
A Additional Related Work

A.1 Brown and Zidek details

As discussed in Section 1, the papers of Brown and Zidek [10] and Haitovsky [28] carry the only
references of which we are aware of the idea of exchangeability of effects across covariates for
sharing strength among multiple groups of data. We here provide additional discussion on this related
prior work. To aid our comparison, we slightly modify their notation to match ours.

In their paper, “Adaptive Multivariate Ridge Regression”, Brown and Zidek [10] consider multiple
related regression regression problems with a shared design (i.e. X := X1 = X2 = · · · = XQ) and
seek to extend the univariate ridge regression estimator of Hoerl and Kennard [31] to the multivariate
setting. Specifically, the authors propose a class of estimators of the form

~̂� = (IQ ⌦X>X +K ⌦ ID)�1(IQ ⌦X>)~Y ,

where ~Y := [Y 1>, Y 2>, · · · , Y Q>]>, ⌦ denotes the Kronecker product, and K is a Q ⇥ Q ridge
matrix which they suggest be chosen by some “adaptive rule” (i.e. that K be a function of the
observed data). Notably, this functional form closely resembles our expression for E[~�|D,⌃] in
Proposition 3.1, if we take K = ⌃�1.

The authors do not explicitly discuss the interpretation of K�1 as the covariance of a Gaussian prior,
nor any interpretation for this quantity as capturing any notion of a priori similarity of the regression
problems. However, they do point to Bayesian motivations at the outset of the paper. In particular,
Brown and Zidek [10] narrow their consideration of possible methods for choosing K to those which
satisfy two criteria:

1. For any K, ~̂� correspond to a Bayes estimate.

2. In the case that X>X = ID, ~̂� correspond to the Efron and Morris [19] extension of the
James and Stein [33] estimator to vector observations.3

They present four such estimators (derived from existing estimators of a multivariate normal means
that dominate the sample mean) and demonstrate conditions under which each of these estimators
dominates the least squares estimator for �.

As a further point of connection, the authors claim in the their abstract that their “result is implicitly
in the work of Lindley and Smith [44] although not actually developed there.” However, the authors
give little support for, or clarification of this claim. In particular, their analysis is entirely frequentist
and they provide no explanation for how their proposed estimators for K might be interpreted as
reasonable empirical Bayes estimates.

In their short follow-up paper, Haitovsky [28] elaborates on this Bayesian motivation. The primary
focus of Haitovsky [28] is a matrix normal prior [16] that captures structure in effects across both
groups and covariates. Though this prior is not exchangeable across covariates in general, they note
that the special case of where effects are uncorrelated across different covariates satisfies the notion
of exchangeability for which we have advocated in this paper.

A.2 Methods of inference for � in existing work assuming exchangeability of effects across
groups.

We here describe several existing approaches for estimating the covariance matrix � in the exchange-
ability of effects among groups model. These existing methods do not translate directly to the
exchangeability of effects among covariates model proposed in this paper. However, in principle, one
could likely adapt any of them to our setting. We have chosen to use the EM algorithm described
in Section 3 for its simplicity, efficiency, and stability. We leave the investigation of alternative
estimation approaches to future work.

In their initial paper, Lindley and Smith (1972) [44] suggest that a fully Bayesian approach would be
ideal. They advocate for placing a subjectively specified, conjugate Wishart prior on �, and remark

3 See Appendix A.4 for further discussion of connections to Efron and Morris [19].
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that one should ideally consider the posterior of � rather than relying on a point estimate. However,
in the face of analytic intractability, they propose returning MAP estimates for � and � and provide
an iterative optimization scheme that they show is stationary at �̂, �̂ = argmax log p(�,�|D).

Advances in computational methods since 1972 have given rise to other ways of estimating � in this
model. Gelfand et al. [22] describe a Gibbs sampling algorithm for posterior inference. Gelman
et al. [24, Chapter 15 sections 4-5] describe an EM algorithm which returns a maximum a posteriori
estimate marginalizing over �, �̂ = argmax p(�|D) =

R
p(�,�|D)d�; notably, though the updates

in our EM algorithm for the case of exchangeability in effects across covariates differ from those in
the case of exchangeability among groups, one can see the two algorithms as closely related through
their shared dependence on Gaussian conjugacy. Finally, in the software package lme4, Bates et al.
[5] use the maximum marginal likelihood estimate, �̂ = argmax p(D|�), which they compute using
gradient based optimization.

A.3 Details on connections to lme4

In the notation of lme4 [5], our paper considers only random effects and no fixed effects. In that work,
each vector of random effects, denoted B, corresponds to a length D (q in their notation) column of
� (in our notation). Bates et al. [5, Equation 3] states the prior derived from Lindley and Smith [44]
that reflects the assumption of exchangeability across groups and captures correlation structure across
covariates. This correlation structure is modeled whenever two or more random effects are specified
and allowed to vary across groups. In the high dimensional setting (when D > Q), however, lme4
fails to run because the optimization problem associated with empirical Bayes step is ill-conditioned.

A.4 Related work on estimation of normal means

As we discuss in Appendix C.1, under Condition 4.1 and when �2 = 1, we have that

�̂q
LS

indep⇠ N (�q, ID).

As such, inference reduces to the “normal means problem”, with a matrix valued parameter. Specifi-
cally, we can equivalently write

�̂LS = � + ✏,
for a random D ⇥Q matrix ✏ with i.i.d. standard normal entries.

This problem has been studied closely outside of the context of regression. Notably, Efron and Morris
[18] approach the problem from an empirical Bayesian perspective and recommend an approach
analogous to estimating ⌃ by

⌃̂Ef := (D �Q� 1)�1�̂>
LS�̂LS � IQ.

Efron and Morris [18] argue for this estimate because it is unbiased for a transformation of the
parameter. In particular, ⌃̂Ef satisfies E[(IQ + ⌃̂Ef)�1] = (IQ +⌃)�1 when each �d

i.i.d.⇠ N (0,⌃).

They show that, among all estimates of the form ↵�̂>
LS�̂LS � IQ with real valued ↵, this factor

↵ = (D � Q � 1)�1 is optimal in terms of squared error risk. Notably, this includes the moment
estimate ⌃̂MM we describe in Section 4, which corresponds to ↵ = D�1. However, this optimality
result does not translate to the associated positive part estimators. In fact, in experiments not shown,
we have found that �̂ECov reliably outperforms an analogous positive part variant that estimates ⌃ by
⌃̂Ef .
Remark A.1. Efron and Morris [18, Theorem 5] prove that an analogous positive part estimator is
superior to their original estimator in term of “relative savings loss” (RSL). Our domination result in
Theorem 4.3 is strictly stronger and implies an improvement in RSL as well. Furthermore our proof
technique immediately applies to their estimator.

Several other works have noted the dependence of the risk of estimators for the matrix variate
normal means problem on the expectations of the eigenvalues of inverse non-central Wishart matrices
[18, 70, 59]. In all of these cases, the authors did not document attempts to interpret or approximate
these difficult expectations.

More recently, Tsukuma [58] explores a large class of estimators for the matrix variate normal means
problems that shrink �̂LS along the directions of its singular vectors in different ways. For subclass
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of these estimators, Tsukuma [58][Corollary 3.1] proves a domination result for associated positive
part estimators. In the orthogonal design case, �̂ECov can be shown to be a member of this subclass
of estimators, providing an alternative route to proving Theorem 4.5.

A.5 Additional related work on multiple related regressions

Methods for simultaneously estimating the parameters of multiple related regression problems have a
long history in statistics and machine learning, with different assumptions and analysis goals leading
to a diversity of inferential approaches. Perhaps the most famous is Zellner’s landmark paper on
seemingly unrelated regressions (SUR) [67]. Zellner [67] addresses the situation where apparent
independence of regression problems is confounded by covariance in the errors across Q problems
(i.e. ‘groups’ in our language). In the presence of such correlation in residuals, the parameter may be
identified with greater asymptotic statistical efficiency by considering all Q problems together [67, 68].
While most work on SUR has taken a purely frequentist perspective in which � is assumed fixed,
some more recent works on SUR have considered Bayesian approaches to inference [8, 15, 55, 27, 2].
However these do not address the scenario of interest here, in which we believe a priori that there
may be some covariance structure in the effects of covariates across the regressions, or that some
regression problems are more related than others. The setting of the present paper further differs from
SUR in that we do not consider correlation in residuals as a possible mechanism for sharing strength
between groups, but instead explicitly assume independence in the noise.

Breiman and Friedman [9] present a distinct, largely heuristic approach to multiple related regression
problems where all Q responses are observed for each group, or equivalently each group has the
same design. The authors focus entirely on prediction and obviate the need share information across
regression problems when forming an initial estimate of � by proposing to predict new responses
in each regression with a linear combination of the predictions of linear models defined by the
independently computed least squares estimate of each regression problem. However this approach
does not consider the problem of estimating parameters, which is a primary concern of the present
work.

Reinsel [52]’s paper, “Mean Squared Error Properties of Empirical Bayes Estimators in a Multivariate
Random Effects General Linear Model”, considers a mixed effects model in which a linear model for
regression coefficients is specified �q = Baq + �q where a := [a1, a2, . . . , aQ] is a K ⇥Q known
design matrix associated with the regression problems,4 B is a D⇥K matrix of unknown parameters
and [�1,�2, . . . ,�Q] is a D ⇥Q matrix of error terms. These error terms are assumed exchangeable
across groups. In contrast to the present work, Reinsel [52] requires the relatedness between groups
to be known a priori through the known design matrix a.

Laird and Ware [38] consider a random effects model for longitudinal data in which different
individuals correspond to different regression problems with distinct parameters. In their construction,
covariance structure in the noise is allowed across the observations for each individual, but not across
individuals. Additionally, as in [44], the authors model the covariance in effects of different covariates
a priori within each regression, but not covariance across regressions.

Brown et al. [11] propose to use sparse prior for � which encourages a shared sparsity pattern.
Conditioned on a binary D�vector � 2 {0, 1}D, � is supposed to follow a multivariate normal prior
as

~�
i.i.d.⇠ N (0,⌃⌦H�)

where H� is a D ⇥ D covariance matrix which expresses that for d such that �d = 0 we expect
each �d,q to be close to zero. Notably, this is equivalent to the assumption that � follows a matrix-
variate multivariate normal distributed as � ⇠ MN (0, H� ,⌃) [16]. Curiously, and without stated
justification, the same ⌃ is also taken to parameterize the covariance of the residual errors, as well as
of an additional bias term. We suspect this restriction is made for the sake of computational tractability.
Indeed, [56] makes similar modeling assumptions for tractability in the context of statistical genetics.
In contrast to the present work, the premise of Brown et al. [11] is sharing strength through similar
sparsity patterns and covariance in the residuals, rather than learning and leveraging patterns of
similarity in effects of covariates across groups.

4 Notably, though Reinsel [52] refers to a as a design matrix, it has little relation of the design matrices Xq

to which we frequently refer in the present work.
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Other more recent papers have considered alternative approaches for multiple regression with sparse
priors [6, 43, 17]. As one example, Obozinski et al. [50] estimate parameters across multiple groups
with a mixed `1/`2 regularized objective that induces sparsity. Yang et al. [66], Lee et al. [40] build
on this work by Obozinski et al. [50] with a focus on applications in genetics. These latter methods
may be understood as returning the maximum a posteriori estimate under a Bayesian model. However,
in contrast to our approach, the corresponding prior distributions implicit in such perspectives do
not capture a priori correlation of effects across groups. Moreover, these methods are of course
inappropriate when we do not expect sparsity a priori.

Meta-Learning The popular “Model Agnostic Meta-Learning” (MAML) approach [21] can be
understood as a hierarchical Bayesian method that treats tasks / groups exchangeably [26]. As such,
MAML and its variations do not allow tasks to be related to different extents (as our approach does).
A few recent works on meta-learning are exceptions; for example, Jerfel et al. [34] model tasks as
grouped into clusters by using a Dirichlet process prior, and Cai et al. [14] consider a weighted variant
of MAML that allows, for a given task of interest, the contribution of data from other tasks to vary.
However these works differ from the present paper in their focus on prediction with flexible black-box
models, whereas the primary concern of the present is parameter estimation in linear models.

Exchangeability of effects across covariates in the single group context. In the context of re-
gression problems consisting of only a single group (i.e. corresponding to the special case of Q = 1)
Lindley and Smith [44] suggest modeling the D scalar covariate effects exchangeable. In particular,
they suggest modeling scalar covariate effects as i.i.d. from a univariate Gaussian prior when this ex-
changeability assumption is appropriate. However, because this development is restricted to analyses
of data in a single group, it does not relate to the problem of sharing strength across multiple groups,
which is the subject of the present work.

B Section 3 supplementary proofs and discussion

B.1 Proof of Proposition 3.1

Proof. First note that the least squares estimates �̂LS :=
[(X1>X1)�1X1>Y 1, . . . , (XQ>XQ)�1XQ>Y Q] are a sufficient statistic of D for �, and

so �|D,⌃ ⇠ �|�̂LS,⌃. As such, it is sufficient to consider the likelihood of �̂LS. Let ~̂�LS :=
[Y 1>X1(X1>X1)�1, . . . , Y Q>XQ(XQ>XQ)�1] be the DQ-vector defined by stacking the least
squares estimates for each group. Since for each q, we have �̂q

LS|�
indep.⇠ N (�q,�2

q (X
q>Xq)�1),

we can write ~̂�LS|� ⇠ N

~�, diag

⇣
�2
1(X

1>X1)�1, . . . ,�2
Q(X

Q>XQ)�1
⌘�

. Next, that each

�d
i.i.d.⇠ N (0,⌃) a priori implies that we may write ~� ⇠ N (0,⌃⌦ ID) a priori, where ⌦ is the Kro-

necker product. Then, by Gaussian conjugacy (see e.g. Bishop [7, Chapter 2.3]), we have that ~�|D ⇠

N (~µ, V ), where ~µ = V


(⌃⌦ ID)�10 + diag

⇣
�2
1(X

1>X1)�1, . . . ,�2
Q(X

Q>XQ)�1
⌘�1

~̂�LS

�

for V �1 = (⌃ ⌦ ID)�1 + diag
⇣
�2
1(X

1>X1)�1, . . . ,�2
Q(X

Q>XQ)�1
⌘�1

. Due to the

block structure of the matrices above, these simplify to ~µ = V


Y 1>X1

�2
1

, . . . , Y Q>XQ

�2
Q

�
and

V �1 = ⌃�1 ⌦ ID + diag(X
1>X1

�2
1

, . . . , XQ>XQ

�2
Q

), as desired.

B.2 Efficient computation with the conjugate gradient algorithm

As mentioned in Section 3.1, ~µ = E[~�|D,⌃] in Proposition 3.1 may be computed efficiently using
the conjugate gradient algorithm (CG) for solving linear systems. We here describe several properties
of CG that make it surprisingly well-suited to this application.

We first note that Proposition 3.1 allows us to frame computation of ~µ as the solution to the linear
system

A~µ = b
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for b =
h
Y 1>X1/�2

1 , . . . , Y
Q>XQ/�2

Q

i>
and A = ⌃�1 ⌦ ID +

diag
⇣
��2
1 X1>X1, . . . ,��2

Q XQ>XQ
⌘
. A naive approach to computing ~µ could then be to

explicitly compute A�1 and report the matrix vector product, A�1b. However, as mentioned in
Section 3.1, since A is a DQ⇥DQ matrix, explicitly computing its inverse would require roughly
O(D3Q3) time. This operation becomes very cumbersome when D and Q are too large; for instance
if D and Q are in the hundreds the, DQ is is the tens of thousands.

CG provides an exact solution to linear systems in at most DQ iterations, with each iteration requiring
only a small constant number of matrix vector multiplications by A. This characteristic does not
provide a complexity improvement for solving general linear systems because for dense, unstructured
DQ⇥DQ matrices, matrix vector multiplies require O(D2Q2) time, and CG still demands O(D3Q3)
time overall. However this property provides a substantial benefit in our setting. In particular, the
special form of A allows computation of matrix vector multiplications in O(D2Q) rather than
O(D2Q2) time, and storage of this matrix with O(D2Q) rather than O(D2Q2) memory. Specifically,
if v = [v1, v2, . . . , vQ] is a D ⇥ Q matrix with D-vector columns vq, for the DQ-vector ~v =
[v>1 , v

>
2 , . . . , v

>
Q]

> we can compute A~v as vec
�
v⌃�1

�
+ [��2

1 X1>X1v1, . . . ,�
�2
Q XQ>XQvQ]>,

where vec(·) represents the operation of reshaping an D⇥Q matrix into a DQ-vector by stacking its
columns. When D > Q, this operation is dominated by the Q O(D2) matrix-vector multiplications
to compute the second term. As such, CG provides an order Q improvement in both time and memory.

Next, CG may be viewed as an iterative optimization method. At each step it provides an iterate
which is the closest to the ~µ on a Krylov subspace of expanding dimension. As such, the algorithm
may be terminated after fewer than DQ steps to provide an approximation of the solution. Moreover,
the algorithm may be provided with an initial estimate, and improves upon that estimate in each
successive iteration. In our case we may readily compute a good initialization. For example, we can
initialize with the posterior mean of the parameter for each group when conditioning on that group
alone, i.e. ~µ(0) :=

⇥
E[�1|Y 1]>, . . . ,E[�Q|Y Q]>

⇤>
.

Finally, the convergence properties of the conjugate gradient algorithm are well understood. Notably
the ith iterate of conjugate gradient ~µ(i) when initialized at ~µ(0) satisfies

k~µ(i+1) � ~µkA  2

✓
� 1

+ 1

◆i

k~µ(0) � ~µkA,

where  =
q

�max(A)
�min(A) is the square root of the condition number of A, and k · kA is the A�quadratic

norm [49, Chapter 5.1], [45]. Since A will often be reasonably well conditioned (note, for example,
that �min(A) � �min(⌃)), convergence can be rapid. Notably, in an unpublished application the
authors encountered (not described in this work) involving D ⇡ 20, 000 covariates and Q ⇡ 50
groups, the approximately million dimensional estimate ~µ was computed in roughly 10 minutes on a
16 core machine.

B.3 Expectation maximization algorithm further details

In Sections 3.2 and 3.3 we introduced EM algorithms for estimating ⌃ for both linear and logistic
regression models. In this subsection we provide a derivation of the updates in Algorithm 1 and
discuss computational details of our fast implementation.

Derivations of EM updates for linear regression. Our notation inherits directly from [47, Chapter
1.5], to which we refer the reader for context. In our application of the EM algorithm, we take the
collection of all covariate effects � as the ‘missing data.’ For the expectation (E) step, we therefore
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require

Q(⌃,⌃(i)) : = E[log p(�|⌃)|D,⌃(i)]

= c+
D

2
log |⌃�1|� 1

2

DX

d=1

E[�>
d ⌃�1�d|D,⌃(i)]

= c+
D

2
log |⌃�1|� 1

2

DX

d=1

tr
⇣
⌃�1E[�d�

>
d |D,⌃(i)]

⌘

= c+
D

2
log |⌃�1|� 1

2

DX

d=1

tr
⇣
⌃�1(µdµ

>
d + Vd)

⌘
,

(2)

where c is a constant that does not depend on ⌃, µ = [µ1 . . . , µD]> := E[�|D,⌃(i)] and for each
d Vd := (IQ ⌦ ed)>Var[~�|D,⌃(i)](IQ ⌦ ed). From the last line of Equation (2) we may see that µ
and {Vd}Dd=1, comprise the required posterior expectations.

The solution to the maximization step may then be found by considering a first order condition for
maximizing over ⌃�1 rather than ⌃. Observe that @

@⌃�1Q(⌃,⌃(i)) = D
2 ⌃� 1

2

PD
d=1(µdµ>

d + Vd).

Setting this to zero we obtain ⌃(i+1) = D�1
P

(µdµ>
d + Vd). This is the desired update for the

M-step provided in Algorithm 2.

Logistic regression EM updates. The updates for the approximate EM algorithm described in
Section 3 are derived from a Gaussian approximation to the posterior under which the expectation of
log prior is taken. In particular we approximate the first line of Equation (2) as

Q(⌃,⌃(i)) : = E[log p(�|⌃)|D,⌃(i)]

=

Z
p(�|D,⌃(i)) log p(�|⌃)d�

⇡
Z

q(i)(�) log p(�|⌃)d�

(3)

where q(i) denotes the Laplace approximation to p(�|D,⌃(i)). Specifically, as we summarized in
Algorithm 3, we approximate the posterior mean by the maximum a posteriori estimate, ~µ⇤ :=
argmax~� log p(

~�|D,⌃(i)), and the posterior variance by V := �[r2
� log p(

~�|D,⌃(i))
��
~�=~µ⇤ ]

�1.

We the let q(i) be the Gaussian density with these moments. This renders the integral in the last line
of Equation (3) tractable, and updates are derived in the same way as in the linear case.

Naively, the approximate EM algorithm for logistic regression could be much more demanding than
its counterpart in the linear case. In particular, at each iteration we need to solve a convex optimization
problem, rather than linear system. However, in practice the algorithm is only little more demanding
because, by using the maximum a posteriori estimate from the previous iteration to initialize the
optimization, we can solve the optimization problem very easily. In particular, after the first few EM
iterations, only one or two additional Newton steps from this initialization are required.

To simplify our implementation, we used automatic differentiation in Tensorflow to compute gradi-
ents and Hessians when computing the maximum a posteriori values and Laplace approximations.

Computational efficiency. We have employed several tricks to provide a fast implementation of
our EM algorithms. The M-Steps for both linear and logistic regression involve a series of expensive
matrix operations. To accelerate this, we used Tensorflow[1] to optimize these steps by way
of a computational graph representation generated using the @tf.function decorator in python.
Additionally, we initialize EM with a moment based estimate (see Appendix E.2).
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C Frequentist properties of exchangeability among covariate effects –
supplementary proofs and discussion

C.1 Discussion of Condition 4.1

The restriction on the design matrices in Condition 4.1 places strong limits the immediate scope
of our theoretical results. However, as with many statistical assumptions such as Gaussianity of
residuals, this condition lends considerable tractability to the problem that enables us to build insights
that we can see hold in more relaxed settings in experiments (see Section 6).

Under Condition 4.1 estimation of the parameter � may be reduced to a special matrix valued case
of the normal means problem with each �̂q

LS,d ⇠ N (�q
d,�

2). Accordingly, we may recognize �2

as a reflection of both the residual variances �2
q and sample sizes Nq. In particular, if within each

group q the covariates have sample second moment N�1
q

PNq

n=1 X
q
nX

q>
n = ID, and the residual

variances and sample sizes are equal (i.e. �2
1 = �2

2 = · · · = �2
Q and N1 = N2 = · · · = NQ), then

�2 = �2
1/N

1. Additionally, because �̂LS is a sufficient statistic of D for �, it suffices to consider �̂LS

alone, without needing to consider other aspects of D. For these reasons, conditions of this sort are
commonly assumed by other authors in related settings (e.g. van Wieringen [61, Chapters 1.4 and
6.2] and Fan and Li [20], Golan and Perloff [25]).

That the trends predicted by our theoretical results persist beyond the limits of Condition 4.1 should
not be surprising. The likelihood, our estimators and their risks are all continuous in the Xq, and so
domination results may be seen to extends via continuity to settings with well-conditioned designs. On
the other hand, problems with design matrices that are more poorly conditioned are more challenging
for both theory and estimation in practice (see e.g. Brown and Zidek [10][Example 4.2]).

C.2 A proposition on analytic forms of the risks of moment estimators

The following proposition characterizes analytic expressions for the moment based estimators. These
expressions provide a starting point for the theory in Section 4

Proposition C.1. Assume each Y q
n |Xq

n,�
q ⇠ N (Xq>

n �q,�2
q ) and define ⌃̂MM := D�1�̂>

LS�̂LS �
D�1diag(�2

1kX1†k2F , . . . ,�2
QkXQ†k2F ). Then

1. if each �d
i.i.d.⇠ N (0,⌃), E[⌃̂MM] = ⌃.

Furthermore, under Condition 4.1

2. when D � Q, �̂MM
ECov = �̂LS � �2D�̂†>

LS and

3. when D  Q, �̂MM
EGroup = �̂LS � �2Q�̂†>

LS ,

where † denotes the Moore-Penrose pseudoinverse of a matrix.

Proof. We begin with statement (1), that under Condition 4.1 and correct prior specification,
E[⌃̂MM] = ⌃. Recall that ⌃̂MM := D�1�̂>

LS�̂LS � D�1diag(�2
1kX1†k2F , . . . ,�2

QkXQ†k2F ). For
any fixed �, we have E[⌃̂MM|�] = D�1E[�̂>

LS�̂LS|�] � D�1diag(�2
1kX1†k2F , . . . ,�2

QkXQ†k2F ),
and so seek to characterize E[�̂>

LS�̂LS|�]. Note that we may write �̂LS
d
= �+✏ for a random D⇥Q ma-

trix ✏ with each column q distributed as ✏q indep.⇠ N
h
0,�2

q (X
q>Xq)�1

i
. As such, for each q we have

E[�̂q>
LS �̂

q
LS|�] = �q>�q+E[✏q>✏q]. Next observe that E[✏q>✏q] = tr[�2

q (X
q>Xq)�1] = �2

qkXq†k2F ,
where † denotes the pseudo-inverse of a matrix and k · kF is the Frobenius norm. Additionally,
for q 6= q0, we have E[�̂q>

LS �̂
q0

LS|�] = �q>�q0 . Putting these together into matrix form, we see
E[�̂>

LS�̂LS|�] = �>� + diag(�2
1kX1†k2F , . . . ,�2

QkXQ†k2F ), and so E[⌃̂MM|�] = D�1�>�. Under

the additional assumption that for each d, �d
i.i.d.⇠ N (0,⌃), we have that E[D�1�>�] = ⌃, and (1)

obtains from the law of iterated expectation.
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We next prove statement (2), that �̂MM
ECov := E[�|D, ⌃̂MM] = �̂LS � �2D�̂†>

LS . Consider the singular
value decomposition (SVD), �̂LS = V diag(�

1
2 )U>. Under Condition 4.1 substituting this expression

into ⌃̂MM provides ⌃̂MM = D�1Udiag(�)U> � �2IQ. Therefore, Lemma C.2 provides that we
may write

�̂MM
ECov := E[�|D, ⌃̂MM]

= �̂LS � �̂LS

h
��2⌃̂MM + IQ

i�1

= �̂LS � V diag(�
1
2 )U>

h
��2(D�1Udiag(�)U> � �2IQ) + IQ

i�1
U>

= �̂LS � V diag
h
�

1
2 � (��2D�1�)�1

i
U>

= �̂LS � �2DV diag(�� 1
2 )U>

= �̂LS � �2D�̂†>
LS ,

where � is the Hadamard (i.e. elementwise) product, as desired.

We lastly prove (3), that the analogous moment based estimator constructed under the assumption of
a priori exchangeability among groups is �̂MM

EGroup = �̂LS � �2Q�̂†>
LS . We begin by making explicit

the assumed model and estimate. Specifically we assume each �q i.i.d.⇠ N (0,�) a priori, where � is a
D ⇥D covariance matrix.

In this case, we obtain an unbiased moment based estimate of � as �̂MM := Q�1�̂LS�̂>
LS �

Q�1
PQ

q=1 �
2
q (X

q>Xq)�1. Following an argument exactly parallel to the one in the proof of (1),

we find that under the prior �q i.i.d.⇠ N (0,�), we have E[�̂MM] = �. Furthermore, following an
argument exactly parallel to the one in the proof of (2), we find that under Condition 4.1 the corre-
sponding empirical Bayes estimate �̂MM

EGroup := E[�|�̂MM] = �̂LS � �2Q�̂†>
LS . We omit full details

to spare repetition.

Lemma C.2. Under Condition 4.1 E[�|D,⌃] = �̂LS � �̂LS

⇥
��2⌃+ IQ

⇤�1
.

Proof. By Proposition 3.1, we have

E[~�|D,⌃] = V

"
Y 1>X1

�2
1

, . . . ,
Y Q>XQ

�2
Q

#
where V �1 = ⌃�1 ⌦ ID + diag(

X1>X1

�2
1

, . . . ,
XQ>XQ

�2
Q

).

Under Condition 4.1, we can simplify this as

E[~�|D,⌃] =

"
⌃�1 ⌦ ID + diag(

X1>X1

�2
1

, . . . ,
XQ>XQ

�2
Q

)

#�1 "
Y 1>X1

�2
1

, . . . ,
Y Q>XQ

�2
Q

#

=
h
⌃�1 ⌦ ID + ��2IDQ

i�1
��2

h
�̂1
LS, . . . , �̂

Q
LS

i

=
h
�2⌃�1 ⌦ ID + IDQ

i�1 h
�̂1
LS, . . . , �̂

Q
LS

i
.

As a result, for each d, E[�d|D,⌃] =
⇥
�2⌃�1 + IQ

⇤�1
�LS,d and so, in matrix form, we may write

E[�|D,⌃] = �̂LS

h
�2⌃�1 + IQ

i�1

= �̂LS � �̂LS

h
IQ + ��2⌃

i�1
.
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C.3 Proof of Lemma 4.2

Proof. We prove the lemma in two parts; first for the case that D > Q+ 1, and then for the case that
Q  D  Q+ 1.

Our proof for the case that D > Q+1 relies on an expression for the squared error risk for estimators
of the form �̂ = �̂LS � �2c�̂†>

LS for real c. In particular, Lemma C.3 provides that when D > Q+ 1
and under Condition 4.1,

E[k� � (�̂LS � c�̂†>
LS )k

2
F | �] = DQ+ �4c(c+ 2 + 2Q� 2D)E[k�̂†

LSk
2
F | �].

Notably, since under Condition 4.1, by Proposition C.1 we have that �̂MM
ECov = �̂LS � �2D�̂†>

LS we
obtain E[k� � �̂MM

ECovk2F | �] = �2DQ� �4D(D � 2Q� 2)E[k�̂†
LSk2F | �], as desired.

We next consider Q  D  Q + 1. In this case, both R(�, �̂MM
ECov) and �2DQ � �4D(D � 2Q �

2)E[k�̂†
LSk2F | �] are positive infinity. In particular, observe that k�̂†

LSk2F = tr[(�̂>
LS�̂LS)�1] is the

trace of the inverse of a non-central Wishart matrix, which is known to have infinite expectation for
Q  D  Q+1 (see e.g. Hillier and Kan [30]). Likewise, Lemma C.6 reveals that R(�, �̂MM

ECov) = 1
as well.

The second assertion of Lemma 4.2, that when D  Q and under Condition 4.1 E[k� � �̂MM
EGroupk2F |

�] = �2DQ � �4Q(Q � 2D � 2)E[k�̂†
LSk2F | �], obtains similarly. Specifically, under these

conditions an identical argument to that provided in Lemma C.3 provides that
E[k� � (�̂LS � �2c�̂†>

LS )k
2
F | �] = DQ+ �4c(c+ 2 + 2D � 2Q)E[k�̂†

LSk
2
F | �]

when D < Q � 1. The desired expression is then obtained by taking c = Q to reflect �̂MM
EGroup =

�̂LS � �2Q�̂†>
LS , again as specified by Proposition C.1.

Lemma C.3. Let D > Q+ 1 and let �̂ = �̂LS � �2c�̂†>
LS . Then under Condition 4.1 E[k� � �̂k2F |

�] = �2DQ+ �4c(c+ 2 + 2Q� 2D)E[k�̂†
LSk2F | �].

Proof. The results follows by considering Stein’s unbiased risk estimate (SURE) [41, Chapter 4,
Corollary 7.2] (restated as Lemma C.4) and making several algebraic simplifications. In order to
apply the lemma, we note that under Condition 4.1 ~̂�LS ⇠ N (~�,�2IDQ) and ~̂� = ~̂�LS � g(~̂�LS) for

g(~̂�LS) = ��2c · vec(�̂†>
LS ), where vec(·) represents the operation of reshaping an D ⇥Q matrix

into a DQ-vector by stacking its columns.

We first simplify the sum of partial derivatives in Equation (4) of Lemma C.4. Observe that
DQX

n=1

@gn(~̂�LS)

@ ~̂�LS,n

= ��2c
DX

d=1

QX

q=1

@�̂†,q
LS,d

@�̂q
LS,d

,

where �̂†,q
LS,d denotes the entry in the qth row and dth column of �̂†

LS.

Next, letting eq be the qth basis vector in RQ, for each q and d we may write

@�̂†,q
LS,d

@�̂q
LS,d

=
@

@�̂q
LS,d

�̂LS,d(�̂
>
LS�̂LS)

�1eq

= e>q (�̂
>
LS�̂LS)

�1eq + �̂LS,d
@

@�̂q
LS,d

(�̂>
LS�̂LS)

�1eq

= e>q (�̂
>
LS�̂LS)

�1eq � �̂>
LS,d(�̂

>
LS�̂LS)

�1

2

4 @

@�̂q
LS,d

(�̂>
LS�̂LS)

3

5 (�̂>
LS�̂LS)

�1eq

= k�̂†,q
LS k

2 � �̂†>
LS,d

h
eq�̂

>
LS,d + �̂LS,de

>
q

i
(�̂>

LS�̂LS)
�1eq

= k�̂†,q
LS k

2 �
h
�̂†>
LS,deq�̂

>
LS,d(�̂

>
LS�̂LS)

�1eq + �̂†>
LS,d�̂LS,de

>
q (�̂

>
LS�̂LS)

�1eq
i

= k�̂†,q
LS k

2 � (�̂†,q
LS,d)

2 � �̂†>
LS,d�̂LS,dk�̂†,q

LS k
2,
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where in the fourth and last lines we have used that e>q (�̂>
LS�̂LS)�1eq = k�̂†,q

LS k2, as can be seen by
observing that (�̂>

LS�̂LS)�1 = �̂†
LS�̂

†>
LS .

Adding these terms together we find
DX

d=1

QX

q=1

@�̂†,q
LS,d

@�̂q
LS,d

=
DX

d=1

QX

q=1

n
k�̂†,q

LS k
2 � (�̂†,q

LS,d)
2 � �̂†>

LS,d�̂LS,dk�̂†,q
LS k

2
o

= Dk�̂†
LSk

2
F � k�̂†

LSk
2
F � k�̂†

LSk
2
F

DX

d=1

�̂†>
LS,d�̂LS,d

= Dk�̂†
LSk

2
F � k�̂†

LSk
2
F � k�̂†

LSk
2
F tr(�̂

†
LS�̂LS)

= (D �Q� 1)k�̂†
LSk

2
F .

We next note that the regularity condition required by Lemma C.4 is satisfied, as demonstrated in
Lemma C.5, and so we may write

E[k� � �̂k2F | �] = �2DQ+ E[kg(~̂�LS)k2 | �]� 2�2
DX

d=1

QX

q=1

E[
@�̂†,q

LS,d

@�̂q
LS,d

| �]

= �2DQ+ �4c2E[k�̂†
LSk

2 | �]� 2�4c(D �Q� 1)E[k�̂†
LSk

2
F | �]

= �2DQ+ �4c(c+ 2 + 2Q� 2D)E[k�̂†
LSk

2 | �].
as desired.

Lemma C.4 (Stein’s Unbiased Risk Estimate – Lehmann and Casella Corollary 7.2). Let
X ⇠ N (✓,�2IN ), and let the estimator ✓̂ be of the form ✓̂ = X � g(X) where g(X) =
[g1(X), g2(X), . . . , gN (X)] is differentiable. If E[| @

@Xn
gn(X)|] < 1 for each n = 1, . . . , N,

then

R(✓, ✓̂) = �2N + E[kg(X)k2]� 2�2
NX

n=1

@

@Xn
gn(X). (4)

Lemma C.5. Let D > Q+ 1. Then under Condition 4.1 E
"����

@�̂†,q
LS,d

@�̂q
LS,d

���� | �
#
 1 for each d and q.

Proof. From our derivation of
@�̂†,q

LS,d

@�̂q
LS,d

in Lemma C.3 we have that

@�̂†,q
LS,d

@�̂q
LS,d

= k�̂†,q
LS k

2 � (�̂†,q
LS,d)

2 � �̂†>
LS,d�̂LS,dk�̂†,q

LS k
2

= k�̂†,q
LS k

2 � (�̂†,q
LS,d)

2 � k�̂†,q
LS k

2tr[(�̂>
LS�̂LS)

�1�LS,d�
>
LS,d].

As such we have that������

@�̂†,q
LS,d

@�̂q
LS,d

������
 k�̂†,q

LS k
2 + |(�†,q

LS,d)
2|+ k�̂†,q

LS k
2|tr[(�̂>

LS�̂LS)
�1�LS,d�

>
LS,d]|

 k�̂†,q
LS k

2 +

������

DX

d0=1

(�†,q
LS,d0)2

������
+ k�̂†,q

LS k
2

������
tr[(�̂>

LS�̂LS)
�1

DX

d0=1

�LS,d0�>
LS,d0 ]

������

= k�̂†,q
LS k

2 + k�̂†,q
LS k

2 + k�̂†,q
LS k

2tr[(�̂>
LS�̂LS)

�1�̂>
LS�̂LS]

 (2 +Q)k�̂†,q
LS k

2

 (2 +Q)k�̂†
LSk

2
F

= (2 +Q)tr[(�̂>
LS�̂LS)

�1].
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We next recognize that under Condition 4.1, (�̂>
LS�̂LS)�1 is the inverse of a non-central Wishart

matrix with non-centrality parameter �. Therefore, from Hillier and Kan [30, Theorem 1], we

have that for D > Q + 1, E

tr
⇣
(�̂>

LS�̂LS)�1
⌘
| �

�
< 1. Accordingly, we may conclude that

E
"����

@�̂†,q
LS,d

@�̂q
LS,d

���� | �
#
 1 as desired.

Lemma C.6. Assume Q  D  Q+ 1. For any �, R(�, �̂MM
ECov) = 1.

Proof. First observe that we may lower bound L(�, �̂MM
ECov) as

L(�, �̂MM
ECov) = k�̂MM

ECov � �k2F
= k�2D�̂†>

LS + � � �̂LSk2F
= �4D2k�̂†

LSk
2
F + k� � �̂LSk2F � 2�2Dtr

h
��̂†

LS(� � �̂LS)
i

� �4D2k�̂†
LSk

2
F + k� � �̂LSk2F � 2�2Dk�̂†

LSkF k� � �̂LSkF
= (�2Dk�̂†

LSkF � k� � �̂LSkF )2

where the inequality follows from Cauchy-Schwarz. We next consider any constant c < �2D and
write

R(�, �̂MM
ECov) = E[L(�, �̂MM

ECov)|�]
= P(ck�̂†

LSkF � k�̂LS � �kF )E[L(�, �̂MM
EGroup) | �, ck�̂

†
LSkF � k�̂LS � �kF ]

+ P(ck�̂†
LSkF < k�̂LS � �kF )E[L(�, �̂MM

EGroup) | �, ck�̂
†
LSkF < k�̂LS � �kF ]

� P(ck�̂†
LSkF � k�̂LS � �kF )E[L(�, �̂MM

EGroup) | �, ck�̂
†
LSkF � k�̂LS � �kF ]

� P(ck�̂†
LSkF � k�̂LS � �kF )E[(�2Dk�̂†

LSkF � k� � �̂LSkF )2 | �, ck�̂†
LSkF � k�̂LS � �kF ]

� P(ck�̂†
LSkF � k�̂LS � �kF )(�2D � c)2E[k�̂†

LSk
2
F | �, ck�̂†

LSkF � k�̂LS � �kF ]
� (�2D � c)2P(ck�̂†

LSkF � k�̂LS � �kF )E[tr[(�̂>
LS�̂LS)

�1 | �] = 1

where the last line comes from recognizing (�̂>
LS�̂LS)�1 as the inverse of a non-central Wishart

matrix, the trace of which has infinite expectation for Q  D  Q+ 1.

C.4 Proof of Theorem 4.3 and additional details

Proof. The first domination result of Theorem 4.3 follows closely from Lemma 4.2. Under Condi-
tion 4.1, �̂LS

d
= � + �✏ for a random matrix ✏ with i.i.d. standard normal entries, and so we can see

R(�, �̂LS) =
PD

d=1

PQ
q=1 E[(�✏

q
d)

2] = DQ�2. Next, D > 2Q + 2 implies that D � 2 � 2Q > 0

so that D(D � 2 � 2Q)�2k�̂†
LSk2F is almost surely positive, and therefore positive in expectation.

We therefore obtain the result from Lemma 4.2.

We next consider the second domination result. The performance of �̂MM
EGroup may be seen to degrade

in stages as we transition from a few covariates and many groups regime to a many covariates and
few groups regime. When D < Q/2� 1, we can see that �̂MM

EGroup has good performance. In fact, by
an argument analogous to our proof of the first part of Theorem 4.3 above, we can see that �̂MM

EGroup

dominates �̂LS; Specifically, from Lemma 4.2 we can recognize R(�, �̂LS)� R(�, �̂EGroup) as the
expectation of an almost surely positive quantity.

When D = Q/2� 1 we have Q(Q� 2� 2D) = 0, and so regardless of �, the estimators �̂MM
EGroup

and �̂LS have equal risk, and neither dominates.

Relative performance degrades further in the intermediate regime of Q/2 � 1 < D < Q � 1. In
this regime, R(�, �̂LS)� R(�, �̂MM

EGroup) = �4Q(Q� 2� 2D)E[k�̂†
LSk2F | �] may be written as the

expectation of an almost surely negative quantity, and so �̂MM
EGroup is dominated by �̂LS.
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The situation is even worse when Q � 1  D  Q; appealing again the they symmetry between
�̂MM
EGroup and �̂MM

ECov, we can see that by Lemma C.6 R(�, �̂MM
EGroup) = 1.

Finally, when D > Q the expression �̂MM
EGroup = �̂LS�

h
��2�̂MM � ID

i�1
�̂LS involves the inverse

of a low rank matrix since under Condition 4.1, �̂MM = Q�1�̂LS�̂>
LS � �2ID. Accordingly we take

as our convention k�̂MM
EGroupk = 1, analogously to defining 1

0 = 1; as a result �̂MM
EGroup has infinite

risk in this second regime as well, and we see that this estimator is dominated by �̂LS whenever
D < Q/2� 1.

With the strong parallels established by Proposition C.1 and Lemma 4.2 under Condition 4.1, we
can see that this is not a result of �̂MM

EGroup being singularly bad. Indeed, if we consider the many
groups regime with Q > D, we can obtain analogous results to demonstrate the superiority of an
exchangeability among groups approach.

C.5 Proof of Lemma 4.4

Proof. We first show that under Condition 4.1, ⌃̂ = Udiag
⇥
(D�1�� �21Q)+

⇤
U> is the maximum

marginal likelihood estimate of ⌃ in Equation (1). Our approach is to first derive a lower bound
on the negative log likelihood, and then show that this bound is met with equality by the proposed
expression.

For convenience, we consider a scaling of the negative log likelihood,

�2D�1 ln p(�̂LS|⌃) = ln |⌃+ �2IQ|+D�1tr
h
(⌃+ �2IQ)

�1�̂>
LS�̂LS

i
,

and are interested in deriving a lower bound on

min
⌃⌫0

ln |⌃+ �2IQ|+D�1tr
h
(⌃+ �2IQ)

�1�̂>
LS�̂LS

i
,

where the notation ⌃ ⌫ 0 reflects that the minimum is taken over the space of positive semidefinite
matrices.

The problem simplifies if we parameterize the minimization with the eigendecomposition ⌃ =
V >diag(⌫)V, where V is a Q⇥Q matrix satisfying V >V = IQ and ⌫ is a Q-vector of non-negative
reals. In particular, if we define L(V, ⌫) := �2D�1 ln p(�̂LS|⌃ = V >diag(⌫)V ) then, leaving the
constraints on V and ⌫ implicit, we have

min
V,⌫

L(V, ⌫) = min
V,⌫

ln |V >diag(⌫)V + �2IQ|+D�1tr
h
(V >diag(⌫)V + �2IQ)

�1�̂>
LS�̂LS

i

= min
V,⌫

ln |V >diag(⌫)V + �2IQ|+D�1tr
h
(diag(⌫) + �2IQ)

�1V �̂>
LS�̂LSV

>
i

= min
V,⌫

QX

q=1

ln(⌫q + �2) +D�1
QX

q=1

1

⌫q + �2
V >
q �̂>

LS�̂LSVq

= min
V

QX

q=1

min
⌫q�0

ln(⌫q + �2) +
D�1V >

q �̂>
LS�̂LSVq

⌫q + �2
.

Next, Lemma C.7 provides that we may solve the inner optimization problems over ⌫ in the line above
analytically to get ⌫⇤ := argmin⌫ L(V, ⌫) with entries ⌫⇤q = max(�2, D�1V >

q �̂>
LS�̂LSVq) � �2.

Substituting these values in, we obtain

min
V,⌫

L(V, ⌫) = min
V

QX

q=1

ln
h
max(�2, D�1V >

q �̂>
LS�̂LSVq)

i
+

D�1V >
q �̂>

LS�̂LSVq

max(�2, D�1V >
q �̂>

LS�̂LSVq)

= min
V

QX

q=1

ln
h
max(�2, D�1V >

q �̂>
LS�̂LSVq)

i
+ ��2 min(�2, D�1V >

q �̂>
LS�̂LSVq).
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We can now further simplify the problem by considering the eigendecomposition of �̂>
LS�̂LS =

Udiag(�)U>, and recognizing that because V U satisfies (V U)>V U = IQ we may write

min
V,⌫

L(V, ⌫) = min
V

QX

q=1

ln
h
max(�2, D�1V >

q �̂>
LS�̂LSVq)

i
+ ��2 min(�2, D�1V >

q �̂>
LS�̂LSVq)

= min
V

QX

q=1

ln


max

⇣
�2, V >

q diag(D�1�)Vq

⌘�
+ ��2 min

h
�2, V >

q diag(D�1�)Vq

i
.

Finally, we obtain a lower bound by recognizing {V >
q diag(D�1�)Vq}Qq=1 as the diagonals of

D�1V diag(�)V > and applying Lemma C.8 to obtain that

�2D�1 ln p(�̂LS|⌃) �
QX

q=1

ln
h
max(�2, D�1�q)

i
+ ��2 min(�2, D�1�q)

for every ⌃ ⌫ 0.

We next show that this bound is met with equality by ⌃̂ = Udiag
⇥
(D�1�� �21Q)+

⇤
U>,

the form given in the statement of Lemma 4.4. Recognize first that ⌃̂ + �2IQ =
Udiag

⇥
max(�21Q, D�1�)

⇤
U>. Substituting this expression in, we find

�2D�1 ln p(�̂LS|⌃̂) = ln |⌃̂+ �2IQ|+D�1tr
h
(⌃̂+ �2IQ)

�1�̂>
LS�̂LS

i

= ln

����diag
h
max(�21Q, D

�1�)
i����+D�1tr


diag

h
max(�21Q, D

�1�)
i�1

U>�̂>
LS�̂LSU

�

=
QX

q=1

ln
h
max(�2, D�1�q)

i
+D�1�q/max(�2, D�1�q)

=
QX

q=1

ln
h
max(�2, D�1�q)

i
+ ��2 min(�2, D�1�q),

which meets our lower bound. This establishes that the maximum marginal likelihood estimate is
⌃̂ = U

⇥
(D�1�� �21Q)+

⇤
U>, as desired.

It now remains to show that, under Condition 4.1, �̂ECov = V diag
h
�

1
2 � (1Q � �2D��1)+

i
U>.

By Lemma C.2, we have that �̂ECov = �̂LS � �̂LS

h
IQ + ��2⌃̂

i�1
. Substituting in the analytic

expression for ⌃̂, recalling the SVD �̂LS = V diag(�
1
2 )U>, and rearranging, we obtain

�̂ECov = V diag(�
1
2 )U> � V diag(�

1
2 )U>

⇢
IQ + ��2U

h
(D�1�� �21Q)+

i
U>

��1

= V diag

⇢
�

1
2 � �

1
2

h
1Q + ��2(D�1�� �21Q)+

i�1
�
U>

= V diag

(
�

1
2 �


1Q �

⇣
1Q + (��2D�1�� 1Q)+

⌘�1
�)

U>

= V diag


�

1
2 �

⇣
1Q � �2D��1

⌘

+

�
U>,

as desired.

Lemma C.7. For any c > 0,

⌫⇤ : = argmin
⌫�0

ln(⌫ + �2) +
c

⌫ + �2

= max(�2, c)� �2
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Proof. Define g(x) := ln(x+ �2) + c/(x+ �2) and f(x) := g(�2x) = ln(x+ 1) + ��2c
x+1 + ln�2

to lighten notation. Now ⌫⇤ = argmaxx�0 g(x) = �2 argmaxx�0 f(x). Denote by f 0 and f 00

the first two derivatives of f. Notably, f 0(x) = (x + 1)�1
⇥
1� ��2c/(x+ 1)

⇤
and f 00(x) = (x +

1)�2
⇥
2��2c/(x+ 1)� 1

⇤
. The result may be seen by separately considering the cases of ��2c < 1

and ��2c � 1.

If ��2c < 1, then f 0 is positive on R+, and so argminx2R+
f(x) = 0. On the other hand, if

��2c � 1, then f has a local minimum at x = ��2c � 1 (note that f 0(��2c � 1) = 0, and
f 00(��2c � 1) > 0)). Since this is the only local minimum on R+, and with the positive second
derivative at the this minimum, we can conclude that in this case argminx2R+

f(x) = ��2c� 1. In
either case, we can write argminx2R+

f(x) = max(1,��2c)� 1. Therefore, as desired, we see that
argminx2R+

g(x) = max(�2, c)� �2.

Lemma C.8. Let A be a Q⇥Q Hermitian matrix with eigenvalues �1,�2, . . . ,�Q. Then

QX

q=1

ln
h
max(�2, Aq,q)

i
+ ��2 min(�2, Aq,q) �

QX

q=1

ln
h
max(�2,�q)

i
+ ��2 min(�2,�q).

Proof. First note that f(x) = lnmax(�2, x) + min(�2, x) is concave on R+, and so the vector
valued function, g(x1, x2, . . . , xN ) =

PN
n=1 f(xn) is Schur concave. By the Schur-Horn theorem

(Theorem D.4) the diagonals of A are majorized by its eigenvalues, when each are sorted in descending
order. As such g

�
diag(A)

�
� g (�), as desired.

C.6 Proof of Theorem 4.5

Our approach to showing dominance of �̂ECov over �̂MM
ECov parallels the classical approach of

Baranchik [4], to showing that the positive part James-Stein estimator dominates the original James-
Stein estimator. In this case, however, our parameter and estimates are matrix-valued, rather than
vector-valued. Additionally, we contend with the added complication that the directions along which
we apply shrinkage are random.

Proof. To begin, consider again the SVD of the matrix of least squares estimates, �̂LS =
V diag(�

1
2 )U>. Recall from Proposition C.1 that �̂MM

ECov = �̂LS � �2D�̂†>
LS under Condition 4.1.

Because the pseudo-inverse of �̂LS may be written as �̂†
LS = Udiag(�� 1

2 )V >, we rewrite
�̂MM
ECov = V diag(�

1
2 � �2D�� 1

2 )U>. Comparing this estimate to the expression for �̂ECov in
Lemma 4.4, �̂ECov = V diag

h
�

1
2 � (1� �2D��1)+

i
U>, we see that the two estimates differ only

when �̂MM
ECov “flips the direction” of one or more of the singular values of �̂LS. Our strategy to proving

the theorem is to show that analogously to the “over-shrinking” of the James-Stein estimator relative
to the positive part James-Stein estimator, this “over-shrinking” of singular values increases the loss
of �̂MM

ECov in expectation.

For convenience, we define ⇢ := �
1
2 � (1 � �2D��1) and ⇢+ := �

1
2 � (1 � �2D��1)+ so that

�̂MM
ECov = V diag(⇢)U> and �̂ECov = V diag(⇢+)U>.

To show the desired uniform risk improvement we must show that for any �,

E
h
L(�, �̂MM

ECov)� L(�, �̂ECov)
i
> 0, (5)
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where L(�, �̂) = k�̂ � �k2F is squared error loss. We can rewrite this difference in loss as

L(�, �̂MM
ECov)� L(�, �̂ECov) = k�̂MM

ECov � �k2F � k�̂ECov � �k2F
= kdiag(⇢)� V >�Uk2F � kdiag(⇢+)� V >�Uk2F

=
QX

q=1

(⇢q � V >
q �Uq)

2 � (⇢+q � V >
q �Uq)

2

=
QX

q=1

⇢2q � ⇢2+q � 2(V >
q �Uq)(⇢q � ⇢+q),

where we here (and in the proof of this theorem only) write Vq and Uq to denotes columns of V and

U, rather than rows. Since ⇢2q
a.s.
� ⇢2+q , it suffices to show that for any � and each q,

E
h
(V >

q �Uq)(⇢q � ⇢+q)
i
< 0.

To show this, we again find an even narrower but easier to prove condition will imply the one above;
since ⇢q and ⇢+q differ only when �q < �2D, it is enough to show that for each 0 < c < �2D

E
h
(V >

q �Uq)⇢q|�q = c
i
< 0. (6)

If we establish Equation (6), then Equation (5) obtains from the law of iterated expectation. Next,
observe that since ⇢q fixed and negative when �q = c < �2D, Equation (5) is equivalent to

E
h
V >
q �Uq|�q = c

i
> 0.

Letting U�q and V�q denote the remaining columns of U and V , respectively, we may write

E
h
V >
q �Uq|�q = c

i
= E


E
h
V >
q �Uq|�q = c, U�q, V�q

i�

and, again through the law of iterated expectation, see that it will be sufficient to show for every U�q

and V�q that E
h
V >
q �Uq|�q = c, U�q, V�q

i
> 0.

With all but one column of each of U and V fixed, Uq and Vq are determined up to signs, as unit
vectors in the one dimensional subspaces orthogonal to [{U q0}q0 6=q] and [{V d}d 6=q]. As such, we
need only to show

P
h
V >
q �Uq > 0|U�q, V�q,�q = c

i
> P

h
V >
q �Uq < 0|U�q, V�q,�q = c

i
, (7)

since
E
h
V >
q �Uq|�q, U�q, V�q

i

= |V >
q �Uq|

⇢
P
h
V >
q �Uq > 0|�q, U�q, V�q

i
� P

h
V >
q �Uq < 0|�q, U�q, V�q

i�
,

where, in an abuse of notation, we have moved |V >
q �Uq| outside the expectation since it is determin-

istic once we have observed V�q and U�q .

That Equation (7) holds may be seen from considering the conditional probability densities for Uq

and Vq , and noting that the density is larger for Vq and Uq such that V >
q �Uq is positive. In particular,

we have that

ln p(�̂LS|�, U�q, V�q,�) = �1

2
k� � �̂k2F + h

= �1

2
kV >�U � diag(�

1
2 )k2F + h

= �1

2
(�

1
2
q � V >

q �Uq)
2 + h0

where h and h0 are constants that do not depend on the signs of Uq and Vq. Since �
1
2
q is positive with

probability one, the conditional probability that V >
q �Uq is positive is greater than that it is negative.

Accordingly, we see that Equation (6) does in fact hold, and the result obtains.
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D Gains from ECov in the high-dimensional limit – supplementary proofs

D.1 Proof of Lemma 5.2

From the sequence of datasets, {DD}1D=1, we obtain sequences of estimates. To make explicit the
dimension dependence, we denote these as explicit functions of the data, e.g. {�̂ECov(DD)}1D=1

where �̂ECov(DD) denotes �̂ECov in Equation (1) applied to DD. Furthermore, we consider the entire
sequence of datasets and estimates as existing in a single probability space.

We note that Lemma D.1 establishes that �̂ECov(DD) and �̂MM
ECov(DD) coincide almost surely in the

high-dimensional limit. As such, the squared error loss of these two estimates coincide almost surely
in the limit, and we may write

lim
D!1

D�1RD
⇡ (�̂ECov(DD)) = lim

D!1
D�1E

h
E[k�̂ECov(DD)� �k2F | �]

i

= lim
D!1

D�1E
⇥
E[k�̂MM

ECov(DD)� �k2F + k�̂ECov(DD)� �̂MM
ECov(DD)k2F+

2tr((�̂ECov(DD)� �̂MM
ECov(DD))>(�̂MM

ECov(DD)� �)) | �]
⇤

= lim
D!1

E
h
D�1E[k�̂MM

ECov(DD)� �k2F | �]
i

= lim
D!1

E
h
�2Q� �4(D � 2Q� 2)E[k�̂LS(DD)†k2F |�]

i

= �2Q� �4 lim
D!1

E[(D � 2Q� 2)k�̂LS(DD)†k2F ]

= �2Q� �4 lim
D!1

E[tr[(⌃̃+ �2IQ)
�1] + o(1)]

= �2Q� �4tr[(⌃̃+ �2IQ)
�1].

The third line comes from linearity of expectation and that k�̂ECov � �̂MM
ECovk

a.s.! 0. The fourth line
comes from Lemma 4.2. The second to last line comes from Lemma D.2.

We next recognize that tr[(⌃̃+�2IQ)�1] =
PQ

q=1(�q+�2)�1, where �1, . . . ,�Q are the eigenvalues
of ⌃̃. Accordingly we may write,

lim
D!1

D�1RD
⇡ (�̂ECov(DD)) = �2Q� �4

QX

q=1

(�q + �2)�1.

Furthermore since we obtain �̂ID(DD) by applying �̂ECov(DD) independently to the data in each
group, we analogously obtain

lim
D!1

D�1RD
⇡ (�̂ID(DD)) = �2Q� �4

QX

q=1

(⌃̃q,q + �2)�1.

Putting these expressions together, we obtain

lim
D!1

D�1
h
RD

⇡ (�̂ID(DD))� RD
⇡ (�̂ECov(DD))

i
= �4

2

4
QX

q=1

(�q + �2)�1 �
QX

q=1

(⌃̃q,q + �2)�1

3

5 .

Finally, including the additional scaling by ��2Q�1 we obtain

Gain(⇡,�2) = �2Q�1

2

4
QX

q=1

(�q + �2)�1 �
QX

q=1

(⌃̃q,q + �2)�1

3

5

as desired.
Lemma D.1. Under the conditions of Lemma 5.2, limD!1 k�̂ECov(DD) � �̂MM

ECov(DD)kF = 0
almost surely.
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Proof. Note that under the conditions of Lemma 5.2, Lemma 4.4 provides that �̂ECov(DD) and
�̂MM
ECov(DD) differ only when ⌃̂MM is not positive definite; otherwise ⌃̂MM = ⌃̂. Since ⌃̂MM =

D�1�̂LS(DD)>�̂LS(DD) � �2IQ, by Lemma D.3 ⌃̂MM will be positive definite for all D above
some D0 almost surely, and so �̂ECov(DD) and �̂MM

ECov(DD) become equal for all D large enough,
implying strong convergence.

Lemma D.2. Under the conditions of Lemma 5.2, limD!1 Dk�̂LS(DD)†k2F = tr[(⌃̃+ �2IQ)�1]
almost surely.

Proof. Recall that k�̂LS(DD)†k2F = tr[(�̂LS(DD)>�̂LS(DD))�1]. As such, we
may write Dk�̂LS(DD)†k2F = tr[(D�1�̂LS(DD)>�̂LS(DD))�1]. By Lemma D.3
D�1�̂LS(DD)>�̂LS(DD)

a.s.! ⌃̃ + �2IQ, and so we can see that Dk�̂LS(DD)†k2F
a.s.!

tr[(⌃̃+ �2IQ)�1] as desired.

Lemma D.3. Under the conditions of Lemma 5.2 limD!1 D�1�̂LS(DD)>�̂LS(DD) = ⌃̃+ �2IQ
almost surely.

Proof. It suffices to show strong convergence element wise, as this implies strong convergence in
all other relevant norms. For convenience, let C(D) := D�1�̂LS(DD)>�̂LS(DD). Note that we
may write each entry C(D)

q,q0 =
PD

d=1 D
�1�̂LS(DD)qd�̂LS(DD)q

0

d as a sum of D i.i.d. terms. Notably,

each term �̂LS(DD)qd · �̂LS(DD)q
0

d is a product of two Gaussian random variables and is therefore
sub-exponential with some non-negative parameters (⌫,↵) (see e.g. Wainwright [63, Definition
2.7]). As a result, C(D) is then sub-exponential with parameters (D� 1

2 ⌫, D�1↵). Therefore, for any
constant b satisfying 0 < b < ⌫2/↵, by Wainwright [63, Proposition 2.9] we have that

P
���C(D)

q,q0 � E[C(D)
q,q0 ]

��� � b

�
 2 exp{�D

2
b2/⌫2}.

This rapid, exponential decay in tail probability with D implies that for small b,
1X

D=1

P
���C(D)

q,q0 � E[C(D)
q,q0 ]

��� � b

�
 1.

Therefore, by the Borel-Cantelli lemma we see that |C(D)
q,q0 � E[C(D)

q,q0 ]|
a.s.! 0. Since E[C(D)] =

⌃̃ + �2IQ for each D, this implies that limD!1 D�1�̂LS(DD)>�̂LS(DD) = ⌃̃ + �2IQ almost
surely.

D.2 Further discussion of Theorem 5.3

We here give further detail related to the proof of Theorem 5.3 and introduce additional notation used
in the remainder of the section. Recall from Lemma 5.2 that Gain(⇡,�2) = �2Q�1[

PQ
q=1(�q +

�2)�1 �
PQ

q=1(⌃̃q,q + �2)�1]. For convenience, we will use ` := diag(⌃̃)# to denote the Q-vector
of diagonal entries of ⌃̃ sorted in descending order. Similarly, we take � to be the Q-vector of
eigenvalues of ⌃̃, again sorted in descending order. Next, it is useful to rewrite

Gain(⇡,�2) = �2Q�1
h
~f(�)� ~f(`)

i

where ~f(x) :=
PQ

q=1 f(xq) =
PQ

q=1(�
2 + xq)�1 (where f(x) := (�2 + x)�1).

The key theoretical tool used in establishing Theorem 5.3 is the Schur-Horn theorem. We state
this result below, adapted from Horn [32, Theorem 5]. The Schur-Horn theorem guarantees that
� majorizes `. In particular, an N -vector a is said to majorize a second N -vector b if

PN
n=1 an =PN

n=1 bn and for all N 0  N,
N 0X

n=1

a#n �
N 0X

n=1

b#n,
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where for a vector v, we use v# to denote the vector with the same components as v, sorted in
descending order. As captured by Theorem 5.3, we can therefore see that Gain(⇡,�2) is non-
negative for any ⌃̃ by observing that ~f is Schur-convex (since f is convex).
Theorem D.4 (Schur-Horn). A vector ` can be the diagonal of a Hermitian matrix with (repeated)
eigenvalues � if and only if � majorizes `.

D.3 Proof of Theorem 5.4

We here show that Gain(⇡,�2) is upper bounded as

Gain(⇡,�2)  �2Q�1f 00(�min)k�k2k�� `k2
= 2�2Q�1k�k2k�� `k2/(�2 + �min)

3,

and lower bounded as

Gain(⇡,�2) � 1

2
�2Q�1f 00(�max)k�� `k2

= �2Q�1k�� `k2/(�2 + �max)
3,

where f 00(x) := d2

dx2 f(x) where f is as defined in Appendix D.2.

We obtain both bounds with quadratic approximations to f . In particular, we define g↵ as the 2nd

order Taylor approximation of f expanded at ↵,

g↵(x) := f(↵) + f 0(↵)(x� ↵) +
1

2
f 00(↵)(x� ↵)2,

and note that by Lemma D.5

~g�max(�)� ~g�max(`)  ~f(�)� ~f(`)  ~g�min(�)� ~g�min(`), (8)

where ~g↵(x) :=
PQ

q=1 g↵(xq).

Proof of upper bound. We obtain the desired upper bound as follows.

Equation (8) and Lemma D.6 allow us to see

Gain(⇡,�2)  �2Q�1
⇥
~g�min(�)� ~g�min(`)

⇤

=
1

2
�2Q�1f 00(�min)(k�k2 � k`k2).

(9)

Since f 00 is positive on R+, the problem reduces to upper bounding k�k2 � k`k2.

In particular, we find

k�k2 � k`k2 = h�+ `,�� `i (10)
 k�+ `kk�� `k // by Cauchy-Schwarz (11)

=
p
k�k2 + 2h�, `i+ k`k2 k�� `k (12)


p
k�k2 + 2k�kk`k+ k`k2 k�� `k // by Cauchy-Schwarz (13)

 2k�kk�� `k // Since k�k � k`k, (14)

where we can see that k�k � k`k by noting that k · k2 is Schur convex, and again appealing to the
Schur-Horn Theorem. The desired upper bound obtains by combining Equations (9) and (10).

Proof of lower bound. We begin as we did for the upper bound. Equation (8) and Lemma D.6
allow us to see

Gain(⇡,�2) � �2Q�1
⇥
~g�max(�)� ~g�max(`)

⇤

=
1

2
�2Q�1f 00(�max)(k�k2 � k`k2).

(15)

Since, again, f 00 is positive on R+, the problem reduces to lower bounding k�k2 � k`k2.
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In particular, we would like to show k�k2 � k`k2 � k� � `k2. We can arrive at this bound with
a particular expansion of k� � `k2 and using Lemma D.7, which again leverages the fact that �
majorizes `. Specifically, we write

k�� `k2 = h�� `,�i � h�� `, `i
= k�k2 �

⇥
h�, `i+ h�� `, `i

⇤

= k�k2 � k`k2 �
⇥
h�, `i � h`, `i+ h�� `, `i

⇤

= k�k2 � k`k2 � 2h�� `, `i
 k�k2 � k`k2

(16)

where the last line follows from Lemma D.7, which provides that h� � `, `i � 0 since, from the
Schur-Horn theorem for any Q0  Q

PQ0

q=1 �q � `q � 0, and ` has non-negative, non-increasing
entries. We obtain the desired lower bound by combining Equations (15) and (16).
Lemma D.5. Let � and ` be Q-vectors of non-negative reals with non-increasing entries, and let
� majorize `. Consider ~f : RQ ! R, x 7!

PQ
q=1 f(xq) =

PQ
q=1(�

2 + xq)�1 (where f(v) :=

(�2 + v)�1) for any �2 > 0, and define g↵ to be the 2nd order Taylor approximation of f expanded
at ↵,

g↵(x) := f(↵) + f 0(↵)(x� ↵) +
1

2
f 00(↵)(x� ↵)2.

Then
~g�max(�)� ~g�max(`)  ~f(�)� ~f(`)  ~g�min(�)� ~g�min(`),

where ~g↵(x) :=
PQ

q=1 g↵(xq) and �max = �1 and �min = �Q are the largest and smallest entries
of �, respectively.

Proof. If there are indices q for which �q = `q , remove them (they do not affect ~f(`)� ~f(�)). If all
are equal, � = d and so the result is trivial, otherwise we have Q � 2 entries with �q 6= `q .

We begin with the lower bound; the upper bound follows similarly. For this, it suffices to show
~f(�)� ~f(`)�

�
~g�max(�)� ~g�max(`)

�
� 0.

We first express this difference as an inner product

~f(�)� ~f(`)�
�
~g�max(�)� ~g�max(`)

�
=

QX

q=1

⇥
(f � g�max)(�q)� (f � g�max)(`q)

⇤

=
QX

q=1

(�q � `q)

"
(f � g�max)(�q)� (f � g�max)(`q)

�q � `q

#

// defining each hq :=
(f � g�max)(�q)� (f � g�max)(`q)

�q � `q

=
QX

q=1

(�q � `q)hq

= h�� `, hi

where h = [h1, h2, . . . , hQ]>.

We will complete our proof by leveraging Lemma D.7, which provides that ha, bi � 0 for any
Q-vector a satisfying

PQ
q=1 aq = 0 and

PQ0

q=1 aq � 0 for every Q0  Q, and Q-vector b with
non-increasing entries.

It therefore remains only to show that � � ` and h satisfy the conditions of Lemma D.7. Since
the entries of � and ` are taken to be in descending order, the condition that

PQ0

q=1(� � `)q � 0
for any Q0  Q, follows from the Schur-Horn theorem. Likewise, this theorem provides thatPQ

q=1 �q =
PQ

q=1 `q, and therefore that
PQ

q=1(� � `)q = 0, so that � � ` meets condition (2) of
the lemma.
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We next confirm that h has non-increasing entries by considering an expansion of the expressions for
each hq . In particular, observe that

hq =
(f � g�max)(�q)� (f � g�max)(`q)

�q � `q

= (�q � `q)
�1

n
f(�q)� f(`q)�

⇥
g�max(�q)� g�max(`q)

⇤o

= (�q � `q)
�1
� (�2 + `q)� (�2 + �q)

(�2 + `q)(�2 + �q)
�


(�q � `q)f

0(�max) +
1

2
((�q � �max)

2 � (`q � �max)
2)f 00(�max)

�  

= (�2 + �max)
�2 � (�2 + `q)

�1(�2 + �q)
�1 � 1

2
(�q � `q)

�1(�2 + �max)
�3

h
�2
q � `2q � 2�max(�q � `q)

i

= (�2 + �max)
�2 � (�2 + `q)

�1(�2 + �q)
�1 � 1

2
(�2 + �max)

�3
⇥
�q + `q � 2�max

⇤
.

Next define �(a, b) = (�2+�max)�2� (�2+a)�1(�2+ b)�1� 1
2 (�

2+�max)�3 [b+ a� 2�max] ,
so that for each q, hq = �(`q,�q). Now, for q0 > q, we may write

hq0 � hq = �(`q0 ,�q0)� �(`q,�q)

=

Z `q0

`q

@

@a
�(a,�q)da+

Z �q0

�q

@

@b
�(`q0 , b)db.

(17)

Next note that
@

@a
�(a, b) = (�2 + a)�2(�2 + b)�1 � 1

2
(�2 + �max)

�3

and
@

@b
�(a, b) = (�2 + a)�1(�2 + b)�2 � 1

2
(�2 + �max)

�3

from which we can see that @
@a�(a, b) and @

@b�(a, b) are positive for a, b 2 [�min,�max]. Accordingly,
Equation (17) provides that hq0 �hq  0, since `q0  `q and �q0  �q for q0 > q, because the entries
of ` and � are non-increasing. Therefore hq0  hq, completing the proof.

Lemma D.6. Consider the quadratic function ~h(x) =
PQ

q=1(ax
2
q + bxq + c). Let �, ` 2 RQ satisfy

PQ
q=1 �q =

PQ
q=1 `q . Then

~h(`)� ~h(�) = a(k`k2 � k�k2).

Proof. The result follows from the simple algebraic rearrangement below,

~h(`)� ~h(�) =
QX

q=1

(a`2q + b`q + c)� (a�2
q + b�q + c)

=
QX

q=1

a`2q � a�2
q

= a(k`k2 � k�k2).

Lemma D.7. Let x be a Q-vector satisfying for each Q0  Q,
PQ0

q=1 xq � 0, and let y be a Q-vector
with non-increasing entries. If additionally either (1) y has non-negative entries or (2)

PQ
q=1 xq = 0

then hx, yi � yQ
PQ

q=1 xq � 0.

Proof. We first prove the lemma under condition (1) by induction. The base case of Q = 1 is trivial;
hx, yi = x1y1 and under (1) x1 and y1 are non-negative and under (2) x1 = 0.
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Assume the result holds for Q� 1. Then

hx, yi = yQxQ + hx1:Q�1, y1:Q�1i (18)

� yQxQ + yQ�1

Q�1X

q=1

xq // by the inductive hypothesis (19)

� yQxQ + yQ

Q�1X

q=1

xq // since yQ�1 � yQ and
Q�1X

q=1

xq � 0 (20)

= yQ

QX

q=1

xq � 0 // since yQ and
QX

q=1

xq are non-negative. (21)

This provides the desired inductive step, completing the proof under condition (1).

Under condition (2), consider y0 = y �minq yq1Q. Then

hx, yi = hx, y0i+min
q

yqhx,1Qi

= hx, y0i.

Since y0 now has non-negative entries, condition (1) is satisfied and the result follows.

D.4 Proof of Corollary 5.5

We establish the corollary with a brief sequence of upper bounds following from our initial upper
bound in Theorem 5.3. In particular, the theorem provides

Gain(⇡,�2)  2�2Q�1k�#kk`# � �#k/(�2 + �min)
3.

We begin by simplifying this upper bound. As a first step, note that

k`# � �#k2 = k`k2 + k�k2 � 2h`#,�#i
 2k�k2.

As such, we can simplify our upper bound as

Gain(⇡,�2)  2�2Q�1k�kk`# � �#k/(�2 + �min)
3

 4�2Q�1k�k2/(�2 + �min)
3

 42�2
min�

2/(�2 + �min)
3

(22)

where  := �max/�min is the condition number of ⌃̃.

We then obtain the first bound by noting that

�2
min�

2/(�2 + �min)
3  �2

min�
2/(�2)2/�min

 �min/�
2

and the second by noting that

�2
min�

2/(�2 + �min)
3  �2

min�
2/(�min)

3

 �2/�min.

Substituting these expressions into Equation (22) provides the desired expressions in Corollary 5.5.

D.5 Extensions to random design matrices

The asymptotic formulation in Section 5 may allow us to relax Condition 4.1. In particular, The-
orem 5.3 and Theorem 5.4 depend on this condition only through Lemma 5.2, which provides an
analytic expression for the asymptotic gain. We conjecture that this condition may be satisfied for
certain sequences of datasets with random design matrices of increasing dimension. For example if
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for each group q, the number of data points Nq
D grows as !(D2) and if each of the covariates are

each distributed as Xq
n,d

i.i.d.⇠ N (0,�2
q/(�

2I2D)), then an asymptotic analogue of Condition 4.1 will
be satisfied in the sense that k��2

q Xq>Xq � �2IDk2 will be o(1/
p
D) (see e.g. Wainwright [63,

Theorem 6.5]). As a result, we can expect the sequence of estimates �̂ECov to converge to estimates
with the simplified form utilized in the proof of Lemma 5.2 fast enough that the asymptotic gains are
equal in these two cases.

Making this argument rigorous, however, requires contending with convergence of sequences of
random variables of changing dimension (recall that we consider D ! 1). This technical aspect
complicates the required theoretical analysis because common tools (e.g. continuous mapping
theorems) do not apply in this setting. We leave further analysis of �̂ECov with random design
matrices to future work.

E Experiments Supplementary Results and Details

E.1 Simulations additional details

We here describe the details of the simulated datasets discussed in Section 6. For each of the dimen-
sions D and each of the 20 replicates we first generated covariate effects for all Q = 10 groups. To do
this, we began by setting ⌃; for the correlated covariate effects experiments (Figure 1 Left) we generat-
ing a random Q⇥Q matrix of orthonormal vectors U and set ⌃ = Udiag([20, 2�1, . . . , 2Q�1]>)U>,
and for independent effects (Figure 1 Right) we set ⌃ = IQ. We then simulated covariate effects as
�d

i.i.d.⇠ N (0,⌃).

We next simulated the design matrices. For each group q, we chose a random number of data points
Nq ⇠ Pois(� = 1000), and for each data point n = 1, . . . , Nq sampled Xq

n ⇠ N (0, (1/1000)ID)

so that for each group E[Xq>Xq] = ID. Finally, we generated each response as Y q
n

indep⇠
N (Xq>

n �q, 1).

For �̂EGroup, we estimated the D ⇥D covariance � by maximum marginal likelihood. We did this
with an EM algorithm closely related to Algorithm 1. See e.g. Gelman et al. [24, Chapter 15 sections
4-5] for an explanation of the relevant conjugacy calculations in a more general case that includes a
hyper-prior on �.

E.2 Practical moment estimation for poorly conditioned problems

The moment based estimator (using ⌃̂MM in Section 4) is unstable in the two real data applications
discussed in Section 6 due to poor conditioning of the design matrices leading �̂LS to have high
variance. To overcome this limitation, we instead used an adapted moment estimation procedure
which is less sensitive to this poor conditioning. While, in agreement with Theorem 4.5, this approach
performs worse than �̂ECov (see Figure 3) we report it nonetheless because it has lower computational
cost and may be appealing for larger scale applications. We describe this approach here. We note
however that moment based estimates of the sort we consider here do not naturally extend to logistic
regression and so are not reported for our application to CIFAR10.

We first introduce some additional notation. For each group q consider the reduced singular value
decomposition Xq = Sqdiag(!q)Rq>, where Sq and Rq are Nq ⇥ D and D ⇥ D matrices with
orthonormal columns and !q is a D-vector of non-negative singular values. Next define for each
group W q := Sq>Xq and Zq := Sq>Y q, which we may interpret as a D ⇥D matrix of pseudo-
covariates and D-vector of pseudo-responses, respectively. Next define ⌦ to be the Q⇥Q matrix with
entries ⌦q,q0 := tr(W q>W q0)�1 and ~�2 := [�2

1 ,�
2
2 , . . . ,�

2
Q]

>. Lastly, let Z = [Z1, Z2, . . . , ZQ]
be the D ⇥Q matrix of all pseudo-responses. Our new moment estimator is

⌃̂MM := [Z>Z �Ddiag(~�2)]� ⌦.

We next show hat E[⌃̂MM] = ⌃ under correct prior and likelihood specification. Note first that if � is
a D ⇥Q matrix with i.i.d. standard normal entries we may write

Z
d
= [W 1�1,W 2�2, . . . ,WQ�Q] + �diag(~�2).
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Figure 3: Performances of additional methods on the law enforcement and blog datasets. Uncertainty
intervals are ±1SEM.

As such, for each q and q0, we have that

E[(Z>Z)q,q0 ] = E[Zq>Zq]

= E[�q>W q>W q0�q0 ] + I[q = q0]�2
qD

= tr(W q>W q0E[�q0�q>]) + I[q = q0]�2
qD

= ⌦�1
q,q0⌃q,q0 + I[q = q0]�2

qD.

Accordingly, we can see that each entry of ⌃̂MM has expectation E[⌃̂MM
q,q0 ] = ⌃q,q0 , which establishes

unbiasedness.

However, this moment estimate still has the limitation that it evaluates to a non positive semidefinite
matrix with positive probability. Under the expectation that, in line with Theorem 4.3 the very small
and negative eigenvalues of ⌃̂MM might lead to over-shrinking, we performed an additional step
of clipping these eigenvalues to force the resulting estimate to be reasonably well conditioned. In
particular, if our initial estimate had eigendecomposition ⌃̂MM = Udiag(�)U>, we instead used
⌃̂MM = Udiag(�̃)U>, where for each q, we have �̃q = max(�q,�max/100) so that the condition
number of the modified estimate was at most 100. Though we did not find the performance of the
resulting estimates to be very sensitive to this cutoff, we view requirement for these partly subjective
implementation choices required to make the �̂MM

ECov effective in practice to be a downside of the
approach as compared to �̂ECov, which avoids such choices by estimating ⌃ by maximum marginal
likelihood.

Compared to the iterative EM algorithms, which rely on matrix inversions at each iteration, com-
putation of ⌃̂MM is much faster. In each of our experiments, computing it requires less than one
second.

E.3 Allowing for non-zero means a priori in hierarchical Bayesian estimates

In the development of our approach in Section 2 we imposed the restriction that E[�d] = 0 a priori.
Though in general one might prefer to let � have some nontrivial mean (as Lindley and Smith [44]
do in the context of exchangeability of effects across groups) this assumption simplifies the resulting
estimators, theory, and notation. When � is permitted to have a non-zero mean, conjugacy maintains
and the methodology presented in Section 3 may be updated to accommodate the change. While we
omit a full explanation of the tedious details of this variation, we include its implementation in our
code and the performance of the resulting empirical Bayesian estimators in Figures 3 to 5. From
these empirical results we see that removing this restriction has little impact on the performance of
the resulting estimators. Notably, our results in these figures reveal that the same is true for choosing
to include or exclude a prior mean for the exchangeability of effects across groups prior.
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Figure 4: Performances of methods on the blog dataset, segmented by post type. Uncertainty intervals
are ±1SEM.

Figure 5: Performances of methods on the law enforcement dataset, segmented by region and recorded
offense categorization. Uncertainty intervals are ±1SEM.
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E.4 Additional details on datasets

In each of the two regression applications, for each component dataset, we mean centered and
variance-normalized the responses. Additionally, we Winsorized the responses by group; in particular,
we clipped values more than 2 standard deviations from the mean.

BlogFeedback Data Set details Given the nature of the features included in the blog dataset used
in the main text (which are summarizing characteristics rather than readable text), we believe it
may be possible to find the blog post that corresponds to a particular data point. But we believe
it is unlikely that the dataset directly contains any personally identifiable information. The blog
information was obtained by web-crawling on publicly posted pages, so it is unlikely that consent for
inclusion of the content into this dataset was obtained.

Communities and Crime Dataset details All data in this dataset was obtained through official
channels. This dataset is composed of statistics aggregated at the community level, so it is less likely
(though not impossible) to contain personally identifiable information. Since it contains demographic,
census, and crime data, it is unlikely to contain offensive content.

CIFAR10 details. For the tasks car vs. cat, car vs. dog, truck vs. cat, and truck vs.
dog we used Nq = 100 data points. For the tasks car vs. deer, car vs. horse, truck vs.
deer, and truck vs. horse we used Nq = 1000 data points.

We generated the pre-trained neural network embeddings using a variational auto-encoder
(VAE) [36]. We adapted our VAE implementation from ALIBI DETECT [60], here. See also
notebooks/2021_05_12_CIFAR10_VAE_embeddings.ipynb for details.

CIFAR10 is composed from a subset of the 80 million tiny images dataset. As is currently ac-
knowledged on the 80 million tiny images website, this larger dataset is known to contain offen-
sive images and images obtained without consent (https://groups.csail.mit.edu/vision/
TinyImages/). However, given the benign nature of the 10 image classes in CIFAR10, we expect
it does not contain offensive or personally identifiable content. These data were also obtained by
web-crawling, so it is unlikely that consent for inclusion of the content into this dataset was obtained.

E.5 Software Licenses

We here report the software used to generate our results and their associated licenses.

All of our experiments were implemented in python, which is licensed under the PSF license. For
ease of reproducibility, ran our experiments and generated our plots IPython in Jupyter notebooks;
this software is covered by a modified BSD license.

For our application to transfer learning using CIFAR10, we used a variational auto-encoder imple-
mentation adapted from ALIBI DETECT [60], which uses the Apache licence. Our implementation
of our EM algorithm uses TensorFlow [1], which is licensed under the MIT license.

We made frequent use of python packages numpy and scipy and
matplotlib. These are large libraries with components covered different li-
censes. See github.com/scipy/scipy/blob/master/LICENSES_bundled.txt for
scipy, github.com/numpy/numpy/blob/main/LICENSES_bundled.txt for numpy, and
github.com/matplotlib/matplotlib/tree/master/LICENSE for matplotlib.
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Figure 6: Performances of methods on CIFAR10 segmented by binary classification task. Uncertainty
intervals are ±1SEM.
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