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APPENDIX

A PROOF OF GENERALIZED RADEMACHER COMPLEXITY

A.1 PRELIMINARY

For simplicity, denote f(6;;x) as f;(z). For 1-Lipschitz loss function ¢(y f (z)) (for example, hinge
loss £(f(x),y) = max (0,1 — yf(x)), there holds:

r N
1
Ry(Z)=E |[sup — oil(fi(x),
~(Z) U_ZEZN; (f()y)]
- L
<E |sup — iYJilx
_U_ZEEN;ayf()]
|
=E jggﬁi:zlaifl(w) =Ry (2)

So we can bound Ry (Z) instead of Ry (Z2).

A.2 LINEAR MODEL

Given Section[A.T] we provide the bound below.

Lemma 3 (Linear Model). Let H = {x — wa}, where x,w € R Given N classifiers from H,
assume that ||z||2 < B and ||w||2 < C. Then

Ry(2) <

28

Proof. We have

r N
1
RN(Z)=E| sup — » oifi(z)
7 |Jlall<B IV ;
- LN
=E| sup — ZaiwiT:c (fi(z) = w]x)
o |lzlo< N =
_ L
=E| sup 27 | =) ouw; (a’b=0b"a)
o | lzll.<B (N; )]
B N
= NIE Zaiw, (a¥b < llall2[b]l2)
=1 2
5 N 2\ %
<= |E Zaiwl (Jensen inequality: Ex < vEz?2)
N i i=1 2
B N N 2
_ oL Y
1
2
B N N N
=~ IE Z o? wfwi+z Z 00 jw; W,
i=1 1' i=1 j=1,j#1
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_B (S )
()
<8 (Wmaxul)*
<= (lolly < ©)
The proof is complete.
O

A.3 TwO-LAYER NEURAL NETWORK

Given Section[A.T] we provide the bound below.

Lemma 4 (Two-layer Neural Network). Let H = {z + wT¢(Ux)}, where z € R%, U € R™*4,
w € R™, m is the number of the hidden layer, and ¢(x) = max (0, x) is the element-wise ReLU
function. Given N classifiers from H, assume that ||z||2 < B, ||w||2 < B', and |U;||2 < C, where
U; is the j-th row of U. Then

Ro(2) < YIEEC.

Proof. We have

Q=

lzlla<B

Ry (2) =

(fi(z) = w] ¢(Uix))

| X
l sup sznﬁ(l”)

Q=

N
1
sup Ng iniT¢(Uix)
i=1

llzll2<B

N
Zai¢(Ui$)

i=1

!

z| =

(Jwll2 < B')

E| sup
o |l=l.<B

2

¢(Uyi)
(Denote V; = : e R™)

N

ZUz‘Vi

i=1

=%
=

sup
o | |lzl.<B

2

o (S0 (S

llzll2<B

|
=
Q=

N

B, Y 2 T
= —FE| sup o? VIV + 00, VIV,
N o ||z].<B ;\1/ ZZ

1
B’ AN
= — sup VitV
N jol.<B (; ' )
!

B 2
— sup (N max Vi)
N ja<p N6 ’

B/
< suwp(max|[Vil)
VN |jofo<B N

=

IN
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¢(U1i$)
For V, = € R™, we have
[ $(Uniz)
sup (max”Vz-HQ) = sup | max :
llzll2<B * * lz]2<B v .
|(Unmiz) | |,
_Uli:L'
< o {ma| (I6(2)] < [
z|[o<B ?
| Umiw 2
—vin sup (e U], )
llzllo<B \ *  J
< vin sup (e Ul o] )
llzllo<B \ *  J
Finally,
! VmBB'C

Ry (2) < sup (maux |Vilz) <

" VN jjall<B \ VN

The proof is complete.

A.4 PROOF OF LEMMA [2]

For simplicity, denote f(0;;x) as f;(z) andi € {1,--- ,N} asi € [N].
First, we begin with a lemma, which is a similar version of Lemma 1 from (Golowich et al., 2018)).

Lemma 5. Ler ¢ be a I-Lipschitz, positive-homogeneous activation function which is applied
element-wise (such as the ReLU). Then for any class of vector-valued functions F and any convex
and monotonically increasing function g : R — [0, 00), there holds:

x) ) (13)

ZOZ (W fi (z H) <2 -E, supg(R

ferF

E, i (

fEJ-'W HW“F<R <

Proof. Letwy,--- ,wpy be the rows of W, we have

2

h [N 2
dWii(x)| =) lz 0i¢(wjfi(33))]
Jj=1 Li=
h N wT 2
2
j=1 i—
Therefore, the supremum of this over all wy, - - - , wy, such that |[W||% = Z;‘Zl [lw; |* < R? must

be attained when ||w;|| = R for some j and ||w;|| = 0 for all ¢ # j. So we have

N
Eo sup g =E, sup g
FEF W W] r<R i—1 feFwi|w||=R i=1

Since g(]z]) < g(z) + g(—=2), this can be upper bounded by

()

10) (wal- (:c)) D .
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N N
Eqssupg <Z o0 (wai (;z:))) + E,supg (—Zcrigb( )
=1 =1 N
=2-E, supg< (90))> ,

where the equality follows from the symmetry in the distribution of the o; random variables. The
right hand side in turn can be upper bounded by

N
2.E, sup g (Z ow! f; (q;)) <2-E, sup g <||w||
fe

feF wi|w||=R i—1 eF,w:||lw||=R

N
Zaifi ()

=2-E, supg( Z:cr,fz )
O
With this lemma in hand, we can prove lemmaQ
Proof. For A > 0, the rademacher complexity can be upper bounded as
N%N( Eo Sup Zozfz
.”7 n Z 1
<4 E, /\Z fi(z A S i lity)
- nsen’s in i
)\ og Es sup exp 2 101 i ensen’s inequality
1
< 3 logEs supexp [ sup [[WillF Azazéf’l 1 (Wig—1di—2 (- ¢1 (Winz)))
i€ [n] i
— ' fii—1(z)
T

We write this last expression as

1
X log E, sup exp < ))H)
1
SX log (2 - Eo sup exp ( “T_q - ifii—a ( >> (Lemmal[3)
<. (Repeatedly apply Lemma 3]
-1
1
gXlog <2l_2-Easupexp ()\ZI:IITZ quﬁ Wi 1z) ))
1 1-1
SX log <2l_1 - E, sup exp ()\ . HTZ . ZUiWi,ﬂ >>
i=1 i=1

Assume that W, i € [N] maximizes

-1
sup exp <)\ . HTi .
i=1

Wi71$

) |

N
E O'iWiyl"E
i=1

Therefore,

-1
1
X log <2l1 - Es sup exp ()\ . Eﬂ .

)
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-1 N
1
=3 log | 2871 - Egexp | - H T; Z oW
i=1 i=1
z

For EZ, we have

N
E ini*lx
i=1

:HTi Eo ZU“’J i (Wﬁl’”)

=1
-1
<[I7 (1:BVN)
i=1
1
=BVN][][ T
i=1
Note that Z is a deterministic function of the i.i.d. random variables o1, - - - , o, and satisfies
l
Z(o1,-+ iy ON) = Z(01, -+ =04, oN) < QBHTI.'
——
T

This means that Z satisfies a bounded-difference condition. According to Theorem 6.2 in|{Boucheron
et al. (2013), Z is sub-Gaussian with variance factor

—_

- Z (2BT)? = NB*T?,

,Jk

and satisfies

1 2
log{E expA(Z —EZ)} < 1 A2 NB*T? = %NBQTQ.
Choosing A = B2 ;O\g; and using the above, we get that

% + %log{Eexp)\(Z ~EZ)} +EZ < (\/er 1) BTVN

Finally, we get

(v@log2)i +1) BT

Ry (2) < Vi

The proof is complete.
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B PROOF OF TRANSFERABILITY ERROR

B.1 TRANSFERABILITY ERROR AND GENERALIZATION ERROR

For z = (x,y), there holds
TE(z) = Lp(2") = Lp(z) < Lp(z") = Lp(2) + (Le(z) — Le(z"))
= (Lp(z") = Le(z") + (Le(z) — Lp(2))
< sup (Lp(2) = Le(2)) + sup (Lge(z) — Lp(2))

z€Be(x) z€Be(x)
< sup(Lp(z) = Lp(2)) + sup(Le(z) — Lp(2)).
z€Z z2€EZ
< 2sup|Lp(2) — Li(2)].
z€Z

B.2 PROOF OF THEOREM[I]

We prove a general version of the theorem as follows:

Theorem 3. Consider the squared error loss 1(0,xz,y) = [f(0;x) — y]2f0r a data point z = (x,y).
Assume that the data is generated by a function g(x) such that y = g(x) + p, where the zero-mean
noise p has a variance of n* and is independent of x. Then there holds

TE(z,€) = Lp(z*) — n? — Vargpy, f(0; 2) — [9(x) — Egpy f(0; 1)) . (14)

Diversity Attack

Remark. The irreducible error n? is constant because it arises from inherent noise and randomness
in the data (Geman et al.| |1992)).

Now we start our proof of it.

Proof. Given Eq. (B)), it is equivalent to prove

Lp(2) = Vargf(6;2) + [g(x) — Bonpe f(0:2))> + 2. (15)
Note that
Lp(z) =Egupe [f(6;2) — y}z
= Egpo [f(6;2) — g(z) + g(z) — 9]

=Eopo [(F(052) — 9(2))* + (9(2) —9)* + 2(g(x) — y)(f (05 2) — g(x))] -
Recall that y = g(z) + p with E(p) = 0 and Var(p) = n?, we have

Eo~pe (9(x) — y)* = 1%,

and
Eope [2(9(z) — y)(f(0;2) — g(2))] = —2E(p)Eg~p, [f (05 2) — g(2)] = 0.
Therefore,

Lp(2) = Boupo [f(0;2) — g(@)]* + 1. (16)
Likewise, we decompose the first term as
Eg [f(0;2) — g(x))?
Eo [£(6; ) Eof(6:2) + Eof (6; 2) — g(w))”

=E [(f(0;2) —Eof(0;2))* + (Eo f (05 ) — g(x))?
= 2(f(6; ) Eo f(0;x))(Eo f(6; 2) — g())]
=Eq(f(0;2) — Eof(0:2))” +Eo(Eo f(6;7) — g())°

Varg f(0;x) (g9(x)—Eq (f(8;2))?
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—2E [f(0;2) — Eof(6;2))(Eo f(0; ) — g()],

0

with the derivations for the second and third term:
Eo(f(0;2) — Eof (0;2))* = (Eof (6; 7)) — 29(2)Eo f(6; ) + g ()
= (g9(x) — Eo(f(0;2))°,

and
Eg [f(0;2) — Eof(0;2))(Eo f(0;2) — g(x)]
=(Eof(0;2))* — g(x)Eo f (0;2) — (Eof(0;2))* + g(x)Ee f(0; )
=0.
As a result,
o [£(0; ) — g(x)]> = Varg f(0; 7) + [g(2) — Egrpe f(0; )] (17

Combining the above results and we complete the proof.

To prove Theorem [I] we just set p = 0 in the above general version of theorem.

Similarly, consider the empirical version of Theorem we decompose L (z) as follows:

Theorem 4 (Vulnerability-diversity Decomposition (empirical version)). Consider the squared error

loss 1(f(0;2),y) = [f(0;2) — y]* for a data point z = (z,y). Let f(0;z) = ~ Zfil f(0;;x) be
the expectation of prediction over the distribution on the parameter space. Then there holds

LN
Lp(z) = N Zf(f(é’i;w),y)

1 N 1 2
= U/ NZ_:< (6:;2) — N;f(ei;a:))
Vulnerability
Diversity
The proof is similar to the above:
Lp(z) = ~ 3 0 ?
B(z) = N;(ﬂ i) —y)
L N 2
=~ Z (f(&l,x) — Zf(@i;x) + Zf(@,x) — y)
=1 1=1 i=1
| X N 2 2
=5 l (f(em - Zf(m)) + <Z £(05;3) — y) +
i=1 N i=1 N i=1
2 (f(W) Zf(&w)) (Zf(ﬁuar) y)]
i=1 =1
R 1 1 Y 2
RULEIIES DY (r050)- 5 > o)) +
Vulnerability
Diversity
2 1 1
2 (f(%:v) -5 Zf(&;fc)) <N > f(Bi) y>
=1 =1 =1
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The last terms equals to 0 because

N 2 N
:% (Zf(&,@) _ny(Gi;x) (Z 91,37) +ny(9i§$)

=0.

2 \

The proof is complete.

B.3 PROOF OF THEOREM[Z]

We first define a divergence measure taken into account. Given a measurable space and two measures
4, v which render it a measure space, we denote v <  if v is absolutely continuous with respect to
1. Hellinger integrals are defined below:

Definition 4 (Hellinger integrals (Hellinger, [1909)). Let v, u be two probability measures on (Q, F)
and satisfy v < pi, and @, : RY — R be defined as po(x) = x. Then the Hellinger integral of

order « is given by
dv\*“
Ha(vllp) = / (du) dp.

It can be seen as a ¢-Divergence with a specific parametrised choice of ¢ (Liese & Vajda, [2006). For
o > 1, the Hellinger integral measures the divergence between two probability distributions (Liese
& Vajdal 2006). There holds H, (v||u) € [1,4+00),a > 1, and it equals to 1 if the two measures
coincide (Shiryaev, 2016). Given such a divergence measure, we now provide the proof.

Proof. From Section[B.T} we know that

TE(z) = Lp(2") = Lp(z) < Lp(z") = Lp(2) + (Le(z) — Le(z"))
= (Lp(z*) — Lg(2")) + (Lg(z) — Lp(2))
< sup (Lp(z) = Le(2))+ sup (Le(z) - Lp(z))
rE€B(x) z€B(x)
< sup(Lp(2) — Lp(2)) + sup(Lp(z) — Lp(2)).
zEZ zEZ
Let (0,...,0)) ~ PéN, where Pé)N be a distribution over the product space and the m-th member
is different from Pgn, i.e., (0,...,0.,, 0’ ) (01,...,0.,,---,0n), where 0], #* 0,,. The
training process of N surrogate models f (0/ ) , f(0%) can be v1ewed as sampling the parameter
sets (07, ..., 0 ) from the distribution Py
We define
N
L (z Z
and
Dy (F) = sug {Lp(z) — Lg(2)},
zE
®1(E') = sup {Lp(2) — Lp:(2)} .
z€EZ
We have

©1(E) — ®1(E") = sup {Lp(z) — Lp(2)} — sup {Lp(2) — Lp(2)}

zEZ ZEZ
< sup {Lp(2) = Le(2) — (Lp(2) — Le (2))}

25



Under review as a conference paper at ICLR 2025

= sup {LE/(Z) - LE(Z)}

z€EZ

N
—sup [ZE Zf(f(ezﬁf)vy)

Nzez | i=1
By assuming that loss function ¢ is bounded by 3, we have

|1 (E) — 1(E')] <

2w

According to Theorem 1 in|Esposito & Mondelli| (2024)), for all § € (0, 1) and « > 1, with probability
at least 1 — 4, we have

o 25 HE (PenlPgy, o)
1(E) < Ep, [01(E)] + J oW " : . (18)

Denote f(0;;x) as fi(x) and f(0};z) as f;(z). Then we estimate the upper bound of Ep_, [®1(E)]
as follows:

Ep,\ [01(E)] = Ep,_, [ggg@p(@ - LE<z>>}

=Ep n [SUP Ey,. op)~pr  (LEr(2) — LE(Z))}
z€EZ ©

< E'p@Nﬂ)(f—)N {sgg (Lg/(2) — Lg (z))} (Jensen inequality)

N
= E'peNy'p(/aN {Slelg [Z f(0;;2) 1 }
z 1 i

N
=E IEPQM {stelgN [Z ) —Ufi(z ]}
1 i
< EO-]E'pé_)N {sup — lz ol } +EeEp_ { N [Z crié(fi(as),y)] }
=2-E,Ep,, {EUIZ) % Zaiﬁ(fi(x),y)}

ZQ'EG{bupzaz fz }

ZGZ

= 2R (F).

Likewise, if we define

o (E) = sup {Le(2) — Lp(2)},

®y(E') = sup {Lp/(2) — Lp(2)},

zEZ

then we have
Dy(E) — ®2(E') = sup {Lp(z) — Lp(2)} — sup {Lp(2) — Lp(2)}

z€Z z€EZ
< sup {Le(2) = Lp(2) = (Ler(2) — Lp(2))}
= sup {Le(z) — Le(2)}
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1 N N
=N ;f(f(ﬁi;x)vy)—;E(f(eg;x%y)],

According to the assumption that loss function £ is bounded by 3, we have

n o< B
|@2(E) — ®2(E")| < N

According to Theorem 1 in|Esposito & Mondelli| (2024), for all § € (0, 1) and « > 1, with probability
at least 1 — 4, we have

ar 2T HE (PorlPgy o))
(DZ(E) SE'P@N [@Q(E)] + 2(0&— 1)N In 5 . (19)

We estimate the upper bound of Ep_ . [P2(E)] as follows:

Ep, \ [02(E)] = Ep,_, [sup@E(z) - Lp<z>>}
2€Z

=Ep_y [SUP By, op)~pr  (LE(2) = LE/(Z))}
zEZ

<Ep .7, {sup (Lg(z) — Lg/ (z))} (Jensen inequality)
© z€Z
1 [ N
=Ep v, P {itelg N [; ((f(0i;2),y) — ;W(@i; x),y)l }
= EUEP(_)N,'P(;N Slelg . [Z oi [l(fi(x),y) — g(f{(x),y)]] }
? i=1

1 N
} +EsEp, {igg v lz oil(fi(x), y)] }

N
=2-E, {sup N Zaiz(fi(x)vy)}

z€EZ
= 2R (F).

Therefore, with probability at least 1 — §, there holds

o4

2032 I 2°5 Hy (Px+||Pgr_, x,)
( —1)N ] '

TE(z,e) = ®1(F) + ®2(E) < 4ARN(F) +

The proof is complete.

C MORE RELATED WORK

C.1 TRANSFERABLE ADVERSARIAL ATTACK

Input transformation. Input transformation-based attacks have shown great effectiveness in
improving transferability and can be combined with gradient-based attacks. Most input transformation
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techniques rely on the fundamental idea of applying data augmentation strategies to prevent overfitting
to the surrogate model (Gu et al.| 2024)). Such methods adopt various input transformations to further
improve the transferability of adversarial examples (Wang et al., 2023bja)). For instance, random
resizing and padding (Xie et al.|[2019)), downscaling (Lin et al.| 2019), mixing (Wang et al.}2021)),
automated data augmentation (Yan et al.| 2023), block shuffle and rotation (Wang et al.,[2024), and
dynamical transformation (Zhu et al., [2024)).

Gradient-based optimization. The central concept of these methods is to develop optimization
techniques in the generation of adversarial examples to achieve better transferability. [Dong et al.
(2018)); ILin et al.| (2019); Wang & He| (2021) draw an analogy between generating adversarial
examples and the model training process. Therefore, conventional optimization methods that improve
model generalization can also benefit adversarial transferability. In gradient-based optimization
methods, adversarial perturbations are directly optimized based on one or more surrogate models
during inference. Some popular ideas include applying momentum (Dong et al.,|2018)), Nesterov
accelerated gradient (Lin et al.,|2019)), scheduled step size (Gao et al., 2020) and gradient variance
reduction (Wang & Hel 2021} Xiong et al.,[2022)). There are also other elegantly designed techniques
in recent years (Gubri et al., 2022b; Wang et al., 2022; [Xiaosen et al., [2023; |[L1 et al., [2024; [Wu
et al.| [2024; Zhang et al., 2024b), such as collecting weights (Gubri et al.}[2022b), modifying gradient
calculation (Xiaosen et al.| 2023)) and applying integrated gradients (Ma et al., 2023)).

Model ensemble attack. Motivated by the use of model ensembles in machine learning, researchers
have developed diverse ensemble attack strategies to obtain transferable adversarial examples (Gu
et al.| 2024). It is a powerful attack that employs an ensemble of models to simultaneously generate
adversarial samples. It can not only integrate with advanced gradient-based optimization methods,
but also harness the unique strengths of each individual model (Tang et al., [2024)). Some popular
ensemble paradigms include loss-based ensemble (Dong et al., 2018)), prediction-based (Liu et al.|
2017)), logit-based ensemble (Dong et al., [2018)), and longitudinal strategy (Li et al., 2020). There
is also some deep analysis to compare these ensemble paradigms (Zhang et al., [2024b). Moreover,
advanced ensemble algorithms have been created to ensure better adversarial transferability (Zou
et al.| 2020; |Gubri et al.} 20224} [Xiong et al., 2022} |Chen et al.| 2023} |Li et al.,[2023; [Wu et al., |2024;
Chen et al., 2024).

C.2 STATISTICAL LEARNING THEORY

Statistical learning theory forms the theoretical backbone of modern machine learning by providing
rigorous frameworks for understanding model generalization (Vapnik} [1999). It introduces founda-
tional concepts such as Rademacher complexity (Bartlett & Mendelson,2002)), VC dimension (Vapnik
& Chervonenkais, [1971]), structural risk minimization (Vapnikl, [1998)) . It has also been instrumental in
the development of Support Vector Machines (Cortes & Vapnik, |[1995) and kernel methods (Shawe
Taylor & Cristianini, |2004), which remain pivotal in supervised learning tasks. Recent advances
extend statistical learning theory to deep learning, addressing challenges of high-dimensional data
and model complexity (Bartlett et al., 2021)). These contributions have significantly enhanced the
capability to design robust learning algorithms that generalize well across diverse applications (Du
& Swamyl 2013). In addition, there are also some other novel theoretical frameworks, such as
information-theoretic analysis (Xu & Raginskyl 2017, PAC-Bayes bounds (Parrado-Hernandez et al.|
2012), transductive learning (Vapnikl 2006), and stability analysis (Bousquet & Elisseeff, 2002}
Shalev-Shwartz et al.,[2010). Most of them derive a bound of the order (’)(ﬁ), while some others

derive sharper bound of generalization (Li & Liu} [2021)) of the order O( ﬁ) Such theoretical analysis
suggests that with the increase of the dataset volume, the model generalization will become better.

D FURTHER DISCUSSION

D.1 ANALYZE EMPIRICAL MODEL ENSEMBLE RADEMACHER COMPLEXITY

In particular, we present detailed analysis for the simple and complex cases below, within the context
of transferable model ensemble attack.
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The simple input space. Firstly, consider the trivial case where the input space contains too simple
examples so that all classifiers correctly classify (z,y) € Z. Then there holds

1 N
Ry(2) = f(y,y)lg lN ZJZ] =0.
1=1

In this case, Z is simple enough for fi1, -, f;. Such Z corresponds to a R (Z) close to 0.
However, it is important to note that an overly simplistic space Z may be impractical for model
ensemble attack: the adversarial examples in such a space may not successfully attack the models
from D, leading to a small value of Lp(z*). In other words, the existence of transferable adversarial
examples implicitly imposes constraints on the minimum complexity of Z.

The complex input space. Secondly, we consider the complex case. In particular, given arbitrarily
N models in H and any assignment of o, a sufficiently complex Z contains all kinds of examples
that make Ry (Z) large: (1) If 0; = +1, there are adversarial examples that can successfully attack
fi and leads to a large o;4( fi(x),y); (2) If o; = —1, there exists some examples that can be correctly
classified by f;, leading to 0, 4(f;(x),y) = 0. However, such a large R 5 (Z) is also not appropriate
for transferable model ensemble attack. It may include adversarial examples that perform well against
fi,---, fn but are merely overfitted to the current N surrogate models (Rice et al., [2020; Yu et al.,
2022)). In other words, these examples might not effectively attack other models in 7, thereby limiting
their adversarial transferability.

The above analysis suggests that an excessively large or small R (Z) is not suitable for adversarial
transferability. So we are curious to investigate the correlation between R y(Z) and adversarial
transferability, which comes to the analysis about the general case in Section[3.4]

Explain robust overfitting. = After a certain point in adversarial training, continued training
significantly reduces the robust training loss of the classifier while increasing the robust test loss, a
phenomenon known as robust overfitting (Rice et al., [2020; |Yu et al., [2022) (also linked to robust
generalization (Schmidt et al.| 2018 |Yin et al., [2019)). From the perspective in Section @], the
cause of this overfitting is the limited complexity of the input space relative to the classifier used
to generate adversarial examples during training. The adversarial examples become too simple for
the model, leading to overfitting. To mitigate this, we could consider generating more “hard” and
“generalizable” adversarial examples to improve the model’s generalization in adversarial training.
For a less transferable adversarial example (z, y), it is associated with a small L p(z), which in turn
makes TE(z, ) large.

D.2 COMPARE WITH GENERALIZATION ERROR BOUND.

We note that a key distinction between transferability error and generalization error lies in the
independence assumption. Conventional generalization error analysis relies on an assumption: each
data point from the dataset is independently sampled (Zou & Liul 2023; |Hu et al, [2023)). By
contrast, the surrogate models f1,--- , fy for ensemble attack are usually trained on the datasets
with similar tasks, e.g., image classification. In this case, such models tend to correctly classify easy
examples while misclassify difficult examples (Bengio et al.l 2009). Consequently, such correlation
indicates dependency (Lancaster, |1963), suggesting that we cannot assume these surrogate models
behave independently for a solid theoretical analysis. Additionally, there are alternative methods for
analyzing concentration inequality in generalization error analysis that do not rely on the independence
assumption (Kontorovich & Ramanan, [2008; Mohri & Rostamizadeh, [2008;; Lei et al.,[2019; Zhang
et al.l 2019). However, such data-dependent analysis is either too loose (Lampert et al., [2018)
(because it includes an additional additive factor that grows with the number of samples (Esposito &
Mondellil [2024))) or requires specific independence structure of data (Zhang & Amini,2024) that may
not align well with model ensemble attacks. Therefore, we uses the latest techniques of information
theory (Esposito & Mondelli, 2024} about concentration inequality regarding dependency. To our
best knowledge, it is the first mathematical tool in concentration inequality that fits our needs.

D.3 THE ANALOGY BETWEEN GENERALIZATION AND ADVERSARIAL TRANSFERABILITY

Besides providing inspiration for model ensemble attacks, the theoretical evidence in this paper
also offers new insights into another fascinating idea. Within the extensive body of research on
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transferable adversarial attack algorithms accumulated over the years (Gu et al}2024), we revisit a
foundational analogy that is universally applicable in the adversarial transferability literature: The
transferability of an adversarial example is an analogue to the generalizability of the model (Dong
et al.l 2018). In other words, the ideas that enhance model generalization in deep learning may
also improve adversarial transferability (Lin et al.,|2019). Over the past few years, this analogy has
significantly inspired the development of numerous effective algorithms, which directly reference it
in their papers (Lin et al.;,2019; Wang et al., [2021; Wang & He, 2021} Xiong et al.|[2022} |Chen et al.|
2024). And some recent papers are also inspired by it (Chen et al.l 2023 Wu et al.| |2024} Wang et al.}
2024; Tang et al.| |2024). Thus, validating this influential analogy is indispensable for defining the
future landscape of research in adversarial transferability. Interestingly, our paper sheds light on this
insight in several ways.

First, the mathematical formulations in Lemmaﬂ]is similar to generalization error (Vapnik, |1998;
Bousquet & Elisseeff], 2002) , which also derives an objective as a difference between the population
risk and the empirical risk. Such similarity between transferability error and generalization error
suggests the possible validity of the analogy. Also, Lemma 2]is similar to the bound of the original
Rademacher complexity (Golowich et al.} 2018)), which also suggests that obtaining a larger training
set as well as a less complex model contribute a tighter bound of Rademacher complexity. Such
similarities between transferability error and generalization error suggests the possible validity of the
analogy. More importantly, if the analogy is correct, then recall that in the conventional framework
of learning theory: (1) increasing the size of training set typically leads to a better generalization
of the model (Bousquet & Elisseeft] 2002); (2) improving the diversity among ensemble classifiers
makes it more advantageous for better generalization (Ortega et al, 2022); and (3) reducing the
model complexity (Cherkasskyl [2002) benefits the generalization ability. It is natural to ask: In model
ensemble attack, do (1) incorporating more surrogate models, (2) making them more diverse, and (3)
reducing their model complexity theoretically result in better adversarial transferability?

In Section [} our theoretical framework provides consistently affirmative responses to the above
question as well as the analogy. Considering a higher perspective, the theory is also instructive in two
ways. On the one hand, from the perspective of a theoretical researcher, the extensive and advanced
generalization theory may yield enlightening insights in the field of adversarial transferability. On
the other hand, from an practitioner’s point of view, ideas from deep learning algorithms can also be
leveraged to develop more effective transferable attack algorithms.

D.4 CONFLICTING OPINIONS ON “DIVERSITY”

We observe a significant and intriguing disagreement within the academic community concerning the
role of “diversity” in transferable model ensemble attacks:

* Some studies advocate for enhancing model diversity to produce more transferable ad-
versarial examples. For instance, [Li et al.| (2020) applies feature-level perturbations to
an existing model to potentially create a huge set of diverse “Ghost Networks”. |Li et al.
(2023)) emphasizes the importance of diversity in surrogate models and promotes attacking a
Bayesian model to achieve desirable transferability. Tang et al.|(2024) supports the notion of
improved diversity, suggesting the generation of adversarial examples independently from
individual models.

* In contrast, other researchers adopt a diversity-reduction strategy to enhance adversarial
transferability. For example, [Xiong et al.|(2022) focuses on minimizing gradient variance
among ensemble models to improve transferability. Meanwhile, (Chen et al.| (2023) intro-
duces a disparity-reduced filter designed to decrease gradient variances among surrogate
models in ensemble attacks.

Although all these studies reference “diversity,” their perspectives appear to diverge. In this paper,
we advocate for increasing the diversity of surrogate models. However, we also recognize that
diversity-reduction approaches have their merits.

Consider the vulnerability-diversity decomposition of transferability error presented in Theorem [I] It
suggests the presence of a vulnerability-diversity trade-off in transferable model ensemble attacks.
In other words, we may need to prioritize either vulnerability or diversity to effectively reduce
transferability error. Diversity-reduction approaches aim to stabilize the training process, thereby
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increasing the “bias.” In contrast, diversity-promoting methods directly enhance “diversity.” This
analysis, framed within our unified theoretical framework, provides insight into the differing opinions
regarding adversarial transferability in the academic community.

D.5 VULNERABILITY-DIVERSITY TRADE-OFF CURVE

The relationship between vulnerability and diversity, as discussed in Section [} merits deeper explo-
ration. Drawing on the parallels between the vulnerability-diversity trade-off and the bias-variance
trade-off (Geman et al., [1992)), we find that insights from the latter may prove valuable for under-
standing the former, and warrant further investigation.

The classical bias-variance trade-off suggests that as model complexity increases, bias decreases
while variance rises, resulting in a U-shaped test error curve. However, recent studies have revealed
additional phenomena and provided deeper analysis (Neal et al., 2018; Neal, |2019; Derumigny &
Schmidt-Hieber, [2023)), such as the double descent (Belkin et al., [2019; |[Nakkiran et al.,[2021)).

Our experiments indicate that diversity does not follow the same pattern as variance in classical bias-
variance trade-off. Nonetheless, there are indications within the bias-variance trade-off literature that
suggest similar behavior might occur. For instance, |Yang et al.|(2020) proposes that variance exhibits
a bell-shaped curve, initially increasing and then decreasing as network width grows. Additionally,
Lin & Dobriban|(2021) offers a meticulous understanding of variance through detailed decomposition,
highlighting the influence of factors such as initialization, label noise, and training data. Overall,
the trend of variance in model ensemble attack remains a valuable area for future research. We may
borrow insights from machine learning literature to get a better understanding of this.
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