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A Proofs

A.1 Proof of Proposition 1

Proof of 1. SI(X;Y ) � 0 is trivial by non-negativity of conditional MI. For the equality to zero
case, recall that X and Y are independent if and only if (iff) their joint characteristic function
'X,Y (t, s) := E

⇥
eitX+isY

⇤
decomposes into a product, i.e.,

'X,Y (t, s) = 'X(t)'Y (s) = E
⇥
eitX

⇤
E
⇥
eisY

⇤
, 8t, s 2 R.

Also recall that independence is equivalent to zero classic mutual information. Denote X✓ := ✓|X
and Y� := �|Y and observe that SI(X;Y ) = 0 is equivalent to

I

Sdx�1

I

Sdy�1
I(X✓;Y�)d✓d� = 0. (12)

Indeed, as I(X✓;Y�) � 0, for any (✓,�) 2 Sdx�1
⇥ Sdy�1, (12) holds iff

'X✓,Y�(t, s) = 'X✓ (t)'Y�(s), 8t, s 2 R,

but this is the same as

'X,Y (t✓, s�) = 'X(t✓)'Y (s�), 8t, s 2 R, ✓ 2 Sdx�1, � 2 Sdy�1.

Changing variables t0 = t✓ and s0 = s�, the last equality holds iff

'X,Y (t
0, s0) = 'X(t0)'Y (s

0), 8t0 2 Rdx , s0 2 Rdy ,

which means X and Y are independent.

Proof of 2. Since SMI is an average of projected MI terms we immediately have

inf
✓2Sdx�1,�2Sdy�1

I(✓|X;�|Y )  SI(X;Y )  sup
✓2Sdx�1,�2Sdy�1

I(✓|X;�|Y ).

By the DPI for classic MI we further upper bound the right-hand side (RHS) by I(X;Y ).

We further note that the infimum in the lower bound is always attained, as is thus a minimum. This
is because for any (✓n,�n), (✓,�) 2 Sdx�1

⇥ Sdy�1 with ✓n ! ✓ and �n ! �, we have that
(✓|nX,�|

nY ) converge to (✓|X,�|Y ) almost surely (in fact, surely) and therefore in distribution.
Since MI is weakly lower semicontinuous, it attains a minimum on the compact set Sdx�1

⇥ Sdy�1.
To attain the supremum one must impose additional regularity on the Lebesgue density of PX,Y to
ensure that MI is continuous in the weak topology; see, e.g., [32, Theorem 1].
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Proof of 3. This follows because conditional mutual information can be expressed as

I(X;Y |Z) = EZ

h
DKL

�
PX,Y |Z(·|Z)

��PX|Z(·|Z)⌦ PY |Z(·|Z)
�i
,

and because the joint distribution of (⇥|X,�|Y ) given {⇥ = ✓,� = �} is (⇡✓,⇡�)]PX,Y , while
the corresponding conditional marginals are ⇡✓

]PX and ⇡�
] PY , respectively.

Proof of 4. We only prove the small chain rule; generalizing to n variables is straightforward. Con-
sider:

SI(X,Y |Z) = I(⇥|X,�|Y ; |Z|⇥,�, )

= I(⇥|X; |Z|⇥,�, ) + I(�|Y ; |Z|⇥,�, ,⇥|X),

where the last equality is the regular chain rule. Since (X,Z,⇥, ) are independent of �, we have

I(⇥|X; |Z|⇥,�, ) = I(⇥|X; |Z|⇥, ) = SI(X;Z).

We conclude the proof by noting that

I(�|Y ; |Z|⇥,�, ,⇥|X) =
1

Sdx�1

I

Sdx�1

I(�|Y ; |Z|⇥ = ✓,�, , ✓|X)d✓

=
1

Sdx�1

I

Sdx�1

I(�|Y ; |Z|�, , ✓|X)d✓

= SI(Y ;Z|X),

where the penultimate equality is because (X,Y, Z,�, ) are independent of ⇥.

Proof of 5. By Definition 2, we have

SI(X1, . . . , Xn;Y1, . . . , Yn) = I(⇥|
1X1, . . . ,⇥

|
nXn;�

|
1Y1, . . . ,�

|
nYn|⇥1, . . . ,⇥n,�1, . . . ,�n),

where the ⇥i, �i are all independent and uniform on their respective spheres. Now by mutual
independence of the ⇥i, �i and (Xi, Yi) across i,

I(⇥|
1X1, . . . ,⇥

|
nXn;�

|
1Y1, . . . ,�

|
nYn|⇥1, . . . ,⇥n,�1, . . . ,�n) =

nX

i=1

I(⇥|
i Xi;�

|
i Yi|⇥i,�i)

=
nX

i=1

SI(Xi;Yi).

This concludes the proof.

A.2 Maximum Sliced Entropy and Proof of Proposition 2

In this section we prove the extended claim stated next, which includes Proposition 2 as the first item.
Proposition 5 (Max sliced entropy). The following max sliced differential entropy statements hold.

1. Mean and covariance: Let P1(µ,⌃) :=
�
P 2 P(Rd) : supp(P ) = Rd , EP [X] =

µ , E
⇥
(X � µ)(X � µ)|

⇤
= ⌃

 
be the class of probability measures supported on Rd

with fixed mean and covariance. Then

arg max
P2P1(µ,⌃)

SH(P ) = N (µ,⌃),

i.e. the normal distribution maximizes sliced entropy inside P1(µ,⌃).

2. Support contained in a ball: Let P2(c, r) :=
�
P 2 P(Rd) : supp(P ) ✓ Bd(c, r)

 
be the

class of probability measures supported inside a d-dimensional ball centered at c 2 Rd of
radius r > 0 (denoted by Bd(c, r)). Then

arg max
P2P2(c,r)

SH(P ) = Unif
�
Sd�1(c, r)

�
,

i.e. the uniform distribution on the surface of Bd(c, r) maximizes sliced entropy inside P2(c, r).

2



3. Expected absolute deviation: Let P3(µ, a) :=
�
P 2 P(Rd) : supp(P ) = Rd , EP [X] =

µ , EP |✓T (X � µ)| = a, 8✓ 2 Sd�1
 

be the class of probability measures supported on Rd

with fixed mean and expected absolute deviation of the slice marginals from their mean. Then
the sliced entropy inside P3 is maximized by a d-dimensional symmetric multivariate Laplace
distribution [28] with characteristic function

�(t;µ, b) =
eiµ

|t

1 + 1
2bt

|t
.

for some b depending on a.

The interpretation of the EP |✓T (X � µ)| = a, 8✓ 2 Sd�1 constraint in 3. is as follows. Note
that if the constraint were only for ✓s in the cardinal directions (rather than for all ✓ 2 Sd�1), the
constraint could be satisfied be the product of i.i.d. Laplace distributions. Unfortunately, the product
of Laplace distributions is not a spherical distribution, so the condition would not be satisfied in
general for non-cardinal ✓. To extend to all ✓ on the sphere, it is necessary to find some distribution
that is spherical but still has Laplace marginals, in other words, a collection of identically distributed
Laplace r.v.s that are coupled such that the joint density is spherical. The Symmetric Multivariate
Laplace distribution is exactly this distribution.

Proof. For any P 2 P(Rd) and ✓ 2 Sd�1, denote the distribution of the corresponding projection by
P✓ := ⇡✓

]P . For X ⇠ P , we interchangeably write H(X) and H(P ) for entropy (similarly, for sliced
entropy), and thus express sliced entropy as

SH(P ) =
1

Sd�1

I

Sd�1

H(P✓)d✓.

Proof of 1. Note that for any P 2 P1(µ,⌃) and ✓ 2 Sd�1, the mean and covariance of P✓ is
✓|µ and ✓|⌃✓, respectively. Since the Gaussian distribution maximizes classic entropy over scalar
distribution supported R with a fixed (mean and) variance, we have H(P✓)  H

�
N (✓|µ, ✓|⌃✓)

�
=

1
2 log(2⇡e✓

|⌃✓) for any ✓ 2 Sd�1. Consequently,

SH(P ) 
1

Sd�1

I

Sd�1

1

2
log(2⇡e✓|⌃✓)d✓, 8P 2 P1(µ,⌃). (13)

Take P ? = N (µ,⌃) 2 P(µ,⌃) and observe that for any ✓ 2 Sd�1, we have P ?
✓ = N (✓|µ, ✓|⌃✓).

Therefore SH(P ?) achieves the upper bound in (13) and is the maximum sliced entropy distribution
over P1(µ,⌃).

Proof of 2. We first show that a maximum entropy distributions over P2(c, r) must be rationally
invariant and simultaneously maximize the differential entropy associated with each slice. For
X ⇠ P 2 P(Rd) and an orthogonal matrix U 2 Rd⇥d, denote (with some abuse of notation) the
distribution of UX by U]P . Since the support constraint and the definition of sliced entropy are
rotationally symmetric, if P 2 P2(c, r) is a maximum sliced entropy distribution, then so is U]P , for
any U orthogonal.

Assume P 2 P2(c, r) maximizes sliced entropy. For any orthogonal U 2 Rd⇥d define AU ✓ Sd�1

as the set of ✓ vectors for which the distribution of ✓|X and ✓|UX are different. Note that if P
maximizes SH then the measure of AU must be zero. Indeed, if this is not the case, consider the
mixture distribution X�

⇠ P� := �P + (1� �)U]P , and note that by convexity of entropy

H(✓|X�) > �H(✓|X) + (1� �)H(✓|UX), 8� 2 (0, 1) , ✓ 2 AU.

Now, if AU has positive measure, by the definition of sliced entropy we get

SH(X�) >
1

Sd�1

I

Sd�1

�
�H(✓|X)+(1��)H(✓|UX)

�
d✓ = �SH(X)+(1��)SH(UX) = SH(X),

violating the assumption that X ⇠ P is a maximum sliced entropy distribution. Hence X ⇠ P is
rotationally invariant and has H(✓|X) invariant with ✓, as claimed.

In what follows, we set c = 0, the general case is recovered by the translation invariance of entropy.
For d = 3, by Archimedes’ Hat Box Theorem, the projection of the distribution Unif(S2(0, r))
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onto any ✓ yields ✓|X ⇠ Unif
�
[�r, r]

�
, the entropy-maximizing distribution for the slice. Thus,

P = Unif(S2(0, r)) maximizes SH for d = 3.

For dimensions d > 3, by symmetry we may consider ✓ of the form (✓1 ✓2 ✓3 0 . . . 0)|. Let X ⇠ P
for some rotationally-symmetric distribution P . Observe that

✓TX = (✓1 ✓2 ✓3)(X1 X2 X3)
| = (✓1 ✓2 ✓3)k(X1 X2 X3)k2

✓
(X1 X2 X3)|

k(X1 X2 X3)k2

◆
.

Define R = k(X1 X2 X3)k2, ✓̄ = (✓1 ✓2 ✓3)|, and X̄ = (X1 X2 X3)
|

k(X1 X2 X3)k2
. By the spherical symmetry

of P , we have that X̄ ⇠ Unif(S2(0, 1)) and is independent of R. Let ⇢ be the probability distribution
of R, and recall that supp(⇢) = [0, r].

For any fixed ✓̄ and R = r, by Archimedes’ Hat Box Theorem, r✓̄T X̄ ⇠ Unif
�
[�r, r]

�
. By

independence, the density g of R✓̄T X̄ is then

g(t) =

Z 1

0

1

2↵
1{|t|↵}d⇢(↵), t 2 [�r, r],

where 1A is the indicator of A. Observe that g is symmetric about 0 and is monotonically nonincreas-
ing away from 0.

We next show that transporting mass in ⇢ to larger radii values cannot decrease entropy. Let ✏ > 0
and consider moving mass ✏ in ⇢ from location ↵ to ↵0 > ↵, changing g to g0. Doing so decreases
g by ✏

�
1/(2↵)� 1/(2↵0)

�
on the interval t 2 (�↵,↵), and increases it by ✏/(2↵0) on the intervals

t 2 [�↵0,�↵) [ (↵,↵0]. Furthermore, both g and g0 monotonically nonincrease away from 0. At
t = ↵,�↵, set g = g0. The corresponding change in entropy is

H(g0)� H(g) =

Z
g log g � g0 log g0dt

= 2

Z ↵0

↵
[g log g � g0 log g0]dt+ 2

Z ↵

0
[g log g � g0 log g0]dt (14)

We bound these terms separately. Since g, g0 are both monotonically non-increasing away from 0,
Z ↵0

↵
[g log g � g0 log g0]dt �

Z ↵0

↵


g log g � g0

✓
log g +

g0 � g

g

◆�
dt

=

Z ↵0

↵


(g � g0)

✓
log g +

g0

g

◆�
dt

= �
✏

2↵0

Z ↵0

↵


log g +

g0

g

�
dt

� �
✏

2↵0
(↵0
� ↵)


log g(↵) +

g0(↵)

g(↵)

�

= �
✏

2↵0
(↵0
� ↵)

⇥
log g(↵) + 1

⇤
(15)

where we have used the concavity of log to upper bound log g0  log g + (g0 � g)/g. Similarly, we
have

Z ↵

0
[g log g � g0 log g0]dt �

Z ↵

0


g log g � g0

✓
log g +

g0 � g

g

◆�
dt

=

Z ↵

0


(g � g0)

✓
log g +

g0

g

◆�
dt

= ✏

✓
1

2↵
�

1

2↵0

◆Z ↵

0


log g +

g0

g

�
dt

� ✏

✓
1

2↵
�

1

2↵0

◆
↵


log g(↵) +

g0(↵)

g(↵)

�
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= ✏

✓
1

2↵
�

1

2↵0

◆
↵
⇥
log g(↵) + 1

⇤
(16)

Substituting (15) and (16) into (14) yields

H(g0)� H(g) � 2


✏↵

✓
1

2↵
�

1

2↵0

◆
�

✏

2↵0
(↵0
� ↵)

� ⇥
log g(↵) + 1

⇤
= 0.

Thus, entropy cannot decrease by moving the mass in ⇢ to larger R values. Note that for any
spherically symmetric X ⇠ P supported in Sd�1(0, r), the transformation X 0

 r X
kXk2

yields
R0 = k(X 0

1 X
0
2 X

0
3)k2 =

�� r
kXk2

(X1 X2 X3)
��
2
= r

kXk2
R, i.e. since kXk2  r the transformation

uniformly increases R (and thus H(g)), with no change to the distribution of X̄ . Therefore, P =
Unif(Sd�1(0, r)) is the maximum sliced-entropy distribution.

Proof of 3. Similar to the Gaussian case of Claim 1, we use the fact that the maximum entropy
distribution satisfying E|X � µ| = a is the (univariate) Laplace distribution. To maximize the
sliced entropy, we thus seek a distribution P that results in each ✓TX having the same Laplace
distribution. Since linear projections of the isotropic Symmetric Multivariate Laplace distribution
[28] are all univariate Laplace distributions with the same parameter, this is a maximum sliced entropy
distribution for the class. Unfortunately we could not find the exact parameter conversion (b required
to achieve a) in the literature.

A.3 Proof of Proposition 3

Denote X⇥ := ⇥|X and X� := �|X and observe that PX⇥,Y�|⇥,�(·, ·|✓,�) = (⇡✓,⇡�)]PX,Y .
Consider the following two joint distribution:

P⇥,�,X⇥,Y� = P⇥,� ⇥ PX⇥,Y�|⇥,�

Q⇥,�,X⇥,Y� = P⇥,� ⇥ PX⇥|⇥ ⇥ PY�|�,

where P⇥,� = Unif(Sdx�1)⇥ Unif(Sdy�1), while PX⇥|⇥ and PY�|� are the conditional marginals
of PX⇥,Y�|⇥,�. By Claim 3 from Proposition 1, we have

SI(X;Y ) = DKL

�
PX⇥,Y�|⇥,�

��PX⇥|⇥ ⌦ PY�|�

��P⇥,�

�
= DKL

�
P⇥,�,X⇥,Y�

��Q⇥,�,X⇥,Y�

�
,

where the last step using the KL divergence chain rule. The proof is concluded by invoking the
Donsker-Varadhan representation for KL divergence [33]

DKL(PkQ) = sup
g

EP [g]� log
�
EQ[e

g]
�
.

Remark 9 (Max-sliced MI). A similar variational form can be established for max-sliced MI, i.e.,
sup✓,� I(✓

|X;�|Y ). In that case the variation representation is

sup
g2Gproj

E
⇥
g(X,Y )

⇤
� log

⇣
E
⇥
eg(X̃,Ỹ )

⇤⌘
,

with Gproj :=
�
g � (⇡✓,⇡�) : (✓,�) 2 Sdx�1

⇥ Sdy�1, g : R2
! R

 
is the class of projecting

functions. The derivation is similar and is thus omitted.

A.4 Proof of Theorem 1

Denote IX,Y (✓,�) := I(✓|X;�|Y ) and notice that E
⇥
IXY (⇥,�)

⇤
= SI(X;Y ), where (⇥,�) ⇠

Unif(Sdx�1)⌦ Unif(Sdy�1). By the triangle inequality we have

��SI(X;Y )� bSIn,m
�� 

�����SI(X;Y )�
1

m

mX

i=1

IXY (⇥i,�i)

�����+

�����
1

m

mX

i=1

IXY (⇥i,�i)� bSIn,m

����� .

For the first term, since {(⇥i,�i)}mi=1 are i.i.d., we obtain

E
"�����SI(X;Y )�

1

m

mX

i=1

IXY (⇥i,�i)

�����

#


r
1

m
var
�
IXY (⇥,�)

�


M

2
p
m
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uniformly over PX,Y 2 Fd(M), where the last step follows because 0  IXY (⇥,�)  I(X;Y ) 
M a.s.

For the second term, recall the notation X✓ := ✓|X and Y� := �|Y , and observe that

E
"�����

1

m

mX

i=1

IXY (⇥i,�i)� bSIn,m

�����

#


1

m

mX

i=1

E
h���IXY (⇥i,�i)� ÎXY (⇥i,�i)

���
i

 max
✓,�

E
h���I(X✓;Y�)� Î

�
Xn

✓ , Y
n
�

����
i
,

where (Xn
✓ , Y

n
� ) are pairwise i.i.d. samples of (X✓, Y�) ⇠ (⇡✓,⇡�)]PX,Y . This falls under the MI

risk bound from (5), yielding a bound of �(n).

A.5 Proof of Corollary 1

The bounded MI assumption in the definition of Fd(M) can be relaxed to a bounded the max-SMI,
i.e.,

max
✓2Sdx�1,�2Sdy�1

I(✓|X;�|Y ) M.

We next derive a uniform bound (over (✓,�) 2 Sdx�1
⇥ Sdy�1) on

I(✓|X;�|Y ) = h(✓|X) + h(�|Y )� h(✓|X,�|Y ).

Since the Gaussian distribution maximize sliced (differential) entropy under a second moment
constraint, we have

h(✓|X) + h(�|Y ) 
1

2
log
�
(2⇡e)2(✓|⌃X✓)(�|⌃Y �)

�
.

For the joint entropy, recall that log-concavity is preserved under affine transformations of coordinates
and marginalization [34, Lemma 2.1]. Therefore (⇡✓,⇡�)]PX,Y is also log-concave, and by Theorem
4 of [35] we obtain

h(✓|X,�|Y ) �
1

2
log

✓
e4

32

�
(✓|⌃X✓)(�|⌃Y �)� (✓|⌃XY �)(�

|⌃Y X✓)
�◆

.

Combining the two bounds we obtain

I(✓|X;�|Y ) 
1

2
log

✓
⇡2

8

(✓|⌃X✓)(�|⌃Y �)

(✓|⌃X✓)(�|⌃Y �)� (✓|⌃XY �)2

◆

=
1

2
log

✓
⇡2

8

1

1� ⇢2(✓|X,�|Y )

◆


1

2
log

✓
⇡2

8

1

1� ⇢2CCA(X,Y )

◆
,

from which the claim follows.

A.6 Proof of Corollary 2

The main idea is to use Theorem 2 from [26] to control the estimation error of each differential
entropy in the decomposition of I(✓|X;�|Y ), where (✓,�) 2 Sdx�1

⇥ Sdy�1. To that end, we first
show that since pX,Y 2 Lips,p,dx+dy

(L) (by assumption), any of its projections also belong to a
generalized Lipschitz class as well of the appropriate dimension. To state the result, let pX✓ , pY� and
pX✓,Y� be the density of ✓|X , �|Y , and (✓|X,�|Y ), respectively.

Lemma 1 (Lipschitzness of projections). If pX,Y 2 Lips,p,dx+dy
(L), then pX✓ , pY� 2 Lips,p,1(L),

and pX✓,Y� 2 Lips,p,2(L), for any (✓,�) 2 Sdx�1
⇥ Sdy�1.

Proof. We present the derivation for pX✓,Y� ; the proof for pX✓ and pY� is similar. Note that
Definition 4 is invariant to rotations of both the X and Y . Hence, without loss of generality,

6



we may assume that ✓ and � are both canonical unit vectors, e.g., both equal e1 = (1 0 . . . 0) of the
appropriate dimension. Consequently, ✓|X = X1 and �|Y = Y1. Denote x2: := (x2 . . . xdx) and
y2: := (y2 . . . ydy ) and write

pX✓,Y�(x1, y1) =

Z

[0,1]d0
pX,Y (x, y)dx2:dy2:,

where d0 = dx + dy � 2 and we have used the fact that ✓|X = X1 and �|Y = Y1. Finally, for each
x1, y1 2 [0, 1]2, we denote p(x1,y1)(x:2, y:2) := pX,Y (x1, x:2, y1, y:2).

We now bound the norms that make up the definition of the generalized Lipschitz class. First, consider

kp✓,�kp,2 =

�����

Z

[0,1]d0
p(·,·)(x:2, y:2)dx:2dy:2

�����
p,2



 Z

[0,1]2

 Z

[0,1]d0

⇣
p(x1,y1)(x:2, y:2)

⌘p
dx:2dy:2

!
dx1dy1

!1/p

= kpX,Y kp,dx+dy ,

where the 2nd step follows because
R
[0,1]d0 p

(x1,y1)(x:2, y:2)dx:2dy:2 
��p(x1,y1)

��
p,d0 by Jensen’s

inequality. Similarly, denoting by e 2 Rd the vector that has 1’s in its first and (dx +1)th coordinates
and 0’s otherwise, for any (x1, y1) 2 [0, 1]2, we have

����r
t(1 1)p✓,�(x1, y1)

��� 
Z

[0,1]d0

����r
tep

(x1,y1)(x:2, y:2)
��� dx:2dy:2 

����r
tep

(x1,x2)
���
p,d0

,

where the last step uses Jensen’s inequality once more. Having that, we obtain

k�r
tep✓,�kp,2 

 Z

[0,1]2

����r
tep

(x1,y1)
���
p

p,d0
dx1dy1

!1/p

= k�r
tepX,Y kp,dx+dy

.

Consequently kp✓,�kLipp,s,2  kpX,Y kLipp,s,dx+dy
 L, for all (✓,�) 2 Sdx�1

⇥ Sdy�1, as required.

Based on the lemma, we may invoke [26, Theorem 2] to obtain error bounds on the estimation
of the sliced entropy terms that comprise SMI. We first restate the result of [26]: if X ⇠ pX 2
Lipp,s,d(L), for d 2 N, s 2 (0, 2], p 2 [2,1), is �-sub-Gaussian5, � > 0, and satisfies the tail boundR
Rd e�kxk

2

pX(x)dx  L, then
⇣
E
h�
Ĥ(Xn)� H(X)

�2i⌘ 1
2
 C

⇣
(n log n)�

s
s+d (log n)

d
2 (1� d

p(s+d) ) + n�
1
2

⌘
, (17)

for a constant C depending only on s, p, d,�, L.

Note that pX✓ , pX✓,Y� , and pY� , for any (✓,�) 2 Sdx�1
⇥ Sdy�1, are compactly supported and hence

sub-Gaussian (with a sub-Gaussian constant and tail bound that depend only on d and L). Lemma 1
then implies that H(✓|X), H(�|Y ), and H(✓|X,�|Y ) can all be estimated within the framework
of [26] under the error bound from (17). Denoting the respective estimators by adding a hat to the
differential entropy notation and letting e✓, e�, and e✓,� be their L2 errors, we obtain

max
�
e✓, e�, e✓,�

 
 C

⇣
(n log n)�

s
s+2 (log n)(1�

2
p(s+2) ) + n�

1
2

⌘
, 8(✓,�) 2 Sdx�1

⇥ Sdy�1.

(18)
Here we used the fact that the rate is dominated by the error in estimating the 2-dimensional differential
entropy H(✓|X,�|Y ). Recall that the considered MI estimator relies on the decomposing

I(✓|X 0�|Y ) = H(✓|X) + H(�|Y )� H(✓|X,�|Y )

and estimating each sliced entropy separately. Bounding the MI estimation error via (18) produces
the result.

5A d-dimensional random variable X is �-sub-Gaussian if E
⇥
e�kXk2⇤ < 1.
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A.7 Proof of Proposition 4

Proof of 1. By Part 2 of Proposition 1, we have

SI(AxX + bx; AyY + by)  sup
✓,�

I
�
✓|(AxX + bx);�

|(AyY + by)
�

 sup
✓,�

I(✓|X;�|Y ),

where in the last step we have used the DPI of classic MI. Now, let {(✓i,�i)}1i=1 be a sequence
converging to the supremum of I(✓|X;�|Y ). Set by = bx = 0, and consider the sequence
{(Ai

x,A
i
y)}

n
i=1 where Ai

x = (✓i 0 . . . 0)|,Ai
y = (�i 0 . . . 0)|. Clearly, for each i, we have

SI(Ai
xX; Ai

yY ) = I(✓|i X;�|
i Y ),

which implies the first claim.

Proof of 2. Let O(d) be the set of orthogonal d ⇥ d real-valued matrices. For U ⇠ Unif
�
O(d)

�

and ⇥̃ ⇠ Unif(Sr�1) independent, note that [U]:,1:r⇥̃ ⇠ Unif(Sd�1), where [U]:,1:r stands for the
first r columns of U. We therefore have:

SI(AxX; AyY ) = I
�
⇥̃|[Ux]

|
:,1:rxAxX; �̃|[Uy]

|
:,1:ryAyY

��⇥̃, �̃,Ux,Uy

�

 sup
Ux2O(dx),
Uy2O(dy)

SI([Ux]
|
:,1:rxAxX; [Uy]

|
:,1:ryAyY ), (19)

where the last inequality follows by upper bounding the expectation by the supremum and the
independence of (Ux,Uy) and (⇥̃, �̃, X, Y ).

Note that if Ax 2Mdx,dx(rx, cx) and Ay 2Mdy,dy (ry, cy), then [Ux]
|
:,1:rxAx 2Mrx,dx(rx, cx),

[Uy]
|
:,1:ryAy 2Mry,dy (ry, cy) (since the first r singular values of Ax and Ay are inside [1/cx, cx]

and [1/cy, cy], respectively). Using this observation while supremizing the LHS of (19), we obtain

sup
Ax2Mdx,dx (rx,cx),
Ay2Mdx,dx (ry,cy)

SI(AxX; AyY )  sup
Bx2Mrx,dx (rx,cx),
By2Mry,dy (ry,cy)

SI(BxX; ByY ).

The opposite inequality follows by only considering those matrices (Ax,Ay) whose bottom dx � rx
or dy � ry rows are zeros.

A.8 Proof of Corollary 3

We begin by considering fixed Wx,Wy, bx, by . By Part 2 of Proposition 1, we have

SI(Ax�(W
|
xX + bx); Ay�(W

|
yY + by))  sup

✓,�
I
�
✓|Ax�(W

|
xX + bx);�

|Ay�(W
|
yY + by)

�

 sup
✓,�

I
�
✓|�(W|

xX + bx);�
|�(W|

yY + by)
�
, (20)

where in the last step we have used the DPI of classic MI. Now, let {(✓i,�i)}1i=1 be a sequence
converging to the supremum of I

�
✓|�(W|

xX + bx);�|�(W|
yY + by)

�
. Consider the sequence

{(Ai
x,A

i
y)}

n
i=1 where Ai

x = (✓i 0 . . . 0)|,Ai
y = (�i 0 . . . 0)|. Clearly, for each i, we have

SI
�
Ai

x�(W
|
xX + bx); A

i
y�(W

|
yY + by)

�
= I
�
✓|i �(W

|
xX + bx);�

|
i �(W

|
yY + by)

�
,

which implies that equality in (20) can be achieved. Hence the supremum of the LHS over Ax, Ay

equals the RHS. Supremizing both sides over Wx,Wy, bx, by then yields the corollary.

B Pseudocode and Complexity of the SMI Estimator

Algorithm 1 shows the pseudocode for our SMI estimator (6), repeated here:

bSIn,m = bSIn,m(Xn, Y n,⇥m,�m) :=
1

m

mX

i=1

Î
�
(⇥|

i X)n, (�|
i Y )n

�
.
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Algorithm 1 SMI Estimator
Require: n (pairs of) samples (Xn, Y n) i.i.d. according to PX,Y 2 P(Rdx ⇥ Y 2 Rdy ), a scalar

MI estimator Î(·; ·), and a chosen number of slices m.
for i = 1 : m do

Sample ⇥i uniform on the sphere Sdx�1.6
Sample �i uniform on the sphere Sdy�1.
Compute the MI estimate: Si  Î

�
(⇥|

i X)n, (�|
i Y )n

�
.

end for
bSIn,m  1

m

Pm
i=1 Si

It requires as input some 1 dimensional MI estimator Î(·; ·) which takes as input a sample from the
joint distribution of two 1-dimensional variables and outputs an estimate of their MI.

Reading off from Algorithm 1, the computational complexity of the estimator is O
�
m(dx + dy)n+

mA(n)
�
, where A(n) is the computational complexity of the scalar MI estimator. It can be seen that

the computational complexity scales linearly with dimension and the number of slices m. The scaling
with the number of samples n follows max{n,A(n)}.

C MI Convergence Experiment

In Figure 5, we show convergence results of MI estimation using the Kozachenko-Leonenko, EDGE
[16], and MINE [29] estimators. The data is the standard Gaussian vectors with 5 overlapping
components as described for the d = 10 case in Figure 1(b,c) of the main text. Note that the MI
estimators converge slowly in this high dimensional regime, in contrast to the n�1/2 convergence
rate for SMI estimation seen in Figure 1(b).

Figure 5: Convergence of MI estimation (via Kozachenko-Leonenko, EDGE, and MINE estimators)
versus the number of data samples n for d = 10 standard Gaussian vectors with 5 overlapping entries.
Note that the convergence is significantly slower than that in the SMI estimation experiment from
Figure 1(b).

6A uniform sample from Sdx�1 can be found by sampling a vector Z from a dx-dimensional isotropic
Gaussian and forming Z/kZk2.
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