Supplementary Materials for: Sliced Mutual Information: A Scalable Measure of Statistical Dependence

Ziv Goldfeld
Cornell University
goldfeld@cornell.edu

Kristjan Greenewald
MIT-IBM Watson AI Lab
kristjan.h.greenewald@ibm.com

A Proofs

A. 1 Proof of Proposition 1

Proof of 1. $\mathrm{SI}(X ; Y) \geq 0$ is trivial by non-negativity of conditional MI. For the equality to zero case, recall that X and Y are independent if and only if (iff) their joint characteristic function $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t X+i s Y}\right]$ decomposes into a product, i.e.,

$$
\varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s)=\mathbb{E}\left[e^{i t X}\right] \mathbb{E}\left[e^{i s Y}\right], \quad \forall t, s \in \mathbb{R}
$$

Also recall that independence is equivalent to zero classic mutual information. Denote $X_{\theta}:=\theta^{\top} X$ and $Y_{\phi}:=\phi^{\top} Y$ and observe that $\mathrm{SI}(X ; Y)=0$ is equivalent to

$$
\begin{equation*}
\oint_{\mathbb{S}^{d_{x}-1}} \oint_{\mathbb{S}^{d_{y}-1}} \mathrm{I}\left(X_{\theta} ; Y_{\phi}\right) \mathrm{d} \theta \mathrm{~d} \phi=0 . \tag{12}
\end{equation*}
$$

Indeed, as $\mathrm{I}\left(X_{\theta} ; Y_{\phi}\right) \geq 0$, for any $\left.(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}, 12\right)$ holds iff

$$
\varphi_{X_{\theta}, Y_{\phi}}(t, s)=\varphi_{X_{\theta}}(t) \varphi_{Y_{\phi}}(s), \quad \forall t, s \in \mathbb{R}
$$

but this is the same as

$$
\varphi_{X, Y}(t \theta, s \phi)=\varphi_{X}(t \theta) \varphi_{Y}(s \phi), \quad \forall t, s \in \mathbb{R}, \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

Changing variables $t^{\prime}=t \theta$ and $s^{\prime}=s \phi$, the last equality holds iff

$$
\varphi_{X, Y}\left(t^{\prime}, s^{\prime}\right)=\varphi_{X}\left(t^{\prime}\right) \varphi_{Y}\left(s^{\prime}\right), \quad \forall t^{\prime} \in \mathbb{R}^{d_{x}}, s^{\prime} \in \mathbb{R}^{d_{y}}
$$

which means X and Y are independent.
Proof of 2. Since SMI is an average of projected MI terms we immediately have

By the DPI for classic MI we further upper bound the right-hand side (RHS) by $\mathrm{I}(X ; Y)$.
We further note that the infimum in the lower bound is always attained, as is thus a minimum. This is because for any $\left(\theta_{n}, \phi_{n}\right),(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$ with $\theta_{n} \rightarrow \theta$ and $\phi_{n} \rightarrow \phi$, we have that ($\theta_{n}^{\top} X, \phi_{n}^{\top} Y$) converge to $\left(\theta^{\top} X, \phi^{\top} Y\right)$ almost surely (in fact, surely) and therefore in distribution. Since MI is weakly lower semicontinuous, it attains a minimum on the compact set $\mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$. To attain the supremum one must impose additional regularity on the Lebesgue density of $P_{X, Y}$ to ensure that MI is continuous in the weak topology; see, e.g., [32, Theorem 1].

Proof of 3 This follows because conditional mutual information can be expressed as

$$
\mathrm{I}(X ; Y \mid Z)=\mathbb{E}_{Z}\left[\mathrm{D}_{\mathrm{KL}}\left(P_{X, Y \mid Z}(\cdot \mid Z) \| P_{X \mid Z}(\cdot \mid Z) \otimes P_{Y \mid Z}(\cdot \mid Z)\right)\right]
$$

and because the joint distribution of $\left(\Theta^{\top} X, \Phi^{\top} Y\right)$ given $\{\Theta=\theta, \Phi=\phi\}$ is $\left(\pi^{\theta}, \pi^{\phi}\right)_{\sharp} P_{X, Y}$, while the corresponding conditional marginals are $\pi_{\sharp}^{\theta} P_{X}$ and $\pi_{\sharp}^{\phi} P_{Y}$, respectively.

Proof of 4 . We only prove the small chain rule; generalizing to n variables is straightforward. Consider:

$$
\begin{aligned}
\operatorname{SI}(X, Y \mid Z) & =\mathrm{I}\left(\Theta^{\top} X, \Phi^{\top} Y ; \Psi^{\top} Z \mid \Theta, \Phi, \Psi\right) \\
& =\mathrm{I}\left(\Theta^{\top} X ; \Psi^{\top} Z \mid \Theta, \Phi, \Psi\right)+\mathrm{I}\left(\Phi^{\top} Y ; \Psi^{\top} Z \mid \Theta, \Phi, \Psi, \Theta^{\top} X\right),
\end{aligned}
$$

where the last equality is the regular chain rule. Since (X, Z, Θ, Ψ) are independent of Φ, we have

$$
\mathrm{I}\left(\Theta^{\top} X ; \Psi^{\top} Z \mid \Theta, \Phi, \Psi\right)=\mathrm{I}\left(\Theta^{\top} X ; \Psi^{\top} Z \mid \Theta, \Psi\right)=\mathrm{SI}(X ; Z)
$$

We conclude the proof by noting that

$$
\begin{aligned}
\mathrm{I}\left(\Phi^{\top} Y ; \Psi^{\top} Z \mid \Theta, \Phi, \Psi, \Theta^{\top} X\right) & =\frac{1}{S_{d_{x}-1}} \oint_{\mathbb{S}^{d} x-1} \mathrm{I}\left(\Phi^{\top} Y ; \Psi^{\top} Z \mid \Theta=\theta, \Phi, \Psi, \theta^{\top} X\right) \mathrm{d} \theta \\
& =\frac{1}{S_{d_{x}-1}} \oint_{\mathbb{S}^{d} x-1} \mathrm{I}\left(\Phi^{\top} Y ; \Psi^{\top} Z \mid \Phi, \Psi, \theta^{\top} X\right) \mathrm{d} \theta \\
& =\operatorname{SI}(Y ; Z \mid X)
\end{aligned}
$$

where the penultimate equality is because (X, Y, Z, Φ, Ψ) are independent of Θ.
Proof of 5. By Definition 2, we have

$$
\operatorname{SI}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)=\mathrm{I}\left(\Theta_{1}^{\top} X_{1}, \ldots, \Theta_{n}^{\top} X_{n} ; \Phi_{1}^{\top} Y_{1}, \ldots, \Phi_{n}^{\top} Y_{n} \mid \Theta_{1}, \ldots, \Theta_{n}, \Phi_{1}, \ldots, \Phi_{n}\right)
$$

where the Θ_{i}, Φ_{i} are all independent and uniform on their respective spheres. Now by mutual independence of the Θ_{i}, Φ_{i} and $\left(X_{i}, Y_{i}\right)$ across i,

$$
\begin{aligned}
\mathrm{I}\left(\Theta_{1}^{\top} X_{1}, \ldots, \Theta_{n}^{\top} X_{n} ; \Phi_{1}^{\top} Y_{1}, \ldots, \Phi_{n}^{\top} Y_{n} \mid \Theta_{1}, \ldots, \Theta_{n}, \Phi_{1}, \ldots, \Phi_{n}\right) & =\sum_{i=1}^{n} \mathrm{I}\left(\Theta_{i}^{\top} X_{i} ; \Phi_{i}^{\top} Y_{i} \mid \Theta_{i}, \Phi_{i}\right) \\
& =\sum_{i=1}^{n} \operatorname{SI}\left(X_{i} ; Y_{i}\right)
\end{aligned}
$$

This concludes the proof.

A. 2 Maximum Sliced Entropy and Proof of Proposition 2

In this section we prove the extended claim stated next, which includes Proposition 2 as the first item. Proposition 5 (Max sliced entropy). The following max sliced differential entropy statements hold.

1. Mean and covariance: Let $\mathcal{P}_{1}(\mu, \Sigma):=\left\{P \in \mathcal{P}\left(\mathbb{R}^{d}\right): \operatorname{supp}(P)=\mathbb{R}^{d}, \mathbb{E}_{P}[X]=\right.$ $\left.\mu, \mathbb{E}\left[(X-\mu)(X-\mu)^{\top}\right]=\Sigma\right\}$ be the class of probability measures supported on \mathbb{R}^{d} with fixed mean and covariance. Then

$$
\underset{P \in \mathcal{P}_{1}(\mu, \Sigma)}{\arg \max } \mathrm{SH}(P)=\mathcal{N}(\mu, \Sigma),
$$

i.e. the normal distribution maximizes sliced entropy inside $\mathcal{P}_{1}(\mu, \Sigma)$.
2. Support contained in a ball: Let $\mathcal{P}_{2}(c, r):=\left\{P \in \mathcal{P}\left(\mathbb{R}^{d}\right): \operatorname{supp}(P) \subseteq \mathbb{B}_{d}(c, r)\right\}$ be the class of probability measures supported inside a d-dimensional ball centered at $c \in \mathbb{R}^{d}$ of radius $r>0$ (denoted by $\mathbb{B}_{d}(c, r)$). Then

$$
\underset{P \in \mathcal{P}_{2}(c, r)}{\arg \max } \mathrm{SH}(P)=\operatorname{Unif}\left(\mathbb{S}^{d-1}(c, r)\right)
$$

i.e. the uniform distribution on the surface of $\mathbb{B}_{d}(c, r)$ maximizes sliced entropy inside $\mathcal{P}_{2}(c, r)$.
3. Expected absolute deviation: Let $\mathcal{P}_{3}(\mu, a):=\left\{P \in \mathcal{P}\left(\mathbb{R}^{d}\right): \operatorname{supp}(P)=\mathbb{R}^{d}, \mathbb{E}_{P}[X]=\right.$ $\left.\mu, \mathbb{E}_{P}\left|\theta^{T}(X-\mu)\right|=a, \forall \theta \in \mathbb{S}^{d-1}\right\}$ be the class of probability measures supported on \mathbb{R}^{d} with fixed mean and expected absolute deviation of the slice marginals from their mean. Then the sliced entropy inside \mathcal{P}_{3} is maximized by a d-dimensional symmetric multivariate Laplace distribution [28] with characteristic function

$$
\Phi(t ; \mu, b)=\frac{e^{i \mu^{\top} t}}{1+\frac{1}{2} b t \boldsymbol{\top} t}
$$

for some b depending on a.
The interpretation of the $\mathbb{E}_{P}\left|\theta^{T}(X-\mu)\right|=a, \forall \theta \in \mathbb{S}^{d-1}$ constraint in 3. is as follows. Note that if the constraint were only for θ s in the cardinal directions (rather than for all $\theta \in \mathbb{S}^{d-1}$), the constraint could be satisfied be the product of i.i.d. Laplace distributions. Unfortunately, the product of Laplace distributions is not a spherical distribution, so the condition would not be satisfied in general for non-cardinal θ. To extend to all θ on the sphere, it is necessary to find some distribution that is spherical but still has Laplace marginals, in other words, a collection of identically distributed Laplace r.v.s that are coupled such that the joint density is spherical. The Symmetric Multivariate Laplace distribution is exactly this distribution.

Proof. For any $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\theta \in \mathbb{S}^{d-1}$, denote the distribution of the corresponding projection by $P_{\theta}:=\pi_{\sharp}^{\theta} P$. For $X \sim P$, we interchangeably write $\mathrm{H}(X)$ and $\mathrm{H}(P)$ for entropy (similarly, for sliced entropy), and thus express sliced entropy as

$$
\mathrm{SH}(P)=\frac{1}{S_{d-1}} \oint_{\mathbb{S}^{d-1}} \mathrm{H}\left(P_{\theta}\right) \mathrm{d} \theta
$$

Proof of 1. Note that for any $P \in \mathcal{P}_{1}(\mu, \Sigma)$ and $\theta \in \mathbb{S}^{d-1}$, the mean and covariance of P_{θ} is $\theta^{\top} \mu$ and $\theta^{\top} \Sigma \theta$, respectively. Since the Gaussian distribution maximizes classic entropy over scalar distribution supported \mathbb{R} with a fixed (mean and) variance, we have $\mathrm{H}\left(P_{\theta}\right) \leq \mathrm{H}\left(\mathcal{N}\left(\theta^{\top} \mu, \theta^{\top} \Sigma \theta\right)\right)=$ $\frac{1}{2} \log \left(2 \pi e \theta^{\top} \Sigma \theta\right)$ for any $\theta \in \mathbb{S}^{d-1}$. Consequently,

$$
\begin{equation*}
\mathrm{SH}(P) \leq \frac{1}{S_{d-1}} \oint_{\mathbb{S}^{d}-1} \frac{1}{2} \log \left(2 \pi e \theta^{\top} \Sigma \theta\right) \mathrm{d} \theta, \quad \forall P \in \mathcal{P}_{1}(\mu, \Sigma) \tag{13}
\end{equation*}
$$

Take $P^{\star}=\mathcal{N}(\mu, \Sigma) \in \mathcal{P}(\mu, \Sigma)$ and observe that for any $\theta \in \mathbb{S}^{d-1}$, we have $P_{\theta}^{\star}=\mathcal{N}\left(\theta^{\top} \mu, \theta^{\top} \Sigma \theta\right)$. Therefore $\mathrm{SH}\left(P^{\star}\right)$ achieves the upper bound in (13) and is the maximum sliced entropy distribution over $\mathcal{P}_{1}(\mu, \Sigma)$.

Proof of 2. We first show that a maximum entropy distributions over $\mathcal{P}_{2}(c, r)$ must be rationally invariant and simultaneously maximize the differential entropy associated with each slice. For $X \sim P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and an orthogonal matrix $\mathrm{U} \in \mathbb{R}^{d \times d}$, denote (with some abuse of notation) the distribution of $\mathrm{U} X$ by $\mathrm{U}_{\sharp} P$. Since the support constraint and the definition of sliced entropy are rotationally symmetric, if $P \in \mathcal{P}_{2}(c, r)$ is a maximum sliced entropy distribution, then so is $\mathrm{U}_{\sharp} P$, for any U orthogonal.
Assume $P \in \mathcal{P}_{2}(c, r)$ maximizes sliced entropy. For any orthogonal $\mathrm{U} \in \mathbb{R}^{d \times d}$ define $\mathcal{A}_{\mathrm{U}} \subseteq \mathbb{S}^{d-1}$ as the set of θ vectors for which the distribution of $\theta^{\top} X$ and $\theta^{\top} U X$ are different. Note that if P maximizes $S H$ then the measure of \mathcal{A}_{U} must be zero. Indeed, if this is not the case, consider the mixture distribution $X^{\lambda} \sim P^{\lambda}:=\lambda P+(1-\lambda) \mathrm{U}_{\sharp} P$, and note that by convexity of entropy

$$
\mathrm{H}\left(\theta^{\top} X^{\lambda}\right)>\lambda \mathrm{H}\left(\theta^{\top} X\right)+(1-\lambda) \mathrm{H}\left(\theta^{\top} U X\right), \quad \forall \lambda \in(0,1), \theta \in \mathcal{A}_{\mathrm{U}}
$$

Now, if \mathcal{A}_{U} has positive measure, by the definition of sliced entropy we get
$\mathrm{SH}\left(X^{\lambda}\right)>\frac{1}{S^{d-1}} \oint_{\mathbb{S}^{d-1}}\left(\lambda \mathrm{H}\left(\theta^{\top} X\right)+(1-\lambda) \mathrm{H}\left(\theta^{\top} U X\right)\right) \mathrm{d} \theta=\lambda \mathrm{SH}(X)+(1-\lambda) \mathrm{SH}(\mathrm{U} X)=\mathrm{SH}(X)$, violating the assumption that $X \sim P$ is a maximum sliced entropy distribution. Hence $X \sim P$ is rotationally invariant and has $\mathrm{H}\left(\theta^{\top} X\right)$ invariant with θ, as claimed.
In what follows, we set $c=0$, the general case is recovered by the translation invariance of entropy. For $d=3$, by Archimedes' Hat Box Theorem, the projection of the distribution Unif $\left(\mathbb{S}^{2}(0, r)\right)$
onto any θ yields $\theta^{\top} X \sim \operatorname{Unif}([-r, r])$, the entropy-maximizing distribution for the slice. Thus, $P=\operatorname{Unif}\left(\mathbb{S}^{2}(0, r)\right)$ maximizes SH for $d=3$.
For dimensions $d>3$, by symmetry we may consider θ of the form $\left(\theta_{1} \theta_{2} \theta_{3} 0 \ldots 0\right)^{\top}$. Let $X \sim P$ for some rotationally-symmetric distribution P. Observe that

$$
\theta^{T} X=\left(\theta_{1} \theta_{2} \theta_{3}\right)\left(X_{1} X_{2} X_{3}\right)^{\top}=\left(\theta_{1} \theta_{2} \theta_{3}\right)\left\|\left(X_{1} X_{2} X_{3}\right)\right\|_{2}\left(\frac{\left(X_{1} X_{2} X_{3}\right)^{\top}}{\left\|\left(X_{1} X_{2} X_{3}\right)\right\|_{2}}\right)
$$

Define $R=\left\|\left(X_{1} X_{2} X_{3}\right)\right\|_{2}, \bar{\theta}=\left(\theta_{1} \theta_{2} \theta_{3}\right)^{\top}$, and $\bar{X}=\frac{\left(X_{1} X_{2} X_{3}\right)^{\top}}{\left\|\left(X_{1} X_{2} X_{3}\right)\right\|_{2}}$. By the spherical symmetry of P, we have that $\bar{X} \sim \operatorname{Unif}\left(\mathbb{S}^{2}(0,1)\right)$ and is independent of R. Let ρ be the probability distribution of R, and recall that $\operatorname{supp}(\rho)=[0, r]$.
For any fixed $\bar{\theta}$ and $R=r$, by Archimedes' Hat Box Theorem, $r \bar{\theta}^{T} \bar{X} \sim \operatorname{Unif}([-r, r])$. By independence, the density g of $R \bar{\theta}^{T} \bar{X}$ is then

$$
g(t)=\int_{0}^{1} \frac{1}{2 \alpha} \mathbb{1}_{\{|t| \leq \alpha\}} d \rho(\alpha), \quad t \in[-r, r],
$$

where $\mathbb{1}_{A}$ is the indicator of A. Observe that g is symmetric about 0 and is monotonically nonincreasing away from 0 .
We next show that transporting mass in ρ to larger radii values cannot decrease entropy. Let $\epsilon>0$ and consider moving mass ϵ in ρ from location α to $\alpha^{\prime}>\alpha$, changing g to g^{\prime}. Doing so decreases g by $\epsilon\left(1 /(2 \alpha)-1 /\left(2 \alpha^{\prime}\right)\right)$ on the interval $t \in(-\alpha, \alpha)$, and increases it by $\epsilon /\left(2 \alpha^{\prime}\right)$ on the intervals $t \in\left[-\alpha^{\prime},-\alpha\right) \cup\left(\alpha, \alpha^{\prime}\right]$. Furthermore, both g and g^{\prime} monotonically nonincrease away from 0 . At $t=\alpha,-\alpha$, set $g=g^{\prime}$. The corresponding change in entropy is

$$
\begin{align*}
\mathrm{H}\left(g^{\prime}\right)-\mathrm{H}(g) & =\int g \log g-g^{\prime} \log g^{\prime} d t \\
& =2 \int_{\alpha}^{\alpha^{\prime}}\left[g \log g-g^{\prime} \log g^{\prime}\right] d t+2 \int_{0}^{\alpha}\left[g \log g-g^{\prime} \log g^{\prime}\right] d t \tag{14}
\end{align*}
$$

We bound these terms separately. Since g, g^{\prime} are both monotonically non-increasing away from 0 ,

$$
\begin{align*}
\int_{\alpha}^{\alpha^{\prime}}\left[g \log g-g^{\prime} \log g^{\prime}\right] d t & \geq \int_{\alpha}^{\alpha^{\prime}}\left[g \log g-g^{\prime}\left(\log g+\frac{g^{\prime}-g}{g}\right)\right] d t \\
& =\int_{\alpha}^{\alpha^{\prime}}\left[\left(g-g^{\prime}\right)\left(\log g+\frac{g^{\prime}}{g}\right)\right] d t \\
& =-\frac{\epsilon}{2 \alpha^{\prime}} \int_{\alpha}^{\alpha^{\prime}}\left[\log g+\frac{g^{\prime}}{g}\right] d t \\
& \geq-\frac{\epsilon}{2 \alpha^{\prime}}\left(\alpha^{\prime}-\alpha\right)\left[\log g(\alpha)+\frac{g^{\prime}(\alpha)}{g(\alpha)}\right] \\
& =-\frac{\epsilon}{2 \alpha^{\prime}}\left(\alpha^{\prime}-\alpha\right)[\log g(\alpha)+1] \tag{15}
\end{align*}
$$

where we have used the concavity of \log to upper bound $\log g^{\prime} \leq \log g+\left(g^{\prime}-g\right) / g$. Similarly, we have

$$
\begin{aligned}
\int_{0}^{\alpha}\left[g \log g-g^{\prime} \log g^{\prime}\right] d t & \geq \int_{0}^{\alpha}\left[g \log g-g^{\prime}\left(\log g+\frac{g^{\prime}-g}{g}\right)\right] d t \\
& =\int_{0}^{\alpha}\left[\left(g-g^{\prime}\right)\left(\log g+\frac{g^{\prime}}{g}\right)\right] d t \\
& =\epsilon\left(\frac{1}{2 \alpha}-\frac{1}{2 \alpha^{\prime}}\right) \int_{0}^{\alpha}\left[\log g+\frac{g^{\prime}}{g}\right] d t \\
& \geq \epsilon\left(\frac{1}{2 \alpha}-\frac{1}{2 \alpha^{\prime}}\right) \alpha\left[\log g(\alpha)+\frac{g^{\prime}(\alpha)}{g(\alpha)}\right]
\end{aligned}
$$

$$
\begin{equation*}
=\epsilon\left(\frac{1}{2 \alpha}-\frac{1}{2 \alpha^{\prime}}\right) \alpha[\log g(\alpha)+1] \tag{16}
\end{equation*}
$$

Substituting (15) and (16) into (14) yields

$$
\mathrm{H}\left(g^{\prime}\right)-\mathrm{H}(g) \geq 2\left[\epsilon \alpha\left(\frac{1}{2 \alpha}-\frac{1}{2 \alpha^{\prime}}\right)-\frac{\epsilon}{2 \alpha^{\prime}}\left(\alpha^{\prime}-\alpha\right)\right][\log g(\alpha)+1]=0 .
$$

Thus, entropy cannot decrease by moving the mass in ρ to larger R values. Note that for any spherically symmetric $X \sim P$ supported in $\mathbb{S}^{d-1}(0, r)$, the transformation $X^{\prime} \leftarrow r \frac{X}{\|X\|_{2}}$ yields $R^{\prime}=\left\|\left(X_{1}^{\prime} X_{2}^{\prime} X_{3}^{\prime}\right)\right\|_{2}=\left\|\frac{r}{\|X\|_{2}}\left(X_{1} X_{2} X_{3}\right)\right\|_{2}=\frac{r}{\|X\|_{2}} R$, i.e. since $\|X\|_{2} \leq r$ the transformation uniformly increases R (and thus $\mathrm{H}(g)$), with no change to the distribution of \bar{X}. Therefore, $P=$ $\operatorname{Unif}\left(\mathbb{S}^{d-1}(0, r)\right)$ is the maximum sliced-entropy distribution.

Proof of 3. Similar to the Gaussian case of Claim 1, we use the fact that the maximum entropy distribution satisfying $\mathbb{E}|X-\mu|=a$ is the (univariate) Laplace distribution. To maximize the sliced entropy, we thus seek a distribution P that results in each $\theta^{T} X$ having the same Laplace distribution. Since linear projections of the isotropic Symmetric Multivariate Laplace distribution [28] are all univariate Laplace distributions with the same parameter, this is a maximum sliced entropy distribution for the class. Unfortunately we could not find the exact parameter conversion (b required to achieve a) in the literature.

A. 3 Proof of Proposition 3

Denote $X_{\Theta}:=\Theta^{\top} X$ and $X_{\Phi}:=\Phi^{\top} X$ and observe that $P_{X_{\Theta}, Y_{\Phi} \mid \Theta, \Phi}(\cdot, \cdot \mid \theta, \phi)=\left(\pi^{\theta}, \pi^{\phi}\right)_{\sharp} P_{X, Y}$. Consider the following two joint distribution:

$$
\begin{aligned}
P_{\Theta, \Phi, X_{\Theta}, Y_{\Phi}} & =P_{\Theta, \Phi} \times P_{X_{\Theta}, Y_{\Phi} \mid \Theta, \Phi} \\
Q_{\Theta, \Phi, X_{\Theta}, Y_{\Phi}} & =P_{\Theta, \Phi} \times P_{X_{\Theta} \mid \Theta} \times P_{Y_{\Phi} \mid \Phi}
\end{aligned}
$$

where $P_{\Theta, \Phi}=\operatorname{Unif}\left(\mathbb{S}^{d_{x}-1}\right) \times \operatorname{Unif}\left(\mathbb{S}^{d_{y}-1}\right)$, while $P_{X_{\Theta} \mid \Theta}$ and $P_{Y_{\Phi} \mid \Phi}$ are the conditional marginals of $P_{X_{\Theta}, Y_{\Phi} \mid \Theta, \Phi}$. By Claim 3 from Proposition 1, we have

$$
\mathrm{SI}(X ; Y)=\mathrm{D}_{\mathrm{KL}}\left(P_{X_{\Theta}, Y_{\Phi} \mid \Theta, \Phi} \| P_{X_{\Theta} \mid \Theta} \otimes P_{Y_{\Phi} \mid \Phi} \mid P_{\Theta, \Phi}\right)=\mathrm{D}_{\mathrm{KL}}\left(P_{\Theta, \Phi, X_{\Theta}, Y_{\Phi}} \| Q_{\Theta, \Phi, X_{\Theta}, Y_{\Phi}}\right)
$$

where the last step using the KL divergence chain rule. The proof is concluded by invoking the Donsker-Varadhan representation for KL divergence [33]

$$
\mathrm{D}_{\mathrm{KL}}(P \| Q)=\sup _{g} \mathbb{E}_{P}[g]-\log \left(\mathbb{E}_{Q}\left[e^{g}\right]\right)
$$

Remark 9 (Max-sliced MI). A similar variational form can be established for max-sliced MI, i.e., $\sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$. In that case the variation representation is

$$
\sup _{g \in \mathcal{G}_{\text {proj }}} \mathbb{E}[g(X, Y)]-\log \left(\mathbb{E}\left[e^{g(\tilde{X}, \tilde{Y})}\right]\right)
$$

with $\mathcal{G}_{\text {proj }}:=\left\{g \circ\left(\pi^{\theta}, \pi^{\phi}\right):(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}, g: \mathbb{R}^{2} \rightarrow \mathbb{R}\right\}$ is the class of projecting functions. The derivation is similar and is thus omitted.

A. 4 Proof of Theorem 1

Denote $\mathrm{I}_{X, Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$ and notice that $\mathbb{E}\left[\mathrm{I}_{X Y}(\Theta, \Phi)\right]=\operatorname{SI}(X ; Y)$, where $(\Theta, \Phi) \sim$ $\operatorname{Unif}\left(\mathbb{S}^{d_{x}-1}\right) \otimes \operatorname{Unif}\left(\mathbb{S}^{d_{y}-1}\right)$. By the triangle inequality we have

$$
\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{n, m}\right| \leq\left|\mathrm{SI}(X ; Y)-\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|+\left|\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\widehat{\mathrm{SI}}_{n, m}\right|
$$

For the first term, since $\left\{\left(\Theta_{i}, \Phi_{i}\right)\right\}_{i=1}^{m}$ are i.i.d., we obtain

$$
\mathbb{E}\left[\left|\operatorname{SI}(X ; Y)-\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \sqrt{\frac{1}{m} \operatorname{var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \leq \frac{M}{2 \sqrt{m}}
$$

uniformly over $P_{X, Y} \in \mathcal{F}_{d}(M)$, where the last step follows because $0 \leq \mathrm{I}_{X Y}(\Theta, \Phi) \leq \mathrm{I}(X ; Y) \leq$ M a.s.

For the second term, recall the notation $X_{\theta}:=\theta^{\top} X$ and $Y_{\phi}:=\phi^{\top} Y$, and observe that

$$
\begin{aligned}
\mathbb{E}\left[\left|\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\widehat{\mathrm{S}}_{n, m}\right|\right] & \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\hat{\mathrm{I}}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \\
& \leq \max _{\theta, \phi} \mathbb{E}\left[\left|\mathrm{l}\left(X_{\theta} ; Y_{\phi}\right)-\hat{\mathrm{\imath}}\left(X_{\theta}^{n}, Y_{\phi}^{n}\right)\right|\right]
\end{aligned}
$$

where $\left(X_{\theta}^{n}, Y_{\phi}^{n}\right)$ are pairwise i.i.d. samples of $\left(X_{\theta}, Y_{\phi}\right) \sim\left(\pi^{\theta}, \pi^{\phi}\right)_{\sharp} P_{X, Y}$. This falls under the MI risk bound from (5), yielding a bound of $\delta(n)$.

A. 5 Proof of Corollary 1

The bounded MI assumption in the definition of $\mathcal{F}_{d}(M)$ can be relaxed to a bounded the max-SMI, i.e.,

$$
\max _{\theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) \leq M
$$

We next derive a uniform bound (over $(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$) on

$$
\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)=h\left(\theta^{\top} X\right)+h\left(\phi^{\top} Y\right)-h\left(\theta^{\top} X, \phi^{\top} Y\right)
$$

Since the Gaussian distribution maximize sliced (differential) entropy under a second moment constraint, we have

$$
h\left(\theta^{\top} X\right)+h\left(\phi^{\top} Y\right) \leq \frac{1}{2} \log \left((2 \pi e)^{2}\left(\theta^{\top} \Sigma_{X} \theta\right)\left(\phi^{\top} \Sigma_{Y} \phi\right)\right)
$$

For the joint entropy, recall that log-concavity is preserved under affine transformations of coordinates and marginalization [34, Lemma 2.1]. Therefore $\left(\pi^{\theta}, \pi^{\phi}\right)_{\sharp} P_{X, Y}$ is also log-concave, and by Theorem 4 of [35] we obtain

$$
h\left(\theta^{\top} X, \phi^{\top} Y\right) \geq \frac{1}{2} \log \left(\frac{e^{4}}{32}\left(\left(\theta^{\top} \Sigma_{X} \theta\right)\left(\phi^{\top} \Sigma_{Y} \phi\right)-\left(\theta^{\top} \Sigma_{X Y} \phi\right)\left(\phi^{\top} \Sigma_{Y X} \theta\right)\right)\right)
$$

Combining the two bounds we obtain

$$
\begin{aligned}
\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) & \leq \frac{1}{2} \log \left(\frac{\pi^{2}}{8} \frac{\left(\theta^{\top} \Sigma_{X} \theta\right)\left(\phi^{\top} \Sigma_{Y} \phi\right)}{\left(\theta^{\top} \Sigma_{X} \theta\right)\left(\phi^{\top} \Sigma_{Y} \phi\right)-\left(\theta^{\top} \Sigma_{X Y} \phi\right)^{2}}\right) \\
& =\frac{1}{2} \log \left(\frac{\pi^{2}}{8} \frac{1}{1-\rho^{2}\left(\theta^{\top} X, \phi^{\top} Y\right)}\right) \\
& \leq \frac{1}{2} \log \left(\frac{\pi^{2}}{8} \frac{1}{1-\rho_{\mathrm{CCA}}^{2}(X, Y)}\right)
\end{aligned}
$$

from which the claim follows.

A. 6 Proof of Corollary 2

The main idea is to use Theorem 2 from [26] to control the estimation error of each differential entropy in the decomposition of $\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$, where $(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$. To that end, we first show that since $p_{X, Y} \in \operatorname{Lip}_{s, p, d_{x}+d_{y}}(L)$ (by assumption), any of its projections also belong to a generalized Lipschitz class as well of the appropriate dimension. To state the result, let $p_{X_{\theta}}, p_{Y_{\phi}}$ and $p_{X_{\theta}, Y_{\phi}}$ be the density of $\theta^{\top} X, \phi^{\top} Y$, and $\left(\theta^{\top} X, \phi^{\top} Y\right)$, respectively.
Lemma 1 (Lipschitzness of projections). If $p_{X, Y} \in \operatorname{Lip}_{s, p, d_{x}+d_{y}}(L)$, then $p_{X_{\theta}}, p_{Y_{\phi}} \in \operatorname{Lip}_{s, p, 1}(L)$, and $p_{X_{\theta}, Y_{\phi}} \in \operatorname{Lip}_{s, p, 2}(L)$, for any $(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$.

Proof. We present the derivation for $p_{X_{\theta}, Y_{\phi}}$; the proof for $p_{X_{\theta}}$ and $p_{Y_{\phi}}$ is similar. Note that Definition 4 is invariant to rotations of both the X and Y. Hence, without loss of generality,
we may assume that θ and ϕ are both canonical unit vectors, e.g., both equal $e_{1}=(10 \ldots 0)$ of the appropriate dimension. Consequently, $\theta^{\top} X=X_{1}$ and $\phi^{\top} Y=Y_{1}$. Denote $x_{2:}:=\left(x_{2} \ldots x_{d_{x}}\right)$ and $y_{2:}:=\left(y_{2} \ldots y_{d_{y}}\right)$ and write

$$
p_{X_{\theta}, Y_{\phi}}\left(x_{1}, y_{1}\right)=\int_{[0,1]^{d^{\prime}}} p_{X, Y}(x, y) \mathrm{d} x_{2:} \mathrm{d} y_{2:}
$$

where $d^{\prime}=d_{x}+d_{y}-2$ and we have used the fact that $\theta^{\top} X=X_{1}$ and $\phi^{\top} Y=Y_{1}$. Finally, for each $x_{1}, y_{1} \in[0,1]^{2}$, we denote $p^{\left(x_{1}, y_{1}\right)}\left(x_{: 2}, y_{: 2}\right):=p_{X, Y}\left(x_{1}, x_{: 2}, y_{1}, y_{: 2}\right)$.
We now bound the norms that make up the definition of the generalized Lipschitz class. First, consider

$$
\begin{aligned}
\left\|p_{\theta, \phi}\right\|_{p, 2} & =\left\|\int_{[0,1]^{d^{\prime}}} p^{(\cdot, \cdot)}\left(x_{: 2}, y_{: 2}\right) \mathrm{d} x_{: 2} \mathrm{~d} y_{: 2}\right\|_{p, 2} \\
& \leq\left(\int_{[0,1]^{2}}\left(\int_{[0,1]^{d^{\prime}}}\left(p^{\left(x_{1}, y_{1}\right)}\left(x_{: 2}, y_{: 2}\right)\right)^{p} \mathrm{~d} x_{: 2} \mathrm{~d} y_{: 2}\right) \mathrm{d} x_{1} \mathrm{~d} y_{1}\right)^{1 / p} \\
& =\left\|p_{X, Y}\right\|_{p, d_{x}+d_{y}}
\end{aligned}
$$

where the 2 nd step follows because $\int_{[0,1]^{d^{\prime}}} p^{\left(x_{1}, y_{1}\right)}\left(x_{: 2}, y_{: 2}\right) \mathrm{d} x_{: 2} \mathrm{~d} y_{: 2} \leq\left\|p^{\left(x_{1}, y_{1}\right)}\right\|_{p, d^{\prime}}$ by Jensen's inequality. Similarly, denoting by $e \in \mathbb{R}^{d}$ the vector that has 1 's in its first and $\left(d_{x}+1\right)$ th coordinates and 0 's otherwise, for any $\left(x_{1}, y_{1}\right) \in[0,1]^{2}$, we have

$$
\left|\Delta_{t(11)}^{r} p_{\theta, \phi}\left(x_{1}, y_{1}\right)\right| \leq \int_{[0,1] d^{d^{\prime}}}\left|\Delta_{t e}^{r} p^{\left(x_{1}, y_{1}\right)}\left(x_{: 2}, y_{: 2}\right)\right| \mathrm{d} x_{: 2} \mathrm{~d} y_{: 2} \leq\left\|\Delta_{t e}^{r} p^{\left(x_{1}, x_{2}\right)}\right\|_{p, d^{\prime}},
$$

where the last step uses Jensen's inequality once more. Having that, we obtain

$$
\left\|\Delta_{t e}^{r} p_{\theta, \phi}\right\|_{p, 2} \leq\left(\int_{[0,1]^{2}}\left\|\Delta_{t e}^{r} p^{\left(x_{1}, y_{1}\right)}\right\|_{p, d^{\prime}}^{p} \mathrm{~d} x_{1} \mathrm{~d} y_{1}\right)^{1 / p}=\left\|\Delta_{t e}^{r} p_{X, Y}\right\|_{p, d_{x}+d_{y}}
$$

Consequently $\left\|p_{\theta, \phi}\right\|_{\operatorname{Lip}_{p, s, 2}} \leq\left\|p_{X, Y}\right\|_{\operatorname{Lip}_{p, s, d_{x}+d_{y}}} \leq L$, for all $(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$, as required.

Based on the lemma, we may invoke [26, Theorem 2] to obtain error bounds on the estimation of the sliced entropy terms that comprise SMI. We first restate the result of [26]: if $X \sim p_{X} \in$ $\operatorname{Lip}_{p, s, d}(L)$, for $d \in \mathbb{N}, s \in(0,2], p \in[2, \infty)$, is β-sub-Gaussian $\left.{ }^{5}\right] \beta>0$, and satisfies the tail bound $\int_{\mathbb{R}^{d}} e^{\beta\|x\|^{2}} p_{X}(x) \mathrm{d} x \leq L$, then

$$
\begin{equation*}
\left(\mathbb{E}\left[\left(\hat{\mathrm{H}}\left(X^{n}\right)-\mathrm{H}(X)\right)^{2}\right]\right)^{\frac{1}{2}} \leq C\left((n \log n)^{-\frac{s}{s+d}}(\log n)^{\frac{d}{2}\left(1-\frac{d}{p(s+d)}\right)}+n^{-\frac{1}{2}}\right) \tag{17}
\end{equation*}
$$

for a constant C depending only on s, p, d, β, L.
Note that $p_{X_{\theta}}, p_{X_{\theta}, Y_{\phi}}$, and $p_{Y_{\phi}}$, for any $(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$, are compactly supported and hence sub-Gaussian (with a sub-Gaussian constant and tail bound that depend only on d and L). Lemma 1 then implies that $\mathrm{H}\left(\theta^{\top} X\right), \mathrm{H}\left(\phi^{\top} Y\right)$, and $\mathrm{H}\left(\theta^{\top} X, \phi^{\top} Y\right)$ can all be estimated within the framework of [26] under the error bound from (17]. Denoting the respective estimators by adding a hat to the differential entropy notation and letting $\mathrm{e}_{\theta}, \mathrm{e}_{\phi}$, and $\mathrm{e}_{\theta, \phi}$ be their L_{2} errors, we obtain

$$
\begin{equation*}
\max \left\{\mathrm{e}_{\theta}, \mathrm{e}_{\phi}, \mathrm{e}_{\theta, \phi}\right\} \leq C\left((n \log n)^{-\frac{s}{s+2}}(\log n)^{\left(1-\frac{2}{p(s+2)}\right)}+n^{-\frac{1}{2}}\right), \quad \forall(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1} \tag{18}
\end{equation*}
$$

Here we used the fact that the rate is dominated by the error in estimating the 2-dimensional differential entropy $\mathrm{H}\left(\theta^{\top} X, \phi^{\top} Y\right)$. Recall that the considered MI estimator relies on the decomposing

$$
\mathrm{I}\left(\theta^{\top} X^{\prime} \phi^{\top} Y\right)=\mathrm{H}\left(\theta^{\top} X\right)+\mathrm{H}\left(\phi^{\top} Y\right)-\mathrm{H}\left(\theta^{\top} X, \phi^{\top} Y\right)
$$

and estimating each sliced entropy separately. Bounding the MI estimation error via 18 produces the result.

[^0]
A. 7 Proof of Proposition 4

Proof of 1. By Part 2 of Proposition 1. we have

$$
\begin{aligned}
\mathrm{SI}\left(\mathrm{~A}_{x} X+b_{x} ; \mathrm{A}_{y} Y+b_{y}\right) & \leq \sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top}\left(\mathrm{A}_{x} X+b_{x}\right) ; \phi^{\top}\left(\mathrm{A}_{y} Y+b_{y}\right)\right) \\
& \leq \sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right),
\end{aligned}
$$

where in the last step we have used the DPI of classic MI. Now, let $\left\{\left(\theta_{i}, \phi_{i}\right)\right\}_{i=1}^{\infty}$ be a sequence converging to the supremum of $\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$. Set $b_{y}=b_{x}=0$, and consider the sequence $\left\{\left(\mathrm{A}_{x}^{i}, \mathrm{~A}_{y}^{i}\right)\right\}_{i=1}^{n}$ where $\mathrm{A}_{x}^{i}=\left(\theta_{i} 0 \ldots 0\right)^{\top}, \mathrm{A}_{y}^{i}=\left(\phi_{i} 0 \ldots 0\right)^{\top}$. Clearly, for each i, we have

$$
\mathrm{SI}\left(\mathrm{~A}_{x}^{i} X ; \mathrm{A}_{y}^{i} Y\right)=\mathrm{I}\left(\theta_{i}^{\top} X ; \phi_{i}^{\top} Y\right)
$$

which implies the first claim.
Proof of 2. Let $\mathcal{O}(d)$ be the set of orthogonal $d \times d$ real-valued matrices. For $\mathrm{U} \sim \operatorname{Unif}(\mathcal{O}(d))$ and $\tilde{\Theta} \sim \operatorname{Unif}\left(\mathbb{S}^{r-1}\right)$ independent, note that $[\mathrm{U}]_{:, 1: r} \tilde{\Theta} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$, where $[\mathrm{U}]_{:, 1: r}$ stands for the first r columns of U . We therefore have:

$$
\begin{align*}
\operatorname{SI}\left(\mathrm{A}_{x} X ; \mathrm{A}_{y} Y\right) & =\mathrm{I}\left(\tilde{\Theta}^{\top}\left[\mathrm{U}_{x}\right]_{:, 1: r_{x}}^{\top} \mathrm{A}_{x} X ; \tilde{\Phi}^{\top}\left[\mathrm{U}_{y}\right]_{:, 1: r_{y}}^{\top} \mathrm{A}_{y} Y \mid \tilde{\Theta}, \tilde{\Phi}, \mathrm{U}_{x}, \mathrm{U}_{y}\right) \\
& \leq \sup _{\substack{\mathrm{U}_{x} \in \mathcal{O}\left(d_{x}\right), \mathrm{U}_{y} \in \mathcal{O}\left(d_{y}\right)}} \operatorname{SI}\left(\left[\mathrm{U}_{x}\right]_{:, 1: r_{x}}^{\top} \mathrm{A}_{x} X ;\left[\mathrm{U}_{y}\right]_{:, 1: r_{y}}^{\top} \mathrm{A}_{y} Y\right), \tag{19}
\end{align*}
$$

where the last inequality follows by upper bounding the expectation by the supremum and the independence of $\left(\mathrm{U}_{x}, \mathrm{U}_{y}\right)$ and $(\tilde{\Theta}, \tilde{\Phi}, X, Y)$.
Note that if $\mathrm{A}_{x} \in \mathcal{M}_{d_{x}, d_{x}}\left(r_{x}, c_{x}\right)$ and $\mathrm{A}_{y} \in \mathcal{M}_{d_{y}, d_{y}}\left(r_{y}, c_{y}\right)$, then $\left[\mathrm{U}_{x}\right]_{:, 1: r_{x}}^{\top} \mathrm{A}_{x} \in \mathcal{M}_{r_{x}, d_{x}}\left(r_{x}, c_{x}\right)$, $\left[\mathrm{U}_{y}\right]_{:, 1: r_{y}}^{\top} \mathrm{A}_{y} \in \mathcal{M}_{r_{y}, d_{y}}\left(r_{y}, c_{y}\right)$ (since the first r singular values of A_{x} and A_{y} are inside $\left[1 / c_{x}, c_{x}\right]$ and $\left[1 / c_{y}, c_{y}\right]$, respectively). Using this observation while supremizing the LHS of (19), we obtain

$$
\sup _{\substack{\mathrm{A}_{x} \in \mathcal{M}_{d_{x}, d_{x}}\left(r_{x}, c_{x}\right), \mathrm{A}_{y} \in \mathcal{M}_{d_{x}, d_{x}}\left(r_{y}, c_{y}\right)}} \mathrm{SI}\left(\mathrm{~A}_{x} X ; \mathrm{A}_{y} Y\right) \leq \sup _{\substack{\mathrm{B}_{x} \in \mathcal{M}_{r_{x}, d_{x}}\left(r_{x}, c_{x}\right), \mathrm{B}_{y} \in \mathcal{M}_{r_{y}, d_{y}}\left(r_{y}, c_{y}\right)}} \mathrm{SI}\left(\mathrm{~B}_{x} X ; \mathrm{B}_{y} Y\right) .
$$

The opposite inequality follows by only considering those matrices $\left(\mathrm{A}_{x}, \mathrm{~A}_{y}\right)$ whose bottom $d_{x}-r_{x}$ or $d_{y}-r_{y}$ rows are zeros.

A. 8 Proof of Corollary 3

We begin by considering fixed $\mathrm{W}_{x}, \mathrm{~W}_{y}, b_{x}, b_{y}$. By Part 2 of Proposition 1, we have

$$
\begin{align*}
\mathrm{SI}\left(\mathrm{~A}_{x} \sigma\left(\mathrm{~W}_{x}^{\top} X+b_{x}\right) ; \mathrm{A}_{y} \sigma\left(\mathrm{~W}_{y}^{\top} Y+b_{y}\right)\right) & \leq \sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} \mathrm{A}_{x} \sigma\left(\mathrm{~W}_{x}^{\top} X+b_{x}\right) ; \phi^{\top} \mathrm{A}_{y} \sigma\left(\mathrm{~W}_{y}^{\top} Y+b_{y}\right)\right) \\
& \leq \sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} \sigma\left(\mathrm{W}_{x}^{\top} X+b_{x}\right) ; \phi^{\top} \sigma\left(\mathrm{W}_{y}^{\top} Y+b_{y}\right)\right), \tag{20}
\end{align*}
$$

where in the last step we have used the DPI of classic MI. Now, let $\left\{\left(\theta_{i}, \phi_{i}\right)\right\}_{i=1}^{\infty}$ be a sequence converging to the supremum of $\mathrm{I}\left(\theta^{\top} \sigma\left(\mathrm{W}_{x}^{\top} X+b_{x}\right) ; \phi^{\top} \sigma\left(\mathrm{W}_{y}^{\top} Y+b_{y}\right)\right)$. Consider the sequence $\left\{\left(\mathrm{A}_{x}^{i}, \mathrm{~A}_{y}^{i}\right)\right\}_{i=1}^{n}$ where $\mathrm{A}_{x}^{i}=\left(\theta_{i} 0 \ldots 0\right)^{\top}, \mathrm{A}_{y}^{i}=\left(\phi_{i} 0 \ldots 0\right)^{\top}$. Clearly, for each i, we have

$$
\mathrm{SI}\left(\mathrm{~A}_{x}^{i} \sigma\left(\mathrm{~W}_{x}^{\top} X+b_{x}\right) ; \mathrm{A}_{y}^{i} \sigma\left(\mathrm{~W}_{y}^{\top} Y+b_{y}\right)\right)=\mathrm{I}\left(\theta_{i}^{\top} \sigma\left(\mathrm{W}_{x}^{\top} X+b_{x}\right) ; \phi_{i}^{\top} \sigma\left(\mathrm{W}_{y}^{\top} Y+b_{y}\right)\right),
$$

which implies that equality in 20 can be achieved. Hence the supremum of the LHS over A_{x}, A_{y} equals the RHS. Supremizing both sides over $\mathrm{W}_{x}, \mathrm{~W}_{y}, b_{x}, b_{y}$ then yields the corollary.

B Pseudocode and Complexity of the SMI Estimator

Algorithm 1 shows the pseudocode for our SMI estimator (6), repeated here:

$$
\widehat{\mathrm{SI}}_{n, m}=\widehat{\mathrm{SI}}_{n, m}\left(X^{n}, Y^{n}, \Theta^{m}, \Phi^{m}\right):=\frac{1}{m} \sum_{i=1}^{m} \hat{\mathrm{I}}\left(\left(\Theta_{i}^{\top} X\right)^{n},\left(\Phi_{i}^{\top} Y\right)^{n}\right)
$$

```
Algorithm 1 SMI Estimator
Require: \(n\) (pairs of) samples \(\left(X^{n}, Y^{n}\right)\) i.i.d. according to \(P_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times Y \in \mathbb{R}^{d_{y}}\right)\), a scalar
    MI estimator \(\hat{\mathrm{I}}(\cdot ; \cdot)\), and a chosen number of slices \(m\).
    for \(i=1: m\) do
        Sample \(\Theta_{i}\) uniform on the sphere \(\mathbb{S}^{d_{x}-1}{ }^{6}\)
            Sample \(\Phi_{i}\) uniform on the sphere \(\mathbb{S}^{d_{y}-1}\).
            Compute the MI estimate: \(S_{i} \leftarrow \hat{\imath}\left(\left(\Theta_{i}^{\top} X\right)^{n},\left(\Phi_{i}^{\top} Y\right)^{n}\right)\).
    end for
    \(\widehat{S I}_{n, m} \leftarrow \frac{1}{m} \sum_{i=1}^{m} S_{i}\)
```

It requires as input some 1 dimensional MI estimator $\hat{I}(\cdot ; \cdot)$ which takes as input a sample from the joint distribution of two 1-dimensional variables and outputs an estimate of their MI.
Reading off from Algorithm 1 , the computational complexity of the estimator is $O\left(m\left(d_{x}+d_{y}\right) n+\right.$ $m A(n)$), where $A(n)$ is the computational complexity of the scalar MI estimator. It can be seen that the computational complexity scales linearly with dimension and the number of slices m. The scaling with the number of samples n follows $\max \{n, A(n)\}$.

C MI Convergence Experiment

In Figure [5] we show convergence results of MI estimation using the Kozachenko-Leonenko, EDGE [16], and MINE [29] estimators. The data is the standard Gaussian vectors with 5 overlapping components as described for the $d=10$ case in Figure $1(b, c)$ of the main text. Note that the MI estimators converge slowly in this high dimensional regime, in contrast to the $n^{-1 / 2}$ convergence rate for SMI estimation seen in Figure 1(b).

Figure 5: Convergence of MI estimation (via Kozachenko-Leonenko, EDGE, and MINE estimators) versus the number of data samples n for $d=10$ standard Gaussian vectors with 5 overlapping entries. Note that the convergence is significantly slower than that in the SMI estimation experiment from Figure 1(b).

[^1]
[^0]: ${ }^{5} \mathrm{~A} d$-dimensional random variable X is β-sub-Gaussian if $\mathbb{E}\left[e^{\beta\|X\|^{2}}\right]<\infty$.

[^1]: ${ }^{6}$ A uniform sample from $\mathbb{S}^{d_{x}-1}$ can be found by sampling a vector Z from a d_{x}-dimensional isotropic Gaussian and forming $Z /\|Z\|_{2}$.

