
A Basic facts of Tsallis KL divergence424

We present some basic facts about q-logarithm and Tsallis KL divergence.425

We begin by introducing the 2� q duality for Tsallis statistics. Recall that the q-logarithm and Tsallis426

entropy defined in the main paper are:427

lnq x =
x1�q

� 1

1� q
, Sq(x) = �hxq, lnq xi .

In the RL literature, another definition q⇤ = 2� q is more often used [Lee et al., 2020]. This is called428

the 2� q duality [Naudts, 2002, Suyari and Tsukada, 2005], which refers to that the Tsallis entropy429

can be equivalently defined as:430

lnq⇤ x =
xq⇤�1

� 1

q⇤ � 1
, Sq⇤(x) = �hx, lnq⇤ xi ,

By the duality we can show [Suyari and Tsukada, 2005, Eq.(12)]:431

Sq(x) := �

⌧
xq,

x1�q
� 1

1� q

�
=

h1, xq
i � 1

1� q
=

⌦
1, xq⇤

↵
� 1

1� q⇤
= �

⌧
x,

xq⇤�1
� 1

q⇤ � 1

�
=: Sq⇤(x),

i.e. the duality between logarithms lnq⇤ x and lnq x allows us to define Tsallis entropy by an432

alternative notation q⇤ that eventually reaches to the same functional form.433

We now come to examine Tsallis KL divergence (or Tsallis relative entropy) defined in another434

form: Dq
KL(⇡ ||µ) =

D
⇡, lnq⇤

⇡
µ

E
[Prehl et al., 2012]. In the main paper we used the definition435

Dq
KL(⇡ ||µ) =

⌦
⇡,� lnq

µ
⇡

↵
[Furuichi et al., 2004]. We show they are equivalent by the same logic:436

D
⇡,� lnq

µ

⇡

E
=

*
⇡,�

�µ
⇡

�1�q
� 1

1� q

+
=

*
⇡,

⇣
⇡
µ

⌘q�1
� 1

q � 1

+
=

⌧
⇡, lnq⇤

⇡

µ

�
. (12)

The equivalence allows us to work with whichever of lnq and lnq⇤ that makes the proof easier to437

work out the following useful properties of Tsallis KL divergence:438

� Nonnegativity Dq
KL(⇡ ||µ) � 0: since the function � lnq ⇡ is convex, by Jensen’s inequality439

D
⇡,� lnq

µ

⇡

E
� � lnq

D
⇡,

µ

⇡

E
= 0,

� Conditions of Dq
KL(⇡ ||µ) = 0: directly from the above, in Jensen’s inequality the equality holds440

only when µ
⇡ = 1 almost everywhere, i.e. Dq

KL(⇡ ||µ) = 0 implies µ = ⇡ almost everywhere.441

� Conditions of Dq
KL(⇡ ||µ) = 1: To better align with the standard KL divergence, let us work with442

lnq⇤ , following [Cover and Thomas, 2006], let us define443

0 lnq⇤
0

0
= 0, 0 lnq⇤

0

µ
= 0, ⇡ lnq⇤

⇡

0
= 1.

We conclude that Dq
KL(⇡ ||µ) = 1 whenever ⇡ > 0 and µ = 0.444

� Bounded entropy 8q, 0  Sq(⇡)  lnq |A|: let µ = 1
|A| , by the nonnegativity of Tsallis KL445

divergence:446

Dq
KL(⇡ ||µ) =

⌧
⇡,� lnq

1

(|A| · ⇡)

�
=

*
⇡,

(|A| · ⇡)q�1
� 1

q � 1

+
= |A|

q�1

 
h1,⇡q

i � 1

q � 1
�

1
|A|q�1 � 1

q � 1

!
� 0.

Notice that h1,⇡qi�1
q�1 =

D
⇡q, 1�⇡1�q

1�q

E
= h⇡, lnq⇡i = �Sq(⇡) and

1
|A|q�1 �1

q�1 = lnq|A|, we conclude447

Sq(⇡)  lnq |A|.

13



B Proof of Theorem 1 and 2448

We structure this section as the following three parts:449

1. Tsallis entropy regularized policy has general expression for all q. Moreover, q and ⌧ are450

interchangeable for controlling the truncation (Theorem 1).451

2. The policies can be expressed by q-exponential (Theorem 1).452

3. We present a computable approximate threshold  ̂q (Theorem 2).453

General expression for Tsallis entropy regularized policy. The original definition of Tsallis454

entropy is Sq⇤(⇡(·|s)) =
p

q⇤�1

�
1�

P
a ⇡

q⇤(a|s)
�
, q⇤ 2 R, p 2 R+. Note that similar to Appendix455

A, we can choose whichever convenient of q and q⇤, since the domain of the entropic index is R.456

To obtain the Tsallis entropy-regularized policies we follow [Chen et al., 2018]. The derivation457

begins with assuming an actor-critic framework where the policy network is parametrized by w. It458

is well-known that the parameters should be updated towards the direction specified by the policy459

gradient theorem:460

�w / E⇡


Q⇡

@ ln⇡

@w
+ ⌧

@H (⇡)

@w

�
�

X

s

�(s)
@ h1,⇡i

@w
=: f(w), (13)

Recall that H (⇡) denotes the Shannon entropy and ⌧ is the coefficient. �(s) are the Lagrange461

multipliers for the constraint h1,⇡i = 1. In the Tsallis entropy framework, we replace H (⇡) with462

Sq⇤(⇡). We can assume p = 1
q⇤ to ease derivation, which is the case for sparsemax.463

We can now explicitly write the optimal condition for the policy network parameters:464

f(w) = 0 = E⇡


Q⇡

@ ln⇡

@w
+ ⌧

@Sq⇤(⇡)

@w

�
�

X

s

�(s)
@ h1,⇡i

@w

= E⇡


Q⇡

@ ln⇡

@w
� ⌧

1

q⇤ � 1

⌧
1,⇡q⇤ @ ln⇡

@w

�
�  ̃q(s)

@ ln⇡

@w

�

= E⇡

✓
Q⇡ � ⌧

1

q⇤ � 1
⇡q⇤�1

�  ̃q(s)

◆
@ ln⇡

@w

�
,

(14)

where we leveraged @Sq⇤ (⇡)
@w = 1

q⇤�1

⌦
1,⇡q⇤ @ ln⇡

@w

↵
in the second step and absorbed terms into the465

expectation in the last step.  ̃q(s) denotes the adjusted Lagrange multipliers by taking �(s) inside466

the expectation and modifying it according to the discounted stationary distribution.467

Now it suffices to verify either @ ln⇡
@w = 0 or468

Q⇡(s, a)� ⌧
1

q⇤ � 1
⇡q⇤�1(a|s)�  ̃q(s) = 0

, ⇡⇤(a|s) =
q⇤�1

vuut
"
Q⇡(s, a)

⌧
�
 ̃q (s)

⌧

#

+

(q⇤ � 1),

or ⇡⇤(a|s) =
1�q

vuut
"
Q⇡(s, a)

⌧
�
 ̃q (s)

⌧

#

+

(1� q),

(15)

where we changed the entropic index from q⇤ to q. Clearly, the root does not affect truncation.469

Consider the pair (q⇤ = 50, ⌧), then the same truncation effect can be achieved by choosing470

(q⇤ = 2, ⌧
50�1 ). The same goes for q. Therefore, we conclude that q and ⌧ are interchangeable for471

the truncation, and we should stick to the analytic choice q⇤ = 2(q = 0).472

Tsallis policies can be expressed by q-exponential. Given Eq. (15), by adding and subtracting 1,473

we have:474

⇡⇤(a|s) =
1�q
s

1 + (1� q)

✓
Q⇡(s, a)

⌧
�  ̃q

✓
Q⇡(s, ·)

⌧

◆
�

1

1� q

◆�

+

= expq

✓
Q⇡(s, a)

⌧
�  ̂q

✓
Q⇡(s, ·)

⌧

◆◆
,

14



where we defined  ̂q =  ̃q +
1

1�q . Note that this expression is general for all q, but whether ⇡⇤ has475

closed-form expression depends on the solvability of  ̃q .476

Let us consider the extreme case q = 1. It is clear that limq!1
1

1�q ! 0. Therefore, for any x > 0477

we must have x
1

1�q ! 1; i.e., there is only one action with probability 1, with all others being 0. This478

conclusion agrees with the fact that Sq(⇡) ! 0 as q ! 1: hence the regularized policy degenerates479

to argmax.480

A computable Normalization Function. The constraint
P

a2K(s) ⇡
⇤(a|s) = 1 is exploited to481

obtain the threshold  for the sparsemax [Lee et al., 2018, Chow et al., 2018]. Unfortunately,482

this is only possible when the root vanishes, since otherwise the constraint yields a summation of483

radicals. Nonetheless, we can resort to first-order Taylor expansion for deriving an approximate484

policy. Following [Chen et al., 2018], let us expand Eq. (15) by the first order Taylor expansion485

f(z) + f 0(z)(x � z), where we let z = 1, x =
h
Q⇡(s,a)

⌧ �  ̃q

⇣
Q⇡(s,·)

⌧

⌘i

+
(1 � q), f(x) = x

1
1�q ,486

f 0(x) = 1
1�qx

q
1�q . So that the unnormalized approximate policy has487

⇡̃⇤(a|s) ⇡ f(z) + f 0(z)(x� z)

= 1 +
1

1� q

✓✓
Q⇡(s, a)

⌧
�  ̃q

✓
Q⇡(s, ·)

⌧

◆◆
(1� q)� 1

◆
.

(16)

Therefore it is clear as q ! 1, ⇡̃⇤(a|s) ! 1. This concords well with the limit case where ⇡⇤(a|s)488

degenerates to argmax. With Eq. (16), we can solve for the approximate normalization by the489

constraint
P

a2K(s) ⇡
⇤(a|s) = 1:490

1 =
X

a2K(s)


1 +

1

1� q

✓✓
Q⇡(s, a)

⌧
�  ̃q

✓
Q⇡(s, ·)

⌧

◆◆
(1� q)� 1

◆�

= |K(s)|�
1

1� q
|K(s)|+

X

a2K(s)


Q⇡(s, a)

⌧
�  ̃q

✓
Q⇡(s, ·)

⌧

◆�

,  ̃q

✓
Q⇡(s, ·)

⌧

◆
=

P
a2K(s)

Q⇡(s,·)
⌧ � 1

|K(s)|
+ 1�

1

1� q
.

In order for an action to be in K(s), it has to satisfy Q⇡(s,·)
⌧ >

P
a2K(s)

Q⇡(s,·)
⌧ �1

|K(s)| + 1 �
1

1�q .491

Therefore, the condition of K(s) satisfies:492

1 + i
Q⇡(s, a(i))

⌧
>

iX

j=1

Q⇡(s, a(j))

⌧
+ i

✓
1�

1

1� q

◆
.

Therefore, we see the approximate threshold  ̂q =  ̃q + 1. When q = 0 or q⇤ = 2,  ̂q recovers  493

and hence ⇡̃⇤ recovers the exact sparsemax policy.494

C Proof of convergence of ⌦(⇡) = Dq
KL(⇡ || ·) when q = 2495

Let us work with lnq⇤ from Appendix A and define ||·||p as the lp-norm. The convergence proof for496

⌦(⇡) = Dq
KL(⇡ || ·) when q = 2 comes from that ⌦(⇡) is strongly convex in ⇡:497

⌦(⇡) = Dq⇤=2
KL (⇡||·) =

D
⇡, ln2

⇡

·

E
=

*
⇡,

�
⇡
·
�2�1

� 1

2� 1

+
/

���
���
⇡

·

���
���
2

2
� 1. (17)

Similarly, the negative Tsallis sparse entropy �S2(⇡) is also strongly convex. Then the propositions498

of [Geist et al., 2019] can be applied, which we restate in the following:499

Lemma 1 ([Geist et al., 2019]). Define regularized value functions as:500

Q⇡,⌦ = r + �PV⇡,⌦, V⇡,⌦ = h⇡, Q⇡,⌦i � ⌦(⇡).

If ⌦(⇡) is strongly convex, let ⌦⇤(Q) = max⇡ h⇡, Qi�⌦(⇡) denote the Legendre-Fenchel transform501

of ⌦(⇡), then502
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Algorithm 1: MVI(q)
Input: number of iterations T , entropy coefficient ⌧ , TKL coefficient ↵
Initialize Q0,⇡0 arbitrarily
Let {|A|} = {1, 2, . . . , |A|}

for k = 1, 2, . . . , T do
# Policy Improvement

for (s, a) 2 (S,A) do
Sort Qk(s, a(1)) > · · · > Qk(s, a(|A|))

Find K(s) = max
n
i 2 {|A|}

�� 1 + i
Qk(s,a(i))

⌧ >
Pi

j=1
Qk(s,a(j))

⌧ + i
⇣
1� 1

1�q

⌘o

Compute  ̂q

⇣
Qk(s,·)

⌧

⌘
=

P
a2K(s)

Qk(s,a)
⌧ �1

|K(s)| + 1

# Normalize when q 6= 2

⇡k+1(a|s) / expq

⇣
Qk(s,a)

⌧ �  ̂q

⇣
Qk(s,·)

⌧

⌘⌘

end for
# Policy Evaluation

for (s, a, s0) 2 (S,A) do
Qk+1(s, a) =
r(s, a) +↵⌧ (Qk(s, a)�Mq,⌧Qk(s)) + �

P
b2A ⇡k+1(b|s0) (Qk(s0, b)� ⌧ lnq ⇡k+1(b|s0))

end for
end for

• r⌦⇤ is Lipschitz and is the unique maximizer of argmax⇡ h⇡, Qi � ⌦(⇡).503

• T⇡,⌦ is a �-contraction in the supremum norm, i.e. ||T⇡,⌦V1 � T⇡,⌦V2||1  � ||V1 � V2||1.504

Further, it has a unique fixed point V⇡,⌦.505

• The policy ⇡⇤,⌦ = argmax⇡ h⇡, Q⇤,⌦i � ⌦(⇡) is the unique optimal regularized policy.506

Note that in the main paper we dropped the subscript ⌦ for both the regularized optimal policy and507

action value function to lighten notations. It is now clear that Eq. (6) indeed converges for entropic508

indices that make Dq
KL(⇡ || ·) strongly convex. But we mostly consider the case q = 2.509

D Derivation of the Tsallis KL Policy510

D.1 Tsallis KL Policies are Similar to KL511

We extend the proof and use the same notations from [Lee et al., 2020, Appendix D] to derive512

the Tsallis KL regularized policy. Again let us work with lnq⇤ from A. Define state visitation as513

⇢⇡(s) = E⇡ [
P1

t=0 (st = s)] and state-action visitaion ⇢⇡(s, a) = E⇡ [
P1

t=0 (st = s, at = a)].514

The core of the proof resides in establishing the one-to-one correspondence between the policy and515

the induced state-action visitation ⇢⇡ . For example, Tsallis entropy is written as516

Sq⇤(⇡) = Sq⇤(⇢⇡) = �

X

s,a

⇢⇡(s, a) lnq⇤
⇢⇡(s, a)P
a ⇢⇡(s, a)

.

This unique correspondence allows us to replace the optimization variable from ⇡ to ⇢⇡ . Indeed, one517

can always restore the policy by ⇡(a|s) := ⇢⇡(s,a)P
a0 ⇢⇡(s,a0) .518

Let us write Tsallis KL divergence as Dq⇤

KL(⇡ ||µ) = Dq⇤

KL(⇢ || ⌫) =519
P

s,a ⇢(s, a) lnq⇤
⇢(s,a)

P
a0 ⌫(s,a

0)
⌫(s,a)

P
a0 ⇢(s,a0) by replacing the policies ⇡, µ with their state-action visita-520
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tion ⇢, ⌫. One can then convert the Tsallis MDP problem into the following problem:521

max
⇢

X

s,a

⇢(s, a)
X

s0

r(s, a)P (s0|s, a)�Dq⇤

KL(⇢ || ⌫)

subject to 8s, a, ⇢(s, a) > 0,
X

a

⇢(s, a) = d(s) +
X

s0,a0

P (s|s0, a0)⇢(s0, a0),

(18)

where d(s) is the initial state distribution. Eq. (18) is known as the Bellman Flow Constraints [Lee522

et al., 2020, Prop. 5] and is concave in ⇢ since the first term is linear and the second term is concave in523

⇢. Then the primal and dual solutions satisfy KKT conditions sufficiently and necessarily. Following524

[Lee et al., 2020, Appendix D.2], we define the Lagrangian objective as525

L :=
X

s,a

⇢(s, a)
X

s0

r(s, a)P (s0|s, a)�Dq⇤

KL(⇢ || ⌫) +
X

s,a

�(s, a)⇢(s, a)

+
X

s

⇣(s)

0

@d(s) +
X

s0,a0

P (s|s0, a0)⇢(s0, a0)�
X

a

⇢(s, a)

1

A

where �(s, a) and ⇣(s) are dual variables for nonnegativity and Bellman flow constraints. The KKT526

conditions are:527

8s, a, ⇢⇤(s, a) � 0,

d(s) +
X

s0,a0

P (s|s0, a0)⇢⇤(s0, a0)�
X

a

⇢⇤(s, a) = 0,

�⇤(s, a)  0, �⇤(s, a)⇢⇤(s, a) = 0,

0 =
X

s0

r(s, a)P (s0|s, a) + �
X

s0

⇣⇤(s0)P (s0|s, a)� ⇣⇤(s) + �⇤(s, a)�
@Dq⇤

KL(⇢
⇤
|| ⌫)

@⇢(s, a)
,

where �
@Dq⇤

KL(⇢
⇤
|| ⌫)

@⇢(s, a)
= � lnq⇤

⇢⇤(s, a)
P

a0 ⌫(s, a0)

⌫(s, a)
P

a0 ⇢⇤(s, a0)
�

✓
⇢⇤(s, a)

P
a0 ⌫(s, a0)

⌫(s, a)
P

a0 ⇢⇤(s, a0)

◆q⇤�1

+
X

a

✓
⇢⇤(s, a)P
a0 ⇢⇤(s, a0)

◆q⇤ ✓P
a0 ⌫(s, a)

⌫(s, a)

◆q⇤�1

.

The dual variable ⇣⇤(s) can be shown to equal to the optimal state value function V ⇤(s) following528

Lee et al. [2020], and �⇤(s, a) = 0 whenever ⇢⇤(s, a) > 0.529

By noticing that xq⇤�1 = (q⇤ � 1) lnq⇤ x + 1, we can show that �
@Dq⇤

KL(⇢
⇤||⌫)

@⇢(s,a) =530

�q⇤ lnq⇤
⇢⇤(s,a)

P
a0 ⌫(s,a

0)
⌫(s,a)

P
a0 ⇢⇤(s,a0) � 1 +

P
a

⇣
⇢⇤(s,a)P
a0 ⇢⇤(s,a0)

⌘q⇤ ⇣P
a0 ⌫(s,a)
⌫(s,a)

⌘q⇤�1
. Substituting ⇣⇤(s) =531

V ⇤(s), ⇡⇤(a|s) = ⇢⇤(s,a)P
a0 ⇢⇤(s,a) , µ⇤(a|s) = ⌫⇤(s,a)P

a0 ⌫⇤(s,a) into the above KKT condition and lever-532

age the equality Q⇤(s, a) = r(s, a) + Es0⇠P [�⇣⇤(s0)] we have:533

Q⇤(s, a)� V ⇤(s)� q⇤ lnq⇤
⇡(a|s)

µ(a|s)
� 1 +

X

a0

⇡(a|s)

✓
⇡(a|s)

µ(a|s)

◆q⇤�1

= 0

, ⇡⇤(a|s) = µ(a|s) expq⇤

0

B@
Q⇤(s, a)

q⇤
�

V ⇤(s) + 1�
P

a0 ⇡(a|s)
⇣

⇡(a|s)
µ(a|s)

⌘q⇤�1

q⇤

1

CA .

By comparing it to the maximum Tsallis entropy policy [Lee et al., 2020, Eq.(49)] we see the only534

difference lies in the baseline term µ(a|s)�(q⇤�1), which is expected since we are exploiting Tsallis535

KL regularization. Let us define the normalization function as536

 

✓
Q⇤(s, ·)

q⇤

◆
=

V ⇤(s) + 1�
P

a ⇡(a|s)
⇣

⇡(a|s)
µ(a|s)

⌘q⇤�1

q⇤
,
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then we can write the policy as537

⇡⇤(a|s) = µ(a|s) expq⇤

✓
Q⇤(s, a)

q⇤
�  

✓
Q⇤(s, ·)

q⇤

◆◆
.

In a way similar to KL regularized policies, at k + 1-th update, take ⇡⇤ = ⇡k+1, µ = ⇡k and538

Q⇤ = Qk, we write ⇡k+1 / ⇡k expqQk since the normalization function does not depend on actions.539

We ignored the scaling constant q⇤ and regularization coefficient. Hence one can now expand Tsallis540

KL policies as:541

⇡k+1 / ⇡k expq⇤ (Qk) / ⇡k�1 expq⇤ (Qk�1) expq⇤ (Qk) / · · · / expq⇤ Q1 · · · expq⇤ Qk,

which proved the first part of Eq. (7).542

D.2 Tsallis KL Policies Do More than Average543

We now show the second part of Eq. (7), which stated that the Tsallis KL policies do more than544

average. This follows from the following lemma:545

Lemma 2 (Eq. (25) of [Yamano, 2002]).

�
expq x1 . . . expq xn

�1�q
= expq

0

@
kX

j=1

xj

1

A
1�q

+
kX

j=2

(1� q)j
kX

i1=1<···<ij

xi1 · · ·xij . (19)

However, the mismatch between the base q and the exponent 1� q is inconvenient. We exploit the546

q = 2� q⇤ duality to show this property holds for q⇤ as well:547

�
expq⇤ x · expq⇤ y

�q⇤�1
= [1 + (q⇤ � 1)x]+ · [1 + (q⇤ � 1)y]+

=
⇥
1 + (q⇤ � 1)x+ (q⇤ � 1)y + (q⇤ � 1)2xy

⇤
+

= expq(x+ y)q
⇤�1 + (q⇤ � 1)2xy.

Now since we proved the two-point property for q⇤, by the same induction steps in [Yamano, 2002,548

Eq. (25)] we conclude the proof. The weighted average part Eq. (8) comes immediately from [Suyari549

et al., 2020, Eq.(18)].550

E Implementation Details551

We list the hyperparameters for Gym environments in Table 1. The epsilon threshold is fixed at 0.01552

from the beginning of learning. FCn refers to the fully connected layer with n activation units.553

For the Atari games we implemented MVI(q), Tsallis-VI and M-VI based on the Quantile Regression554

DQN Dabney et al. [2018]. We leverage the optimized Stable-Baselines3 architecture [Raffin et al.,555

2021] for best performance. The details can be seen from Table 2. The Q-network uses 3 convolutional556

layers. The epsilon greedy threshold is initialized at 1.0 and gradually decays to 0.01 at the end of557

first 10% of learning. For conservative learning, we choose the Tsallis entropy coefficient as ↵ = 10.558

We show in Figure 6 the full learning curves of MVI(q). Figures 7 and 8 show the full learning curves559

of Tsallis-VI.560
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Figure 6: Learning curves of MVI(q) and M-VI on the selected Atari games.

Figure 7: Learning curves of MVI(q) and Tsallis-VI on the selected Atari games.
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Table 1: Parameters used for CartPole-v1.
Network Parameter Value Algorithm Parameter Value
T (total steps) 5⇥ 105 � (discount rate) 0.99
C (interaction period) 4 ✏ (epsilon greedy threshold) 0.01
|B| (buffer size) 5⇥ 104 ⌧ (Tsallis entropy coefficient) 0.03
Bt (batch size) 128 ↵ (advantage coefficient) 0.9
I (update period) 100 (Car.) / 2500 (Others)
Q-network architecture FC512 - FC512
activation units ReLU
optimizer Adam
optimizer learning rate 10�3

Table 2: Parameters used for Atari games.
Network Parameter Value Algorithmic Parameter Value
T (total steps) 5⇥ 107 � (discount rate) 0.99
C (interaction period) 4 ⌧MVI(q) ( MVI(q) entropy coefficient) 10
|B| (buffer size) 1⇥ 106 ↵MVI(q) ( MVI(q) advantage coefficient) 0.9
Bt (batch size) 32 ⌧Tsallis (Tsallis-VI entropy coef.) 10
I (update period) 8000 ↵M-VI (M-VI advantage coefficient) 0.9
activation units ReLU ⌧M-VI (M-VI entropy coefficient) 0.03
optimizer Adam ✏ (epsilon greedy threshold) 1.0 ! 0.01|10%
optimizer learning rate 10�4

Q-network architecture
Conv4

8,832 - Conv2
4,464 - Conv13,364 - FC512 - FC

Figure 8: (cont’d) MVI(q) and Tsallis-VI on the selected Atari games.
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