTbase and RoBERTabase, two encoder models, for our primary experiment to examine
the transferability of prompts to or from GPT-2 models.

Table 5 shows the results of transferring continuous prompts across architectures on the LAMA
dataset, including comparisons with the performance of directly tuned and manually prompted tar-
get models for reference. We see that the prompts induced on the encoder models, BERTbase and
RoBERTabase, are transferable to the GPT-2 models with different sizes. Notably, RoBERTabase
shows its best transferability, outperforming the manual prompting baseline across all target mod-
els. However, we found that the GPT-2 models as the source cannot induce as meaningful prompts as
the encoder models, often underperforming manual prompting. The underlying reason contributing
to the poor transferability of the continuous prompts induced on GPT-2 models remains unexplored
and merits further study.

B.2 RESULTS ON CLASSIFICATION TASKS

Now we show our proposed transfer method is effective on other NLP tasks. Specifically, we include
SST-2, a binary sentiment classification task, and DBpedia, a 14-category topic classification task.
Unlike LAMA’s entity prediction which requires the model to consider the whole vocabulary, the
classification task only requires prediction within the label words based on the prompt, for example,
“great” or “bad” for the SST-2 dataset (Sun et al., 2022).

As shown in Table 6, compared to using manual prompts on the target model directly, transferring
prompts from both BERTbase and RoBERTabase to the RoBERTalarge target model yields better re-
sults. In line with our previous findings, RoBERTabase shows its superior transferability. Overall,
our additional results present the potential of applying our approach to various tasks and model
architectures.
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