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ABSTRACT

Many benchmarks exist for evaluating long-context language models (LCLMs),
yet developers often rely on synthetic tasks such as needle-in-a-haystack (NIAH)
or an arbitrary subset of tasks. However, it remains unclear whether these
benchmarks reflect the diverse downstream applications of LCLMs, and such
inconsistencies further complicate model comparison. We investigate the un-
derlying reasons behind these practices and find that existing benchmarks of-
ten provide noisy signals due to limited coverage of applications, insufficient
context lengths, unreliable metrics, and incompatibility with base models. In
this work, we introduce HELMET (How to Evaluate Long-context Models
Effectively and Thoroughly), a comprehensive benchmark encompassing seven
diverse, application-centric categories. We also address several issues in previous
benchmarks by adding controllable lengths up to 128K tokens, model-based eval-
uation for reliable metrics, and few-shot prompting for robustly evaluating base
models. Consequently, we demonstrate that HELMET offers more reliable and
consistent rankings of frontier LCLMs. Through a comprehensive study of 59
LCLMs, we find that (1) synthetic tasks like NIAH do not reliably predict down-
stream performance; (2) the diverse categories in HELMET exhibit distinct trends
and low correlations with each other; and (3) while most LCLMs achieve perfect
NIAH scores, open-source models significantly lag behind closed ones when tasks
require full-context reasoning or following complex instructions—the gap widens
as length increases. Finally, we recommend using our RAG tasks for fast model
development, as they are easy to run and better predict other downstream perfor-
mance; ultimately, we advocate for a holistic evaluation across diverse tasks.!

1 INTRODUCTION

Long-context language models (LCLMs) un- Table 1: Most LCLMs evaluate on synthetic
lock a myriad of applications, from summariz-  (Syn.) tasks. ”: base models. co: cOBENCH.

ing long documents to learning new tasks on
the fly with thousands of examples. Many re-  ppodel Syn.PPL > ZEROSCROLLS o\ ~1cL
cent benchmarks have sought to evaluate lan- QA AIINQA QS QL SQ All

guage models’ long-context abilities (Zhang gic)r%liili-lﬁ o :(( j(( j(( ; ; ; § ; ‘
et al., 2024b; An et al.,.2024; Shaham etal, Clude-3s X XX X xxxx %X X
2023; Bai et al., 202{1, inter alia). However, Llama3.1 X X X X X X
recent developments in long-context process-  Phi-3 X X x X X X X X
: .G . Jamba-1.5 X X X X X x x x X
ing (Chen et al., 2023; Xiong et ?11., 202??, Qwen? X XX X Xxxxx x %
Peng et al., 2024; Fu et al., 2024) still rely ei- Command R X X X X X X x X X
ther on perplexity or on synthetic needle-in-a- ~ Xiongetal. X X X X x X
haystack tasks (NIAH; Kamradt, 2024; Hsieh  Chenetal.’ X X X X X X Xx x X
et al., 2024). Frontier LCLMs (Dubey et al., Pengetal’ X X x X x Xxx X X

X X X X X x X X

2024; Team et al., 2024c; OpenAl, 2023; Team Fuetal”

'Our data and code are available at https://github.com/princeton-nlp/HELMET.
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Figure 1: Long-context benchmark results of frontier LCLMs (Llama-3.1 8B/70B, GPT-40-mini,
GPT-40-08-06, and Gemini-1.5 Flash/Pro) at 128K input length. NIAH is saturated for almost all
models; RULER (Hsieh et al., 2024) and coBENCH (Zhang et al., 2024b) show unexpected trends
for Llama-3.1 (Dubey et al., 2024). In contrast, HELMET demonstrates more consistent rankings
of these frontier models.
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et al., 2024a) also mostly report NIAH, sometimes with arbitrary subsets of other datasets, as shown
in Table 1. Such inconsistencies complicate comparisons between different models. It is also un-
clear whether synthetic NIAH tasks or the few chosen datasets offer a holistic picture of models’
long-context abilities and their performance in real-world applications.

Why don’t model developers agree on these evaluations? We take a closer look and find that existing
benchmarks suffer from many critical design flaws, including:

* Insufficient coverage of downstream tasks: Existing benchmarks either focus on synthetic
tasks (Hsieh et al., 2024) or include only simple question answering (Zhang et al., 2024b). Other
works study particular aspects of LCLMs, such as summarization (Chang et al., 2024), in-context
learning (Li et al., 2024c), and retrieval-augmented generation (RAG; Lee et al., 2024), but they
do not provide a holistic evaluation of LCLMs.

* Inadequate lengths: Most natural language datasets in existing benchmarks (Shaham et al.,
2023; An et al., 2024; Table 4) are too short to effectively test frontier long-context abilities
(usually >128K).

¢ Unreliable metrics: For commonly used long-document QA and summarization tasks, most
existing benchmarks still rely on metrics like ROUGE (Lin, 2004), which are often noisy and
unreliable (Goyal et al., 2023; Deutsch et al., 2022; Chang et al., 2024).

* Incompatibility with base models: Many LCLM developments focus on base models without
instruction tuning, but most existing benchmarks require models to be instruction-tuned—hence
developers can only rely on synthetic tasks or perplexity.

Consequently, existing benchmarks are either not applicable to long-context works (inadequate
lengths or incompatibility) or provide highly noisy signals (insufficient coverage or unreliable met-
rics). We summarize the shortcomings of existing benchmarks in Table 2. For the three benchmarks
that support a 128K context length (NIAH, RULER, and coBENCH), we use them to evaluate six
frontier models and report the numbers in Figure 1. We see that NIAH does not reflect differences
across models; RULER and coBENCH show unexpected trends—on RULER, Gemini Flash outper-
forms Gemini Pro; on coBENCH, the 70B Llama model underperforms compared to the 8B one. This
raises concerns about the reliability of the benchmarks and how they can differentiate long-context
models, which likely contributes to the lack of use of these benchmarks in model development.

To address these challenges, we present HELMET (How to Evaluate Long-context Models
Effectively and Thoroughly). We curate a diverse set of application-centric long-context tasks across
seven categories. Beyond widely adopted categories like synthetic recall, long-document question
answering (QA), and summarization, we also add many-shot in-context learning (ICL), retrieval-
augmented generation (RAG), passage re-ranking, and generation with citations (Gao et al., 2023).
We further address the shortcomings of existing benchmarks: (1) we ensure all datasets support
input lengths of 128K tokens and are easily extendable to longer contexts (§2.1); (2) we introduce
reference-based model evaluation for QA and summarization and show that it significantly improves
over n-gram overlap metrics (§2.2); (3) we refine the prompts and in-context demonstrations used for
all tasks, reducing evaluation noise caused by different output formats and allowing base models to

>Throughout the paper, we use binary prefixes K= 2'°.
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Table 2: Comparison of long-context benchmarks: ZeroSCROLLS (Shaham et al., 2023), Long-
Bench (Bai et al., 2024), L-Eval (An et al., 2024), RULER (Hsieh et al., 2024), coBENCH (Zhang
et al., 2024b), and our HELMET. L: input tokens. ': All datasets have I < 128K except one
dataset. #: L-Eval uses LLMs to compute reference-free, pairwise win-rates; we design reference-
based model evaluation for specific tasks.

Type of tasks Benchmark features
. Re- Long- Synthetic  Robust Controll-
Cite RAG rank QA Summ ICL Recall Eval. Lz 128k able L

ZeroSCROLLS X X X X X X Xt X
LongBench X X X Xt X
L-Eval X X X X i Xt X
RULER X X X X X X

0coBENCH X X X X X

HELMET (Ours)

be evaluated robustly across most categories (§2.3). Together, HELMET enables a holistic evalua-
tion of long-context capabilities and provides more reliable signals for model development. Figure 1
demonstrates that HELMET can clearly differentiate models with varying capabilities and reflect
comparisons consistent with human perception. More discussion on HELMET’s improvements over
previous benchmarks and direct comparisons can be found in §A.

To understand the progress of LCLMs and how different long-context capabilities correlate with one
another, we evaluate a comprehensive list of 59 LCLMs of various architectures, scales, and training
approaches. Our analysis reveals that (1) synthetic tasks poorly indicate ownstream performance
(§3.1), (2) different categories in HELMET show distinct trends (§3.2), and (3) open-source models
significantly lag behind closed ones on tasks that require reasoning over long contexts or following
complex instructions—the gap further widens as context length increases (§3.3). Finally, we find that
the RAG category strikes a good balance between ease of use, stronger correlation with downstream
tasks, and compatibility with base models. Ultimately, it is imperative to evaluate LCLMs across a
diverse spectrum of categories. We hope that our insights provide a more effective way to evaluate
LCLMs for future model development and benchmarking.

2 OUR BENCHMARK: HELMET

In this work, we seek to overcome the shortcomings of existing benchmarks by meeting the fol-
lowing desiderata: (1) diverse coverage across different tasks and capabilities of LCLMs, (2) con-
trollable context lengths that support more than 128K input tokens, and (3) reliable evaluation for
both base and instruction-tuned models. In this section, we describe the datasets used in HELMET
and how they improve upon existing evaluation benchmarks in terms of settings and metrics. An
overview of HELMET is shown in Table 3.

2.1 REALISTIC AND DIVERSE LONG-CONTEXT APPLICATIONS

Retrieval-augmented generation (RAG). We use open-domain question answering (ODQA)—
which requires retrieving from a knowledge corpus and then generating correct answers (Chen et al.,
2017)—as a representation of retrieval-augmented generation (RAG) applications. We utilize Natu-
ral Questions (NQ; Kwiatkowski et al., 2019), TriviaQA (TQA; Joshi et al., 2017), HotpotQA (Yang
et al., 2018), and PopQA (Mallen et al., 2023). We use the gold passage (the passage with the
answer) from Petroni et al. (2021), or otherwise select any passage that contains the answer.

Given an input length L, we first determine the number of passages k that can fit within L tokens,
then retrieve k passages® from the corpus® that do not contain the answer as distractors. This differs
from previous works that randomly sample passages from the corpus (Lee et al., 2024) and is more

3We use Alibaba-NLP/gte-large-en-v1.5 for retrieval (Zhang et al., 2024a).
*We use Wikipedia 2019-8-01 dump, split into 100-word passages (Petroni et al., 2021).


https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
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Table 3: Overview of evaluation datasets. We select datasets that cover various important long-
context capabilities. SUbEM: substring exact match.

Category Dataset Metrics Description

Retrieval- Natural Questions SubEM Factoid question answering

ausmented TriviaQA SubEM Trivia question answering

ergleration PopQA SubEM Long-tail entity question answering

8 HotpotQA SubEM Multi-hop question answering

Generation with ALCE ASQA Recall, Cite  Answer ambiguous questions with citations

citations ALCE Qampari Recall, Cite Answer factoid questions with citations

Passage re-ranking MS MARCO NDCG@10  Rerank passage for a query
TREC Coarse Accuracy Question type classification, 6 labels

Many-shot TREC Fine Accuracy Question type classification, 50 labels

in-context NLU Accuracy Task intent classification, 68 labels

learning BANKING77 Accuracy Banking intent classification, 77 labels
CLINC150 Accuracy Intent classification, 151 labels

Long-document NarrativeQA Model-based Book and movie script QA

QA g ooBENCH QA ROUGE F1 Novel QA with entity replacement
ooBENCH MC Accuracy Novel multiple-choice QA with entity replacement

Summarization 0oBENCH Sum Model-based Novel summarization with entity replacement
Multi-LexSum Model-based Summarizing multiple legal documents
JSON KV SubEM Retrieve a key in JSON dictionary

Svnthetic recall RULER MK Needle SubEM Retrieve the needle (a number) within noisy needles

y RULER MK UUID  SubEM Retrieve the needle (a UUID) within noisy needles

RULER MV SubEM Retrieve multiple values for one needle (key)

realistic and challenging. For NQ, TQA, and PopQA, we take the top k — 1 distractors and insert
the gold passage at six evenly distributed positions following Liu et al. (2023). For HotpotQA,
which requires two gold passages, we combine them and the top & — 2 distractors and randomly
shuffle them into three permutations. We use substring exact match (SubEM; whether the answer is
included in the output), following previous work (Asai et al., 2024a). See §B.1 for more details.

Generation with citations (Cite). We leverage ALCE (Gao et al., 2023) to evaluate LCLMs on
a realistic application of answering questions while providing correct attributions (Bohnet et al.,
2022). Given multi-faceted questions and relevant passages, models are required to generate a long-
text answer and cite supporting passage IDs at the end of each sentence. This tests models’ ability
to utilize the passages in the context and also to follow the instructions about citation formats. We
use the ASQA (Stelmakh et al., 2022) and QAMPARI (Rubin et al., 2022) subsets from ALCE. For
an input length L, we first determine the number of passages &, and use the top k retrieved passages
from Wikipedia as contexts. The model’s outputs are evaluated on correctness and citation quality,
and we report the average across all metrics. See §B.2 for more details.

Passage re-ranking (Re-rank). Re-ranking retrieved passages based on their relevance to the query
is an important application of LCLMs (Sun et al., 2023). The task requires the model to retrieve
relevant information, compare, and reason over different parts of the contexts. We use the MS
MARCO dataset (Bajaj et al., 2018), where each instance contains a query and passages retrieved
by BM25 (Robertson & Zaragoza, 2009) from the Internet. Each passage has annotations of a
relevance label—perfect, highly relevant, or not relevant. We determine the number of passages k
from the input length L, and randomly sample k passages with balanced labels for each test query.
The model is prompted with the query and the shuffled k£ passages and is instructed to output the
top-10 document IDs ranked by relevance. We report NDCG @ 10. Details are in §B.3.

Many-shot in-context learning (ICL). In-context learning (ICL) is a key ability that enables LLMs
to adapt to new tasks on the fly (Brown et al., 2020). Recent studies (Ratner et al., 2023; Xu et al.,
2024; Li et al., 2024c; Bertsch et al., 2024) explore performing many-shot ICL (with thousands
of examples) with LCLMs. Following Bertsch et al. (2024), we focus on datasets with large la-
bel spaces: TREC-coarse, TREC-fine (Li & Roth, 2002), BANKING77 (Casanueva et al., 2020),
CLINC150 (Larson et al., 2019), and NLU (Liu et al., 2019). We adjust the number of shots to con-
trol the input length L, and the number of examples in each class is balanced. We report accuracy
on the test set.
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One difference from previous works is that we map original natural language labels (e.g., location)
into numbered labels (i.e., 0, 1) to test how well a model can learn new tasks instead of relying on
its pre-trained priors (Wei et al., 2023; Pan et al., 2023; Min et al., 2022). More details are in §B.4.

Long-document question answering (LongQA). We use Narra-
tiveQA (Kocisky et al., 2018) and the English book QA and multiple  Taple 4: Dataset lengths.
choice (MC) subsets from coBENCH (Zhang et al., 2024b) for evaluat-
ing long-document QA. We select those tasks for their abundant con-
text lengths (Table 4). We truncate the document from the end based

Datasets Medium Max

on L. We use ROUGE F1 for coBENCH QA (answers are mostly en- ZeroSCROLLS

tity names) and accuracy for coBENCH MC. For NarrativeQA, where ~ QASPER 6K 12K

the answers can be long text and open-ended, we design and use a  GovReport 12K 33K

model-based evaluation (§2.2). QuALITY 9K 11K
SQUALITY 8K 10K

Summarization (Summ). Summarization tests LCLMs’ ability to HELMET

synthesize information across the contexts. We choose Multi-LexSum -

L. . L NarrativeQA 73K 518K
(legal document summarization) and the English summarization task

R . . ooBENCH QA 191K 835K

from coBENCH (novel summarization) for their extensive lengths (Ta-  __ prvcn MC 167K 835K
ble 4). We truncate the document from the end based on the evalu- L BenxcH Sum 154K 835K
ation length L. We use our model-based evaluation (§2.2) for both  Multi-LexSum 90K 5M
datasets instead of the commonly used ROUGE, as it better reflects
human judgment.

Synthetic recall. Synthetic recall tasks, such as needle-in-a-haystack (NIAH), stress test models’
ability to recall relevant information (the “needle”) from long contexts. They have gained popularity
for being easy to use (as they can test any arbitrary length) and easy to control (can placing the
“needle” at any position). For this category, we select multiple synthetic recall tasks from RULER
(an extended version of NIAH; Hsieh et al., 2024) and also add a JSON KV retrieval task (Liu et al.,
2023), which we find more challenging. We intentionally select the synthetic tasks that correlate
well with application-driven tasks; in-depth discussions are in §3.1. Following previous works, we
report the percentage of the ground truth answers that are substrings in the generation (SubEM).
Refer to §B.5 for more details.

2.2 RELIABLE EVALUATION METRICS

Existing long-context benchmarks (Zhang et al., 2024b; Shaham et al., 2023) largely rely on n-gram
overlap metrics like ROUGE (Lin, 2004), which have been shown to correlate poorly with human
judgment for tasks with long outputs, such as summarization (Goyal et al., 2023; Deutsch et al.,
2022; Krishna et al., 2023). L-Eval (An et al., 2024) uses LLMs to score reference-free “win rates,”’
which neglect the available answer annotations and always require evaluating model pairs. Instead,
we design a reference-based model evaluation method for long-document QA and summarization
that is more reliable and easy to use.

Question answering. In NarrativeQA, we prompt GPT-40° with the question, the ground truth, and
the model output to check for fluency and correctness. The fluency score is either O (incoherent
or repetitive) or 1 (fluent), and the correctness score takes on the value of O (incorrect), 1 (partly
correct), 2 (correct but not fully relevant), and 3 (correct and relevant). We take the product of the
two as the final score, normalizing it to a range of [0, 100].

Summarization. Following previous works (Kamoi et al., 2023; Zhang & Bansal, 2021), we first
decompose the gold summary into atomic claims and use GPT-40 to check if each claim is supported
by the generation (recall) and if each sentence in the generation is supported by the reference sum-
mary (precision). We then compute the F1 score from the recall and precision scores. Additionally,
we ask GPT-4o to evaluate fluency (0 or 1) and take its product with the F1 score as the final score.
In each step, we prompt GPT-40 with handwritten examples.

SGPT-40-2024-05-13
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Multi-LexSum InfBench Sum
ROUGE ? Ours . ROUGE ? Ours
GPT-40-08 222 227 235 236 238 430 479 518 513 535 159 167 170 1723 170 136 207 260 289 329
Gemini-1.5-Pro- 235 243 247 249 - 428 450 479 52.4 - 149 156 162 172 170 172 205 248 312 -
Claude-3.5-Sonnet- 225 207 204 202 19.8 -438 418 418 421 440 142 160 169 146 145 141 259 312 291 292

Llama-3.2-1B-Inst /211 220 222 222 220 mi m 2141 155 158 165 16.4 ,
Llama-3.2-3B-Inst-209 203 216 228 233 331 342 351 391 397 155 161 165 163 164 |

Llama-3.1-8B-Inst 245 246 235 238 247 388 393 427 394 388 155 162 164 169 173 139 153
Llama-3.1-70B-Inst 233 234 237 238 236 414 459 475 443 439 159 165 169 170 (177 168 208 215 19.3
Mistral-7B-Inst-v0.1-231 221 223 214 212 - 159 @15 123 24 [§ 15 a1 25 29 25
Mistral-7B-Inst-v0.3 219 226 232 200 FEG) 1333 333 323 BELN 144 150 150 18 02 |

8K 16K 32K 64K 128K 8K 16K 32K 64K 128K 8K 16K 32K 64K 128K 8K 16K 32K 64K 128K

Figure 2: Comparison between ROUGE-L F1 and our model-based evaluation metric on summa-
rization tasks. Our metric shows more consistent trends: it reflects the performance gain on GPT-40
with increased input length, while ROUGE remains almost the same; our metric also clearly differ-
entiates models while ROUGE shows little distinction.

Empirically, our reference-based model evaluation reflects more consistent trends, as shown in Fig-
ure 2: (1) Llama-3.1-8B-Inst achieves similar ROUGE scores to GPT-40, while our evaluation re-
veals a significant gap. (2) Our metric better identifies incoherent generations and shows lower
performance for models with smaller context windows, such as the Mistral models. (3) Our metric
exhibits a substantially more positive trend for GPT-40 as input length increases, whereas ROUGE-
L remains within a 2-point absolute difference. We further validate the model-based evaluation
through human studies, which suggest our new metrics strongly correlate with human judgments:
for example, on coBENCH Sum, our metric reaches a human-model agreement of Cohen’s xk = 0.91
for summary precision and £ = 0.76 for recall. More details on the human studies are in §B.

2.3 ROBUST PROMPTING AND CONTROLLED EVALUATION SETTINGS

Robust prompting reduces noise and enables evaluation on base models. Many long-context
benchmarks require models to follow instructions and only support evaluating instruction-tuned
models (Zhang et al., 2024b; Shaham et al., 2023). However, many model developments do not
incorporate instruction tuning (Chen et al., 2023; Fu et al., 2024), leaving these models reliant on
perplexity-based evaluation or synthetic tasks. To support long-context research efforts, we design
our benchmark so that at least a subset of the datasets accommodates evaluating base models.

Existing benchmarks mostly use zero-shot prompting (Shaham et al., 2023; Zhang et al., 2024b),
which leads to inconsistent output formats, especially for base models. For example, the model may
output a long answer in RAG when a short answer is required. We add two-shot demonstrations in
the prompt for all tasks to address this problem.® For long-document QA and summarization, we
replace the original document with a placeholder phrase to reduce the number of input tokens in
the ICL example. As shown in Table 8, both base and instruction-tuned models significantly benefit
from the demonstrations.

Furthermore, we employ the length-instruction-enhanced evaluation from L-Eval for long-
generation tasks (i.e., summarization), which has been shown to have substantially more consistent
and reliable evaluations (An et al., 2024). As a result, we find that our reproduction of previous
datasets, such as coBENCH QA tasks, better reflects the capabilities of LCLMs, as shown in Table 7.
The use of demonstrations and improved instructions more accurately depicts how models perform
in real applications.

Controlled input length and difficulty. An important dimension to consider when evaluating
LCLMs is the input length L, as longer inputs can provide more information while challenging
the model’s ability to process distracting contexts. As we discussed in §2.1, we can control the input
length L for each task by either adjusting the number of retrieved passages, the number of demon-
strations, or truncating the document text to fit within the specified lengths. This allows us to study
model performance at or beyond the length of current frontier LCLMs (> 128K).

6Except for ICL (the number of shots varies) and RULER (we follow the original formatting).
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As shown in Figure 1 and 2, HELMET provides rankings more consistent with human perception
of model performance. The diverse tasks, controllable lengths, and robust evaluation metrics and
prompting enable a thorough examination of LCLMs across multiple dimensions.

3 ANALYSIS

We evaluate 59 LCLMs with HELMET. To our best knowledge, this is the most thorough and
controlled comparison of long-context models on diverse applications. These models cover closed-
source models, such as GPT-4, Claude, and Gemini, as well as open-source model families, such as
Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023), Phi (Abdin et al., 2024), and Qwen (Qwen
et al., 2025). We also consider models that use different architectures—full-attention transformers
(Vaswani et al., 2017), sliding-window attention (Beltagy et al., 2020), and hybrid models with SSM
modules (Dao & Gu, 2024). We also benchmark position extrapolation models such as YaRN (Peng
et al., 2024) and LongRoPE (Ding et al., 2024). We list all the models evaluated in Table 15. We
evaluate each model at input lengths: L € {8K,16K,32K,64K,128 K }, where L is the number of
Llama-2 tokens (Touvron et al., 2023), and use greedy decoding for all models to ensure consistency.
We randomly sample 100 to 600 examples from each dataset; more details are in §D.

3.1 SIMPLE SYNTHETIC TASKS ARE POOR PREDICTORS OF REAL-WORLD PERFORMANCE
Many model developers rely on simple synthetic tasks,

such as NIAH, for evaluating long-context language mod- N'AHM CEERR0-758 1 0-76 OS2 EEE
els, but it is unclear if these tasks accurately represent

real-world performance. To this end, we calculate Spear- ~ RULER MK e
man’s rank correlation p between synthetic and real-

0.84 0.79 0.87 0.74

world tasks for 35 instruction-tuned models. First, Fig- ~ RULERMV- o PR G R (o
ure 3 shows that none of the synthetic tasks achieves an RULER Al o I .
average correlation higher than 0.8. We also make the ] : : : : :
following observations.

Recall- 0.74 0.85 0.82 0.85 0.77
Not all syl}thetic tasks are crgated equal. The original RAG e I
NIAH, which places a needle in the middle of unrelated @ N
essays and asks the model to retrieve it, exhibits weak cor- & @& F &£ &
relation with real-world tasks: all correlations are < 0.8. FCAIN <

Similarly, the popular RULER average score—which in-
cludes not only NIAH variants but also synthetic aggre-
gation, multi-hop tracing, and QA—does not yield strong
correlations (all < 0.85).

Figure 3: Spearman’s rank correlation
at 128K input length, calculated across
35 instruction-tuned models.

We take a closer look at different RULER tasks and find that harder recall-type tasks are more
reflective of real-world categories—for example, RULER MK, which places distracting needles
around the target needle. Despite the overall low correlation, we believe these tasks can still serve
as a useful sanity check during model development. We compile several such RULER tasks, along
with JSON KV, to form the HELMET synthetic recall set (more discussions in §E.1).

Tasks with noisier, more distracting contexts better differentiate models. To understand why
synthetic tasks exhibit weak correlation with real-world tasks, we plot the performance of different
models on NIAH, RULER MK (one of our recall tasks), and HotpotQA (one of our RAG tasks)
in Figure 4. We use coBENCH QA as a representative real-world task. We find that most models
achieve either perfect or near-zero performance on the original NIAH, leaving few data points in
the middle and resulting in poor separability between models. In contrast, RULER MK, which
introduces more distracting contexts, better distributes model performance between 0% and 100%,
leading to clearer differentiation.

RAG is a better proxy for real-world tasks. Finally, we find that RAG datasets, such as HotpotQA,
consistently achieve higher correlation with other real-world tasks. Figure 4 also shows that Hot-
potQA exhibits an almost linear relationship with the QA dataset. Similar to synthetic tasks, RAG
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Figure 4: Distribution of instruction-tuned models’ performance on coBENCH QA with respect to
NIAH, RULER MK, and HotpotQA.

tasks are easy to control and assess models’ recall abilities. However, since all passages are retrieved
and relevant to the query, RAG contexts are more distracting and therefore harder to saturate.

3.2 DIVERSE LCLM APPLICATIONS CALL FOR DIVERSE EVALUATION

In long-context language modeling, realistic tasks are often only used in isolation (Karpinska et al.,
2024; Li et al., 2024c; Dubey et al., 2024), which limits the understanding of LCLMs in a broader
context. In this work, we cross-examine model performance over a wide range of real tasks, and
find that different categories do not consistently correlate with each other, as shown in Figure 5.

show moderate correlation due to their shared re-

trieval component. quever, the addeq complexity Rec all. e ... ...
of generating citations in ALCE results in lower cor-

relation with other categories.Naturally, RAG and RAG . 088 . 072 oss NEPR oo
passage re-ranking moderately correlate due to the

shared retrieval component As shown in Figure 9, Cite- 074 072 . 0.84

generating correct answers and producing valid ci-
tations are not strongly correlated, suggesting that ~ Re-rank-oss oss
instruction following and recalling facts within long

contexts are distinct capabilities. LongQA o8z as2

Furthermore, some categories—generation with ci- Summ- 085 089
tations and in-context learning—do not correlate
well with other categories. Intuitively, summariza- ICL o0& ot
tion tests for the model’s ability to aggregate infor- ‘N ‘

; N g A CI NP o N\
mation across the entire input, while ICL evaluates Qg}:‘) QY ¥ '(o(\ & @\(’

its ability to learn new tasks from many examples. ¥ ¥

Such capabilities are orthogonal to recall facts in .

long contexts. Such capabilities are orthogonal to F.1gure5 : Spearman rank correlation between
recalling facts in long contexts. Therefore, model ~different categories at L =128K.

developers should evaluate across these distinct axes to form a more holistic understanding of a
model’s capabilities (see additional analysis in §E.2).

3.3 MODEL PERFORMANCE ACROSS TASKS AND LENGTHS

We show the performance of instruction-tuned models on HELMET at five different lengths in
Figure 6, and the full results are illustrated in Figure 10. We analyze the model performance across
two critical dimensions of long-context language modeling: task complexity and input length.

Open-source models lag behind closed-source models on complex tasks. First, we consider the
performance of frontier LCLMs at the longest input length of 128K tokens. We find that the closed-
source models—notably GPT-40-08 and Gemini-1.5-Pro—stand out as the strongest LCLMs. Other
than ICL, the closed-source models outperform the open-source models on all tasks. The gap is
relatively small on synthetic recall and LongQA, where the task is to retrieve information from the
context. There is a stark contrast in the generation with citations and re-ranking performance, where
the closed-source models are 30 to 40 absolute points better than the best open-source models.
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Figure 6: Results of HELMET. All models are instruction-tuned and have a claimed context win-
dow of 128K tokens or more.

Performance degradation with longer inputs is category-dependent. Most frontier models
largely retain performance on recall and RAG with longer inputs; however, even the best models
experience significant degradation as context length increases on tasks like re-ranking and genera-
tion with citations. As illustrated in Figure 7, performance degradation at longer lengths becomes
more pronounced as task complexity increases from left to right. On generation with citations,
open-source models completely collapse at 128K, while GPT-40 remains relatively stable. This
underscores the importance of evaluating models on more complex long-context applications.

No clear winner across all categories. As we observe from the previous sections, the different cate-
gories do not always correlate with each other. This is evident in the varying top-performing models
across categories: for instance, GPT-40 excels in recall and generation with citations, while Gem-
ini performs better in passage re-ranking and long-document QA. Furthermore, many open-source
models outperform closed-source models on ICL, potentially because heavy instruction tuning neg-
atively impacts ICL. We provide qualitative examples in Table 19. Thus, evaluating models across
multiple axes is essential. In the appendix, we also present additional analysis, such as the perfor-
mance of positional extrapolation methods (§E.3), the lost-in-the-middle phenomenon (§E.4), and
the performance of Claude (§E.6).
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Figure 7: Results of selected instruct models on various lengths and increasing complexity of tasks.
Notably, Qwen?2 relies on position extrapolation, while other open-models are trained at or greater
than 128K context window.

4 RELATED WORKS

Long-context language models. Frontier models such as GPT-4 (OpenAl, 2023), Gemini (Team
et al., 2024b), and Claude claim to have expanded their context window beyond 100K tokens. In the
open-source community, there are also efforts to train models with longer input lengths (Dubey et al.,
2024; Fu et al., 2024; Al et al., 2024; Gao et al., 2024), explore position extrapolation techniques
(Peng et al., 2024; Chen et al., 2023; Ding et al., 2024), and experiment with efficient architectures
(Beltagy et al., 2020; Bertsch et al., 2023; Gu & Dao, 2024; Dao & Gu, 2024; Yen et al., 2024;
Lieber et al., 2024, inter alia).

Synthetic tasks. Synthetic tasks are often used to evaluate LCLMs since they can be procedurally
generated, enabling arbitrarily long input lengths and controlled “needle” placement (Tay et al.,
2021; Liu et al., 2023). In particular, Needle-in-a-Haystack (NIAH; Kamradt, 2024) inserts a “nee-
dle” at specific depths of a long essay (i.e., the haystack) and asks the model to recall the fact. Recent
works have expanded upon it and designed new procedures to test different aspects of LCLMs (Hsieh
etal., 2024; Li et al., 2024b; Levy et al., 2024; Arora et al., 2023; Laban et al., 2024; Goldman et al.,
2024, inter alia). However, they do not study how results on synthetic tasks transfer to real ap-
plications. In contrast, we evaluate both synthetic and downstream tasks and investigate how they
correlate with each other.

Long-context benchmarks. As discussed in the main paper, existing benchmarks either are limit
to relatively short context lengths (Shaham et al., 2022; 2023; Li et al., 2024a; An et al., 2024;
Bai et al., 2024; Dong et al., 2024; Kwan et al., 2024) or lack rigorous evaluation methods (Zhang
et al., 2024b; Yuan et al., 2024). Many works instead focus on specific domains, such as question
answering (Wang et al., 2024b; Karpinska et al., 2024; Wang et al., 2024a;c), in-context learning
(Li et al., 2024c; Bertsch et al., 2024; Xu et al., 2024; Anil et al., 2024; Agarwal et al., 2024),
summarization (Chang et al., 2024; Kim et al., 2024; Shen et al., 2022), or RAG (Lee et al., 2024).
In this work, we construct a comprehensive benchmark that tests across diverse downstream tasks at
long input lengths and also present a unified comparison and analysis across 59 LCLMs.

5 CONCLUSION

In this work, we first identify the shortcomings of long-context evaluation settings and existing
benchmarks—over-reliance on synthetic tasks, limited coverage of realistic applications, and un-
reliable metrics among others. We seek to address these issues by constructing HELMET, an
application-centric benchmark with diverse domains and reliable evaluation settings. We then
present a comprehensive evaluation of 59 frontier LCLMs across multiple dimensions, including
different tasks, input lengths, and model types. Our analysis shows that synthetic tasks poorly pre-
dict downstream performance and that different categories exhibit distinct capabilities and trends.
Thus, evaluating models on a diverse set of real-world tasks is essential. Furthermore, open-source
models still lag behind closed-source models on complex tasks at longer lengths. Finally, we hope
that our benchmark and comprehensive evaluation serve as a valuable resource for future research
in long-context language modeling.
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A COMPARISON WITH OTHER BENCHMARKS

Due to the lack of large-scale human studies on long-context language models, discerning the true
rankings of LCLMs remains challenging. Therefore, we rely on previous works and empirical obser-
vations to guide our expectations. Specifically, the Gemini 1.5 report demonstrates that larger mod-
els consistently outperform smaller ones at handling long contexts—both qualitatively and quan-
titatively across the Gemini, GPT, and Claude model families (Section 5.2, Tables 4 and 5 Team
et al., 2024b). Although their evaluation suite is not publicly available, these results align with com-
monly observed patterns in language model performance. Given that obtaining ground truth rank-
ings through human evaluation is prohibitively expensive and practically infeasible, relying on such
well-established patterns is reasonable. In this section, we further examine HELMET’s improve-
ments over existing benchmarks through direct comparisons of model rankings and performance,
supported by careful ablation studies.

A.1 RESULTS

We build upon previous datasets and refine evaluation settings to better reflect model capabilities.
Specifically, we evaluate models on coBENCH, another benchmark that evaluates long-context at
128K tokens. The results reproduced from the original authors’ code are shown in Table 6. The
numerical results for Figure 1 are presented in Table 5.

Upon closer inspection, we find that a set of open-sourced models’ ranking and performance on
HELMET and coBENCH in Table 9. In addition to the previously noted performance discrepancy
between Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct, we observe that all Llama-3.2 models
degenerate in performance on coBENCH at input length 128K. However, on HELMET, the Llama-
3.2 models, especially Llama-3.2-3B-Instruct, rank well against other open-source models. Upon
qualitative examination, we find that the Llama 3.2 models are able to produce coherent and useful
generation at long contexts with better prompting strategies from HELMET, such as adding in-
context learning examples.

Our ablation study on few-shot demonstrations in Table 8 shows that 2-shot demonstrations sub-
stantially improve base model performance, better reflecting real-world usage patterns. As shown
in Table 7, improved instructions and prompting enable smaller Llama-3.2 models to compete ef-
fectively with larger models. Thus, HELMET provides a better and more realistic reflection of how
these models would be used in practice over previous benchmarks. These findings demonstrate that
HELMET provides a more accurate and practical assessment of model capabilities compared to
previous benchmarks.

Table 5: Results with 128k input length across different benchmarks.

Model Claimed Length NIAH RULER ooBENCH HELMET
GPT-40-mini 128000 SN 80.8 51.9 54.1
GPT-40-08 128000 ESINXI) 93.3 57.1 63.8
Gemini-1.5-Flash 1048576 100.0 86.6 50.8 50.7
Gemini-1.5-Pro 2097152 453 65.3 60.3 62.7
Llama-3.1-8B-Inst 131072 BSLIXD] 81.3 44.1 47.0
Llama-3.1-70B-Inst 131072 ESLNX) 75.8 39.7 49.3

A.2 DISCUSSIONS

Many existing long-context language modeling benchmarks are studied in isolated settings, such as
synthetic tasks (Hsieh et al., 2024; Li et al., 2024b; Levy et al., 2024; Laban et al., 2024), in-context
learning (Anil et al., 2024; Bertsch et al., 2024; Li et al., 2024c; Agarwal et al., 2024), summarization
(Chang et al., 2024; Kim et al., 2024), and retrieval-augmented settings (Lee et al., 2024). However,
these works lack a unified evaluation across diverse downstream tasks.

There are also benchmarks that sought to unify different datasets, such as coBENCH (Zhang et al.,
2024b), LongBench (Bai et al., 2024), L-Eval (An et al., 2024), LV-Eval (Yuan et al., 2024), and
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Table 6: Results on coBENCH(Zhang et al., 2024b). We report numbers from running the original
authors repo: https://github.com/OpenBMB/InfiniteBench. The original code did
not support evaluation of the Gemini and Llama 3 models at the time of access, so we evaluate them
by following the script and template for GPT-4 and open-source models, respectively. We exclude
coding tasks from the evaluation suite since it is out of the scope for general long-context language
modeling tasks.

Model MC QA Sum Diag Calc Find Number PassKey KV Avg.
GPT4 759 237 107 185 0.0 47.1 100.0 100.0 58.8 449
GPT-40-05 88.2 379 237 285 0.0 58.6 100.0 100.0 942 554
GPT-40-08 86.5 26.0 215 51.0 0.0 589 100.0 100.0 99.8 57.1
GPT-40-mini 782 19.1 248 215 0.0 69.7 100.0 100.0 804 51.9
Gemini-1.5-Flash 76.0 42.1 30.0 558 0.0 474 100.0 100.0 314 50.8
Gemini-1.5-Pro 775 277 290 975 0.0 58.0 100.0 100.0 704 60.3
Llama-3.1-8B 56.8 8.8 143 0.5 0.0 22.0 99.7 100.0 18.8 33.0
Llama-3.1-8B-Inst 672 155 267 23.0 0.0 33.1 99.5 100.0 55.0 44.1
Llama-3.1-70B 66.4 92 175 8.5 00 323 100.0 100.0 134 35.1
Llama-3.1-70B-Inst 755 233 313 18.0 0.0 43.1 99.7 100.0 2.6 397
Llama-3.2-1B 2.2 1.4 8.6 4.5 0.0 0.0 1.5 0.0 0.0 2.0
Llama-3.2-1B-Instruct 3.5 14 125 5.5 0.0 0.0 0.0 0.0 0.0 2.4
Llama-3.2-3B 1.3 1.2 7.6 4.5 0.0 0.0 1.7 0.0 0.0 1.9
Llama-3.2-3B-Instruct 2.2 1.6 133 4.5 0.0 0.0 1.7 1.7 0.0 2.8

Table 7: We compare the results on coBENCH multiple-choice (MC) and question answering (QA)
tasks between the original authors and HELMET. In our implementation, we leverage refined
prompts and carefully crafted parsing scripts to ensure robust and fair evaluation. For example, we
find that Llama-3.2 models are actually much better long-context language models than coBENCH
would suggest.

Original HELMET

Model Claimed Length MC QA MC QA
GPT-40-mini 128000 88.2 379 71.0 445
GPT-40-05 128000 86.5 26.0 76.0 53.0
GPT-40-08 128000 78.2 19.1 73.0 479
Gemini-1.5-Flash 1048576  76.0 42.1 79.1 517
Gemini-1.5-Pro 2097152 775 277 833 509
Llama-3.1-8B 131072 56.8 88 540 3838
Llama-3.1-8B-Inst 131072 67.2 155 49.0 403
Llama-3.2-1B 131072 2.2 14 210 17.6
Llama-3.2-1B-Inst 131072 35 14 160 133
Llama-3.2-3B 131072 1.3 1.2 360 31.0
Llama-3.2-3B-Inst 131072 22 1.6 420 20.6

ZeroSCROLLS (Shaham et al., 2023). Many of these benchmarks are still limited by the context
length, evaluation metrics, or both. Most similar to our work, coBENCHZhang et al. (2024b) also
evaluates models at context lengths at 128K tokens. However, their evaluation settings are lim-
ited to a few domains—synthetic, QA, and summarization. Although they also evaluate coding
tasks, the domain is limited to code-specialized models outside of the realm of general-purposed
language models. Furthermore, their summarization evaluations lack robust evaluation and still rely
on ROUGE scores. Similarly, LV-Eval (Yuan et al., 2024) evaluates long-context models across
different lengths but is limited to the QA tasks. Furthermore, we are the first to evaluate existing
LCLMs comprehensively—we evaluate 59 models of different sizes and architectures, which en-
ables previously unavailable insights into the correlation across diverse tasks and the landscape of
current models.
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Table 8: We evaluate the performance of models on a subset of HELMET tasks with 0-shot and
2-shot demonstrations at 128k input length to understand the impact of ICL on model performance,
averaged across three random seeds. The standard deviation across three runs are shown in the
subscript. We observe that the performance is generally higher for 2-shot demonstrations compared
to 0-shot demonstrations. Crucially, the 2-shot examples enable base models to achieve higher
results that reflect the model’s long-context capabilities in realistic settings, such as for MSMARCO
and JSON KV. denotes base models.

JSON KV NQ MSMARCO ooBENCH MC ooBENCH QA
Model 0 shot 2shot Oshot 2shot Oshot 2shot Oshot 2shot Oshot 2shot
GPT-40-mini 92.35.5 93.721  57.811 60426 24807 31411 72026 69347 28819 47.144
GPT-40-05 99.30.6 36.77.1  59.440 63.021 42.709 46.813 T73.Tos 76.30.6 49.119 51.334
GPT-40-08 100.00.0 100.00.0 58.52.0 61.945 46.60.3 48.710 75325 72706 29.809 48.615
Gemini-1.5-Flash 98.30.6 99.01.0 53.75.9 51.54.5 44.93.0 49.90.9 73.92.3 77.13.2 48.24.7 49.92.6
Gemini-1.5-Pro 97-70.6 93723 62-22.6 59.22,7 57.10_9 58403 83.62_8 83.30,7 46.41_8 47232
Llama—3.1—SBb 77.32.1 98.01.0 45.72.1 44.93.9 0.10.0 7.50.5 55.35.5 53.38.0 36.12.0 36.62.1
Llama-3.1-8B-Inst 96.01_0 95.70_5 48.41_3 48.92,6 5.40_0 13.81.1 49.72_1 52-02.6 29.12_0 37-92.6
Llama-3.2-le 34.03.5 34.32.1 25.10.7 23.22.8 0.30.0 4.80.5 23.02.6 22.715 18.92.5 18.93.3
Llama-3.2-1B-Inst 6.31.5 9.332 233124 22914 0.00.0 0.50.3 16.026 16.325 12.604 12.705
Llama—3.2—3Bb 30.32.1 54.08.9 40.22.0 42.34.1 0.10.0 6.01.3 43.01.0 40.77.2 31.31.1 31.62.2

Llama-3.2-SB—Inst 31.32_3 36.72_5 44422_5 42.83,8 0.20_0 0.90_2 36.02_0 40.035 17-81_2 19-70.8

Table 9: Comparison of model rankings on HELMET and coBENCH.

Model HELMET Model InfBench
Llama-3.1-70B-Inst 49.3  Llama-3.1-8B-Inst 46.7
Llama-3.1-8B-Inst 47.0 Llama-3.1-70B-Inst 43.7
Llama-3.1-70B 41.3  Yi-34B-200k 43.1
Yi-34B-200k 38.3 Llama-3.1-70B 38.6
Llama-3.2-3B-Inst 36.9  Yi-9B-200k 37.6
Llama-3.1-8B 35.6 Llama-3.1-8B 35.7
Yi-9B-200k 33.0 Yi-6B-200k 32.0
Llama-3.2-3B 31.9 Llama-3.2-3B-Inst 2.8
Yi-6B-200k 26.3  Llama-3.2-1B-Inst 2.6
Llama-3.2-1B-Inst 24.6  Llama-3.2-1B 2.0
Llama-3.2-1B 21.2  Llama-3.2-3B 1.8

To summarize, HELMET improves upon existing benchmarks by providing a comprehensive eval-
uation across diverse tasks and carefully designed evalution metrics and prompting strategies. Con-
sequently, HELMET provides a more accurate reflection of the models’ capabilities in practice.

B DATASETS

B.1 RETRIEVAL-AUGMENTED GENERATION

Natural Questions (NQ; Kwiatkowski et al., 2019) is a large-scale dataset for open-domain question
answering featuring real user queries. TriviaQA (TQA; Joshi et al., 2017) comprises trivia questions
and their corresponding answers. HotpotQA (Yang et al., 2018) contains questions that require
multi-passage reasoning. We source these datasets from KILT (Petroni et al., 2021), which provides
annotations linking each query to its corresponding gold passages containing the answers.

PopQA (Mallen et al., 2023) consists of questions about long-tail entities. To minimize the impact
of pre-training memorization, we filter the dataset to include only subject entities with popularity
scores below 1000. Since gold passages are not available for PopQA, we classify retrieved passages
as positive or negative by checking for the presence of the ground truth answer.

Notably, we populate the context with hard negative passages, retrieved from the same corpus as the
positive passages using a real retriever. This approach presents a significantly greater challenge than
using randomly sampled passages. This design choice better reflects real-world retrieval-augmented
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generation tasks, where models must effectively distinguish between relevant and irrelevant infor-
mation.

B.2 GENERATION WITH CITATIONS

Generation with citations represents a crucial task for enhancing language model trustworthiness and
verifiability (Bohnet et al., 2022; Gao et al., 2023; Asai et al., 2024b). We employ ALCE to assess
models’ capability to generate properly cited text. Following the original methodology, we utilize
Wikipedia as the retrieval corpus and GTR (Ni et al., 2022) as the retriever. We omit MAUVE-based
fluency evaluation since models typically generate fluent text, and in cases where they don’t, the
other metrics already approach zero. Instead, we focus on correctness and citation quality, reporting
their average.

B.3 PASSAGE RE-RANKING

We evaluate models’ passage re-ranking capabilities (Sun et al., 2023) using the MS MARCO pas-
sage ranking dataset (Bajaj et al., 2018). Our evaluation uses annotated datasets from the TREC
Passage Re-ranking challenge (Craswell et al., 2020). Each dataset instance consists of a query and
a list of passages with associated relevance scores. The dataset combines Bing user queries with pas-
sages retrieved via BM25 from web pages. Passages are labeled as perfect, highly relevant, or not
relevant. For each input length L, we determine the number of passages k that can be included. To
eliminate positional bias, we balance the label distribution and randomize passage order. We create
three different permutations of the k passages for each input. The final performance is reported in
NDCG@10. While higher values of & are possible for NDCG evaluation, the computational cost of
generating numerous passage IDs during inference leads us to maintain NDCG @ 10 as our metric.

B.4 IN-CONTEXT LEARNING

For in-context learning, we implement a label mapping strategy that compels models to utilize in-
context examples rather than relying on pre-trained knowledge for classification tasks. Each label
is randomly mapped to an integer [ € {0,1,...,n — 1}, where n represents the number of unique
labels in the dataset, following established practices (Pan et al., 2023). We then replace all label texts
with their corresponding integer mappings throughout the dataset. Following Li et al. (2024c), we
organize examples into demonstration rounds, with each round containing exactly one example per
label in randomized order. The input is constructed by concatenating these demonstration rounds
until reaching the target input length L. Unlike other task categories where we evaluate 100 samples,
for ICL datasets we evaluate 500 samples. We balance the label distribution among the evaluation
set.

B.5 SYNTHETIC TASKS

For RULER tasks, we generate data using the original authors’ scripts (Hsieh et al., 2024), employ-
ing the Llama-2 tokenizer (Touvron et al., 2023) to standardize input text across all models. The
RULER suite comprises the following tasks:

* NIAH Single (three variants):

— NIAH (variant 2): Most similar to the original NIAH (Kamradt, 2024)

— NIAH Single Repeat (variant 1): Uses repeated phrases instead of Paul Graham essays
as context

— NIAH Single UUID (variant 3): Similar to variant 2 but uses UUIDs as retrieval values
* NIAH MultiKey (MK, three variants):

— NIAH MK Essay (variant 1): Involves retrieving one gold key among three irrelevant
keys, using Paul Graham Essays as context
— NIAH MK Needle (variant 2): Uses needle-based context structure

— NIAH MK UUID (variant 3): Similar to variant 2 but employs UUIDs as retrieval
values for all needles
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NIAH MultiValue (MV): Requires retrieving four different numbers associated with a sin-
gle key from irrelevant essay context

NIAH MultiQuery (MQ): Involves retrieving correct values for four distinct keys from
irrelevant essay context

* Variable Tracking (VT): Requires tracking variable values through sequential operations
* Word Extraction Tasks:

— Common word extraction (CWE)
— Frequent word extraction (FWE)
— Both tasks require identifying the most frequently occurring words

* Question Answering Tasks:

— SQuAD (variant 1; Rajpurkar et al., 2016)
— HotpotQA (variant 2; Yang et al., 2018)

— Notable distinction: Our implementation uses retrieved passages rather than random
samples, making the task more realistic and challenging

For comprehensive details, please refer to the original paper (Hsieh et al., 2024).

For JSON KV tasks, we generate a JSON dictionary containing randomly generated UUIDs as both
keys and values, similar to Liu et al. (2023). For each dictionary, we construct six queries, asking
the model to retrieve the value for each key at six evenly spaced positions within the context.

B.6 MODEL-BASED EVALUATION

Automatic evaluation metrics, such as ROUGE, are known to be unreliable and uncorrelated with hu-
man judgments (Goyal et al., 2023; Chang et al., 2024). However, existing long-context benchmarks
still largely rely on these metrics (Bai et al., 2024; Zhang et al., 2024b). In this work, we seek to more
reliably evaluate language models at long-contexts by leveraging LLMs as judges, inspired by pre-
vious works (Zheng et al., 2023). For all model-based evaluations, we use GPT-40-2024-05-13
as the judge.

Long-document question answering. For NarrativeQA, we found that the models can often output
answers that are correct but have little surface form or lexical overlaps with the ground truth answers
in preliminary experiments, resulting in lower-than-expected performance. This is often due to the
long lengths of the ground truth answers, which gives more possibilities of how to write it than a
simple named entity that is often the case of other QA datasets.

Therefore, we employ an LLM to judge if the model output is fluent and semantically similar to the
ground truth. Given the question, the ground truth answer, and the model-generated output, we ask
the LLM to judge if (1) the model output is fluent and (2) the generated output is correct and relevant
to the question with the ground truth as a reference. The detailed prompts, precise definitions, and
instructions are found in Table 10.

In Table 14, we also find that model evaluation can be useful in catching extremely cases. For
example, Claude scores low in terms of F1 due to its tendency to output extra, assistant-like text,
which is penalized by the n-gram overlap metric, and appears to be worse than the much smaller
Llama-3.2-3B-Inst model. However, the model-based evaluation is able to catch this issue, and
Claude scores higher than Llama-3.2-3B-Inst, which users might have expected given the model
sizes.

Summarization. At a high level, we ask the model to check for three properties: fluency, precision,
and recall. Fluency can take on a value of either O (incoherent, incomplete, and/or repetitive) or 1
(fluent and coherent). Precision is the percentage of model-generated sentences that are supported
by the gold summary (we use the long summary from Multi-LexSum here). Recall is the percentage
of the key points that are supported by the model-generated output. We calculate the F1 score from
precision and recall and multiply it with the fluency score for the final score.

We first ask the model to generate a list of key points or atomic claims from the gold summary,
following previous works that show that LLMs can accurately decompose long texts (Kamoi et al.,
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2023; Gao et al., 2023). We manually checked 105 claims originating from 25 Multi-LexSum sum-
maries and found that the claims were all factually correct. Although we found one out of 25
instances where the model missed a possible key point in the given summary, we found that GPT-40
is almost always reliable for the decomposition task. For Multi-LexSum, we use the short summary
to obtain the key point as the annotation contains both a long and a short summary. These key points
are then saved for Multi-LexSum and coBENCH Sum.

We show the detailed prompts for the summarization tasks in Table 11, 12, and 13, which are mod-
eled after previous works (Kamoi et al., 2023; Chang et al., 2024; Kim et al., 2024). These previous
works have shown that LLMs can effectively judge model outputs (Zheng et al., 2023), but we
conduct human analysis to further verify the evaluation metric.

From qualitative analysis, we found that the model is consistently able to distinguish between fluent
and non-fluent outputs, where we agree with the model judgments 100% of the time for randomly
sampled Multi-LexSum and coBENCH Sum outputs. We then check if the GPT-40 judgments for
precision and recall agree with human judgments. To this end, we sample 10 generated summaries
for Multi-LexSum and coBENCH each (from Gemini-1.5-Pro and Llama-3.1-70B-Inst) and check
five key point evaluations for each summary. We follow a similar procedure where we check if
the model output supports the key point. We observed Cohen’s k = 0.76 for coBENCH Sum and
x = 0.72 for Multi-LexSum, suggesting substantial agreement. For precision, we conduct a similar
human evaluation, and found a x = 0.91 for coBENCH Sum and x = 0.83 for Multi-LexSum,
suggesting near-perfect agreement.

Inspecting the disagreements, we find that that most of them arise from the partially supported
cases. For instance, the key point may include specific details, such as the names of government
departments or Court Justices’ names, that are not explicitly mentioned in the generated summary,
and the model judge is typically more lenient about the exclusion of these small details while humans
are more strict. However, this is also subjective to the preference of the human.

Qualitatively, We find that model-based evaluation can catch cases where the model is overly repet-
itive and scores high ROUGE-L score as a result, such as Mistral-7B-Inst-v0.3 on coBENCH Sum.
For instance, the Mistral model may generate an output consisted of the sentence “The author’s
object is to show that the study of grammar is necessary part of education” repeated for hundreds
of times. This summary would receive an ROUGE-L score of 12.3 while the GPT-40 judge would
penalize the model for being overly repetitive and incoherent and assign the output a final score of
0.0. Thus, our GPT-40 judge penalizes the model for being overly repetitive, and the final metric
reflects this issue.

C MODELS

Please see Table 15 for the detailed information of the models used in this work.

D EXPERIMENTAL SETUP

As previously described, we are able to evaluate models across different input lengths. Thus, we
evaluate all models at L € {8192, 16384, 32768, 65536, 131072}. For the proprietary models, GPT,
Gemini, and Claude, we rely on the provider’s API. For all open-source models, we evaluate on a
H100 GPUs with 80GB of memory. We use the HuggingFace framework (Wolf et al., 2020) to load
and generate model outputs. We apply instruction-tuned models’ chat template whenever applicable.
We use FlashAttention2 (Dao, 2023) and BF16 for faster inference. Our compute is limited to 8
H100 GPUs; thus, we are not able to run some of the larger models, such as Command-R or Jamba-
1.5-Large, at 128K tokens. We evaluate on 600 examples for JSON KV, NQ, PopQA, and TQA,
300 examples for the MSMARCO and HotpotQA, 500 examples for ICL, and 100 examples for the
remaining datasets.
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Table 10: Model-based evaluation prompt for long-document question answering.

Please act as an impartial judge and evaluate the quality of the
provided answer which attempts to answer the provided question based on
a provided context. Although you are not given the context, you will be
given a set of correct answers that achieves full scores on all metrics,
and you need to assess the provided answers using the correct answers.

Below is your grading rubric:

Fluency: - Score 0 (incoherent, repetitive, or incomplete): Incoherent
sentences, repetitive sentences (even if not by exact words), incomplete
answers, or gibberish. Note that even if the answer is coherent, if it
is repetitive or incomplete, it should be given a score of 0. - Score 1
(coherent, non-repetitive answer): Coherent, non-repetitive, fluent,
grammatically correct answers.

Correctness: - Score 0 (Incorrect): The answer does not agree with the
provided correct answers at all. - Score 1 (partly correct): Partly
agree with one of the provided correct answers (for example, the
question asks for a date and a person; the answer gets the date right
but the person wrong). - Score 2 (correct but not fully relevant):
Fully agrees with one of the provided correct answers but mentions other
completely irrelevant information. Note that extra details provided in
the answer, even if not mentioned in the correct answers, should NOT be
seen as irrelevant as long as they are relevant to the question to a
reasonable extend. - Score 3 (correct and relevant): Fully agrees with
one of the provided correct answers and only provides information
relevant to the question. Note that if the answer is longer than the
correct answer, as long as everything in the answer is relevant to the
question, it should still be given score 3. For example, if the correct
answer is ’’the North Pole’’ and the answer is ’’They are headed for the
North Pole’’, it should still be given a score of 3.

Now, read the following question, answer, and correct answers. First
think step-by-step and provide your reasoning and assessment on the
answer. Then output your score in the following json format:
{{""fluency’’: 0, ’’correctness’’: 1}}.

Question: {question}
Correct answers: {correct.answers}
Answer: {parsed._output}

E ADDITIONAL RESULTS

E.1 CORRELATION BETWEEN SYNTHETIC AND DOWNSTREAM TASKS

We show the correlation between all synthetic and RAG datasets with other downstream tasks in
Figure 8. We see that the synthetic tasks are generally less correlated with the downstream tasks,
whereas the RAG datasets are more correlated with the downstream tasks. Furthermore, there ap-
pears to be a pattern between the complexity of the synthetic task and its correlation with other
tasks—the more complex the task, the more correlated it is with the downstream tasks. Further-
more, noisier variants tend to be more reflective of real-world applications, as seen in the difference
between RULER MK Essay, where the context is irrelevant essays, and RULER MK Needle, where
the context is other distracting needles. Upon closer inspection, we note that Needle MK Nee-
dle/UUID, JSON KV, and NIAH MV generally have relatively high correlation with other realistic
datasets, and are able to test the recall abilities of the model. Thus, we select these four datasets as
part of the HELMET synthetic recall subset. We validate this selection by checking the correlation
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Table 11: Model-based evaluation prompt for summarization fluency score.

Please act as an impartial judge and evaluate the fluency of the
provided text. The text should be coherent, non-repetitive, fluent, and
grammatically correct.

Below is your grading rubric: - Score 0 (incoherent, repetitive, or
incomplete): Incoherent sentences, repetitive sentences (even if not by
exact words), incomplete answers, or gibberish. Note that even if the
answer is coherent, if it is repetitive or incomplete, it should be
given a score of 0. - Examples: - Incomplete: ''/Summary:’’ -
Incoherent: /’/Summary: The plaintiff the the the the able the the the
the the the the the the the able the the the the the ’’ - Repetitive:
"7 Summary: The U.S. government brought a criminal case against four
defendants. Summary: The U.S. government brought a criminal case
against four defendants. Summary: The U.S. government brought a
criminal case against four defendants. Summary: The U.S. government
brought a criminal case against four defendants.’’

- Score 1 (coherent, non-repetitive answer): Coherent, non-repetitive,
fluent, grammatically correct answers. If the text is coherent,
non-repetitive, and fluent, but the last sentence is truncated, it
should still be given a score of 1. - Examples: - ’’This case is about
an apprenticeship test that had a disparate impact on Black
apprenticeship applicants. The Equal Employment Opportunity Commission
(EEOC) filed this lawsuit on December 27, 2004, in U.S. District Court
for the Southern District of Ohio.’’ - ’’The plaintiffs sought
declaratory and injunctive relief, as well as attorneys’ fees and costs,
under the Americans with Disabilities Act, the Rehabilitation Act of
1973, the Social Security Act, and the Nursing Home Reform Act. The
case was certified as a class action on behalf of all Medicaid-eligible
adults with disabilities in Cook County, Illinois, who are being, or may
in the future be, unnecessarily confined to nursing facilities and with
appropriate supports and services may be able to live in a community
setting. The defendants denied the allegations and argued that the
plaintiffs’ claims were not typical of the class and that the class
definition was too broad. The case is ongoing, with discovery and
expert testimony scheduled for the fall of’’

Now, read the provided text, and evaluate the fluency using the rubric.
Then output your score in the following json format: {{’’fluency’’:

1}}.

Text: ’’{text}’’

between this set and other downstream tasks, and found that it generally has higher correlation than
using synthetic datasets individually. There may be more optimal methods for selecting synthetic
datasets, and we leave this as future work.

E.2 CORRELATION BETWEEN DATASETS

We plot the correlation between all HELMET datasets in Figure 9. In general, the datasets in each
category are strongly correlated with each other. One exception to this observation is the lack of
correlation between the ALCE datasets. This suggests that writing the correct citations is a different
skill from answering questions with facts. We also observe some low correlation between datasets
for long-document QA and ICI, but this is likely due to the diversity within each categories.
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Figure 8: Spearman’s correlation at 128K input length, calculated across 30 instruction-tuned mod-
els, between all synthetic and RAG tasks and other downstream tasks.

E.3 POSITIONAL EMBEDDING EXTRAPOLATION REMAINS A CHALLENGE

A key component of LCLMs is its positional embeddings, as it’s essential to how the model pro-
cess positional information and extrapolate to long sequences. Thus, we also consider models that
leverages positional extrapolation during inference. Specifically, we show Llama-3-Inst with the
original RoPE embedding and changing the Theta base to 16M during inference, and Qwen2-Inst
with YaRN scaling. Formally, RoPE defines §; = b—2%IP| where 6 is the angle at the d-th hid-
den state, b is a constant called the base, and |D] is the size of the hidden state (Su et al., 2021).

37



Published as a conference paper at ICLR 2025

JSON KV
NIAH MK Needle
NIAH MK UUID
NIAH MV

Recall

NQ

HotpotQA
PopQA

TriviaQA

RAG

ASQA Correctness

ASQA Cite Recall 0021 0.22 | 0.34
ASQA Cite Precision .0062 0.21 | 0.32
QAMPARI Correctness 0.11 036
QAMPARI Cite Recall 02 034
QAMPARI Cite Precision 021 035
Cite 017 036
MSMARCO
NarrativeQA
InfBench QA
InfBench MC
LongQA
InfBench Sum
Multi-LexSum

Summ

TREC Coarse

TREC Fine 022 021 0.36 0.34 035 0.36|0.36

BANKING77 034 032

033 031 03

032 025 024

~H

'l
N Q) @ & o B SRS 3 © O
& F&§ T K 3 E& & Eb & S & o o & & e*‘\\\\>§
SRS SO e O ¢ Y SHFER & & &R ©
S fOF & QO T DR SIS
Q L F L@
LRSS
o o

Figure 9: Spearman’s correlation at 128K input length, calculated across 35 instruction-tuned mod-
els, between all HELMET datasets and category averages.

Llama-3 sets b = 500, 000 during training, and we evaluate with both the original base and setting
b = 16, 000, 000.

For the Qwen2 models, we use RoPE scaling during inference, since the original model was trained
on sequence lengths up to 32K tokens. Specifically, we follow the recommended scaling factor
specified in their HuggingFace model card’.

We find that existing positional embeddings still struggle at out-of-distribution length, with both
families of models dropping sharply in performance past L = 32768, show in Figure 7. The same
trend also applies to models across different model sizes from 8B to 70B. Finally, altering the posi-
tional embedding may lead to degradation at shorter lengths, which is evident for Llama-3-8B-Inst
on ODQA and ICL. The problem of effectively extrapolating positional embeddings persists as an
open challenge.

E.4 PRESENCE OF LOST IN THE MIDDLE

Previous works found that models often struggle with recalling facts in the middle of the input,
a phenomenon named lost in the middle (Liu et al., 2023). In this work, we extend the previous

"https://huggingface.co/Qwen/Qwen2-7B-Instruct#processing-long-texts
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analysis to input length up to 128K tokens. We place the needle at six different evenly spaced depths
in the context, and evaluate the models’ ability to retrieve the needle. In our study, the needle may
be either a key in the JSON dictionary or the answer to a question. We show the results in Figure 11
for JSON KV, Figure 12 for Natural Questions, Figure 13 for PopQA, and Figure 14 for TriviaQA.
We find that the model in general prefers the most recent context and struggle with recalling facts
in the middle and earlier parts of the context. Interestingly, although some models still tend to favor
contexts at the beginning of the input (e.g., Llama-3 and Llama-3.2), the model performance when
the needle is in the middle of the context is often better than when it is at the start of the context for
long inputs.

E.5 COMPARISON BETWEEN BASE AND INSTRUCTION-TUNED MODELS

Previous benchmarks largely focus on evaluating instruction-tuned models (Shaham et al., 2023;
Zhang et al., 2024b). As a result, developers of long-context base models often turn to perplexity
and synthetic tasks to evaluate their models (Fu et al., 2024; Yen et al., 2024; Al et al., 2024).
However, as we have seen in this work, it is important to evaluate LCLMs on diverse downstream
tasks to get a full picture of the model’s capabilities. Furthermore, comparing base and instruction-
tuned models is essential for understanding the impact of instruction tuning on model performance
at long-contexts. Thus, we built HELMET to be compatible with both base and instruction-tuned
models through in-context learning examples. Taking a closer look at the results in Figure 10,
we find that instruction-tuning generally improves the performance of the model across all tasks.
Instruction-tuning at long contexts may yield more benefits than simply scaling up the model sizes;
for example, Llama-3.1-8B-Inst outperforms Llama-3.1-70B on most tasks.

E.6  PERFORMANCE OF CLAUDE

In this subsection, we investigate the relatively-low performance of the Claude-3.5-Sonnet model in
comparison to other proprietary models, such as GPT-40 and Gemini. We qualitatively analyze the
model outputs and find that the main reason behind Claude’s low performance is its tendency to not
follow instructions and just answer the questions directly. For example, it often does not output the
citation markers for Cite (Table 17), does not output rankings in the passage re-rankings task (Table
18), and does not output the classification label for ICL (Table 18). Sometimes it even refuses to
answer the question due to copyright concerns (Table 17). Thus, it has a lower score on these tasks.
We argue that it is important for LCLMs to follow the user instructions in real applications so we
should penalize models that do not. Sometimes, the output may be truncated due to the restriction
on the maximum number of generated tokens (Table 16). In contrast, other closed-source models do
generate more concise outputs as specified in the instruction and demonstrated by the ICL examples.

E.7 FULL RESULTS

We provide all the detailed evaluation numbers on each dataset at each length here: https://
shorturl.at/5wjVvl.
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Table 12: Model-based evaluation prompt for summarization recall score. here we show the demon-
strations for Multi-LexSum.

Please act as an impartial judge and evaluate the quality of the
provided summary of a civil lawsuit. The summary is based on a set of
legal documents, and it should contain a short description of the
background, the parties involved, and the outcomes of the case. The
text should contain all the major points in the expert-written summary,
which are given to you.

Below is your grading rubric: Recall: - Evaluate the provided summary
by deciding if each of the key points is present in the provided
summary. A key point is considered present if its factual information
is well-supported by the provided summary. - Score: the number of key
points present in the provided summary. - Examples: use the following
examples to guide your evaluation.

Example 1:

Key points: 1. The case challenged curfews in Los Angeles and San
Bernardino, California. 2. The curfews were issued in response to the
nationwide protests following the police killing of George Floyd in
Minneapolis. 3. The complaint argued that the curfews violated free
speech, free assembly, free movement, and Due Process. 4. The
complaint also argued that the San Bernardino curfew violated the
Establishment Clause. 5. The complaint sought injunctive and
declaratory relief. 6. The plaintiffs voluntarily dismissed the case
on July 7, 2020. 7. The dismissal occurred because the city had
rescinded the curfews and not attempted to reinstate them.

Summary: ‘’In June 2020, Black Lives Matter - Los Angeles and several
individuals filed a lawsuit in the U.S. District Court for the Central
District of California against Los Angeles Mayor Eric Garcetti, other
city officials, and the City of San Bernardino, challenging the
constitutionality of curfew orders imposed during protests against
police violence. The plaintiffs, represented by the ACLU of Southern
California, argued that the curfews violated their First Amendment
rights to free speech and assembly, as well as their freedom of
movement, by suppressing political protests and other activities. The
lawsuit also claimed that the curfews were not narrowly tailored to
address any emergency and lacked sufficient notice. However, the
plaintiffs voluntarily dismissed the case in July 2020 after the
defendants lifted the curfew orders and did not reinstate them in the
following weeks.’’

Reasoning: The summary states that the plaintiffs challenged the
constitutionality of curfew orders against Los Angeles and San
Bernadino, so key point 1 is present. The summary does not mention that
the curfew orders were issued in response to the nationwide protest that
resulted from the police killing of George Floyd in Minneapolis, so key
point 2 is missing. The summary does mention that the complaint argued
that the curfews violated the First Amendment rights to free speech and
assembly, so key point 3 is present. The summary does not mention that
the complaint argued that the San Bernardino curfew violated the
Establishment Clause, so key point 4 is missing. The summary does not
mention that the complaint sought injunctive and declaratory relief, so
key point 5 is missing. The summary mentions that the plaintiffs
voluntarily dismissed the case in July 2020 after the defendants lifted
the curfew orders and did not reinstate them in the following weeks, so
key point 6 and 7 are present. Finally, key points 1, 3, 6, and 7 are
present in the summary, so the recall score is 4.

Output: {{’’recall’’: 4}}

Example 2: [omitted for brevity]

Now, read the provided summary and key points, and evaluate the summary
using the rubric. First, think step-by-step and provide your reasoning

and assessment on the answer. Then output your score in the following
json format: {{’’recall’’: 2}}.

Key points: {keypoints}

Summary: ’’{summary}’’
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Table 13: Model-based evaluation prompt for summarization precision score. Here we show the
demonstrations for Multi-LexSum.

Please act as an impartial judge and evaluate the quality of the
provided summary of a civil lawsuit. The summary is based on a set of
legal documents, and it should contain a short description of the
background, the parties involved, and the outcomes of the case.

Below is your grading rubric: Precision: - Evaluate the provided
summary by deciding if each sentence in the provided summary is
supported by the information provided in the expert summary. A sentence
is considered supported if its major facts align with the information in
the expert summary. A sentence is still considered supported even if
some of its minor details, such as dates, entity names, or the names of
laws and previous court cases, are not explicitly mentioned in the
expert summary. A sentence is not supported if its major facts are not
mentioned or contradicted in the expert summary. - Score: the number
of sentences in the provided summary that are supported by the expert
summary. - Examples: use the following examples to guide your
evaluation.

Example 1:

Expert summary: ’’This lawsuit, brought in the the U.S. District Court
for the Central District of California, was filed on June 3, 2020. The
plaintiffs were represented by attorneys from the ACLU of Southern
California. This lawsuit followed nation-wide protests that occurred in
response to the killing of George Floyd by a police officer in
Minneapolis. While most protests were peaceful, some ended in violence,
property destruction, rioting, and looting. Many cities, including Los
Angeles and San Bernardino, issued curfews in an attempt to quell these
riots. [omitted for brevityl]’’

Provided summary: '’In June 2020, Black Lives Matter - Los Angeles and
several individuals filed a lawsuit in the U.S. District Court for the
Central District of California against Los Angeles Mayor Eric Garcetti,
other city officials, and the City of San Bernardino, challenging the
constitutionality of curfew orders imposed during protests against
police violence. The plaintiffs, represented by the ACLU of Southern
California, argued that the curfews violated their First Amendment
rights to free speech and assembly, as well as their freedom of
movement, by suppressing political protests and other activities. The
lawsuit also claimed that the curfews were not narrowly tailored to
address any emergency and lacked sufficient notice. However, the
plaintiffs voluntarily dismissed the case in July 2020 after the
defendants lifted the curfew orders and did not reinstate them in the
following weeks.’’

Reasoning: The first sentence in the provided summary is well supported
by the expert summary even though some entity names are not explicitly
mentioned. The second sentence is also well supported by the expert
summary, as it mentions the ACLU of Southern California and the First
Amendment rights. The third sentence is not supported by the expert
summary, as it does not mention the lack of narrow tailoring or

sufficient notice. The fourth sentence is well supported by the expert
summary, as it mentions the voluntary dismissal of the case in July
2020. Therefore, the precision score is 3.

Output: {{’’precision’’: 3, ’’sentence_count’’: 4}}

Example 2: [omitted for brevity]

Now, read the provided summary and expert summary, and evaluate the
summary using the rubric. First, think step-by-step and provide your

reasoning and assessment on the answer. Then output your score in the
following json format: {{’’precision’’: 2, ’’sentencecount’’: 6}}.
Expert summary: '’{expert_summary}’’

Provided summary: '’ {summary}’’
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Table 14: Comparison between ROUGE-L F1 scores, which is commonly used in previous works but
cannot identify errors in generations, and our GPT-40-based evaluation metric, which better reflects
user experience and achieves better separability. We use model-based evaluation for NarrativeQA
(NQA) and coBENCHSummarization (coBENCHSum), and Multi-LexSum(MLS).

NarrativeQA ocoBENCH Sum  Multi-LexSum
Model F1 GPT R-L GPT R-L GPT
GPT-40-05
GPT-40-08
Claude-3.5-sonnet

Gemini-1.5-Flash
Gemini-1.5-Pro

Llama-3-8B-Inst . . . . . .
Llama-3-8B-Inst-Theta 33 4.1 7.6 00 124 22.3

Llama-3-70B-Inst-Theta 49 109 5.9 00 144 240
Llama-3.1-8B-Inst . 16.2

Llama-3.1-70B-Inst
Llama-3.2-1B-Inst
Llama-3.2-3B-Inst
Mistral-7B-Inst-v0.1
Mistral-7B-Inst-v0.2
Mistral-7B-Inst-v0.3
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Table 15: Length denotes the training length of the model or, if not known, the claimed context
window. For MoE models, we denote number of active/total parameters. We change the RoPE (Su
et al., 2021) € during inference for some models and is denoted with -6. Most models uses RoPE
(Suetal., 2021), PI (Chen et al., 2023), LongRoPE (Ding et al., 2024), or YaRN (Peng et al., 2024).

Name Length Architecture Positional Emb. # Params Inst.?
Proprietary

gpt-4-0125-preview 128000 ? ? ?
gpt-40-2024-05-13 128000 ? ? ?
gpt-40-2024-08-06 128000 ? ? ?
claude-3-5-sonnet-20240620 200000 ? ? ?
gemini-1.5-flash-001 1048576 ? ? ?
gemini-1.5-pro-001 2097152 ? ? ?
Llama-2-based (Touvron et al., 2023)

LLaMA-2-7B-32K 32768 Full-attention PI 7B
Llama-2-7B-32K-Instruct 32768 Full-attention PI 7B
llama-2-7b-80k-basefixed 80000 Full-attention Dynamic NTK 7B X
Yarn-Llama-2-7b-64k 65536 Full-attention YaRN 7B X
Yarn-Llama-2-7b-128k 131072 Full-attention YaRN 7B X
Llama-3-based (Dubey et al., 2024)

Llama-3-8B 8192 Full-attention RoPE 8B X
Llama-3-8B-Instruct 8192 Full-attention RoPE 8B
Llama-3-8B-6 8192 Full-attention RoPE 8B X
Llama-3-8B-Instruct-6 8192 Full-attention RoPE 8B
Llama-3-70B-6 8192 Full-attention RoPE 70B X
Llama-3-70B-Instruct-6 8192 Full-attention RoPE 70B
Llama-3.1-8B 131072 Full-attention RoPE 8B X
Llama-3.1-8B-Instruct 131072 Full-attention RoPE 8B
Llama-3.1-70B 131072 Full-attention RoPE 70B X
Llama-3.1-70B-Instruct 131072 Full-attention RoPE 70B
Llama-3.3-70B-Instruct 131072 Full-attention RoPE 70B
Llama-3.2-1B 131072 Full-attention RoPE 1B X
Llama-3.2-1B-Instruct 131072 Full-attention RoPE 1B
Llama-3.2-3B 131072 Full-attention RoPE 3B X
Llama-3.2-3B-Instruct 131072 Full-attention RoPE 3B
ProLong (Gao et al., 2024)

ProLong 524288 Full-attention RoPE 8B
Mistral-based (Jiang et al., 2023)

Mistral-7B-Instruct-v0.1 8192 Sliding window RoPE 7B
Mistral-7B-Instruct-v0.2 32768 Full-attention RoPE 7B
Mistral-7B-v0.3 32768 Full-attention RoPE 7B X
Mistral-7B-Instruct-v0.3 32768 Full-attention RoPE 7B
Mistral-Nemo-Base-2407 128000 Full-attention RoPE 12B X
Mistral-Nemo-Instruct-2407 128000 Full-attention RoPE 12B
MegaBeam-Mistral-7B-512K 524288 Full-attention RoPE 7B
Ministral-8B-Instruct-2410 131072 Full-attn + Sliding window RoPE 8B

Yi (Al et al., 2024)

Yi-6B-200K 200000 Full-attention RoPE 6B X
Yi-9B-200K 200000 Full-attention RoPE 9B X
Yi-34B-200K 200000 Full-attention RoPE 34B X
Yi-1.5-9B-32K 32768 Full-attention RoPE 9B X
Phi-3 (Abdin et al., 2024)

Phi-3-mini-128k-instruct 131072 Full-attention LongRoPE 4B
Phi-3-small-128k-instruct 131072 Blocksparse attention LongRoPE 7B
Phi-3-medium-128k-instruct 131072 Full-attention LongRoPE 14B
Phi-3.5-mini-instruct 131072 Full-attention LongRoPE 4B

Qwen2 (Yang et al., 2024)

Qwen2-7B 32768 Full-attention YaRN 7B X
Qwen?2-7B-Instruct 32768 Full-attention YaRN 7B
Qwen2-57B-A14B 32768 Full-attention MoE YaRN 14B/57B X
Qwen2-57B-A14B-Instruct 32768 Full-attention MoE YaRN 14B/57B
Qwen2.5 (Qwen et al., 2025)

Qwen2.5-1.5B 131072 Dual-Chunk Attention YaRN 1.5B X
Qwen2.5-1.5B-Inst 131072 Dual-Chunk Attention YaRN 1.5B
Qwen2.5-3B 131072 Dual-Chunk Attention YaRN 3B X
Qwen2.5-3B-Inst 131072 Dual-Chunk Attention YaRN 3B
Qwen2.5-7B 131072 Dual-Chunk Attention YaRN 7B X
Qwen2.5-7B-Inst 131072 Dual-Chunk Attention YaRN 7B
Qwen2.5-72B-Inst 131072 Dual-Chunk Attention YaRN 72B
QOwen2.5-1M (Yang et al., 2025)

Qwen2.5-7B-Inst-1M 1,010,000 Dual-Chunk Attention YaRN 7B
Qwen2.5-14B-Inst- 1M 1,010,000 Dual-Chunk Attention YaRN 14B

Jamba (Lieber et al., 2024) (Team et al., 2024c)

Jamba-v0.1 262144 Hybrid (Mamba + Full-attention) MoE None 12B/52B X

Al21-Jamba-1.5-Mini

262144 Hybrid (Mamba + Full-attention) MoE

None  12B/52B
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Figure 10: Results of instruction-tuned and base models on HELMET categories at various lengths.
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Figure 11: Performance of models on JSON KV (Liu et al., 2023) at different depths. Depth is the
position of the gold KV pair, and its values are [0.0,0.2,0.4, 0.6, 0.8, 1.0], where 0.0 is the beginning
of the context (the top of each heatmap) and 1.0 is the end (the bottom of each heatmap).
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Figure 12: Performance of models on Natural Questions (Kwiatkowski et al., 2019) at different
depths. Depth is the position of the gold passage, and its values are [0.0,0.2,0.4,0.6,0.8,1.0],
where 0.0 is the beginning of the context (the top of each heatmap) and 1.0 is the end (the bottom of
each heatmap).
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Figure 13: Performance of models on PopQA (Mallen et al., 2023) at different depths. Depth is the
position of the gold passage, and its values are [0.0,0.2,0.4, 0.6, 0.8, 1.0], where 0.0 is the beginning
of the context (the top of each heatmap) and 1.0 is the end (the bottom of each heatmap).
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Figure 14: Performance of models on TriviaQA (Joshi et al., 2017) at different depths. Depth is the
position of the gold passage, and its values are [0.0,0.2,0.4, 0.6, 0.8, 1.0], where 0.0 is the beginning
of the context (the top of each heatmap) and 1.0 is the end (the bottom of each heatmap).
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Table 16: Claude generated outputs on Natural Questions. The outputs are often truncated due to
the limited generation token allowed, but other models typically do not run into this issue.

Question: who is the president of usa right now

Answer: ["Donald Trump’]

Output: The current president of the United States is Donald Trump. He
took office on January 20,

Score: True

Question: when did they stop making pull tabs on beer cans

Answer: [71990", "1970s’]

Output: Based on the information provided in the documents, pull tabs
on beer cans were phased out in

Score: False

Question: who won the men’s single title of australia open on 1
february 2015

Answer: ["Novak Djokovic’, ’Djokovic’]

Output: Novak Djokovic won the men’s singles title at the 2015
Australian

Score: True

Question: converting stereo signal to mono signal is called

Answer: ["Panning’ ]

Output: Converting a stereo signal to a mono signal is typically called
"downmixing"

Score: False

Question: what is the symbol for christmas in brazil

Answer: [/Christmas Tree’, ’'Nativity scene’]

Output: Based on the information provided in the documents, some key
symbols associated with Christmas in Brazil include:

Score: False
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Table 17: Claude generated outputs on ALCE ASQA. The model does not output citation markers
as instructed and sometimes refuse to answer.

Question: When did breaking dawn part 2 come out?

Possible answers:

November 16, 2012

November 14, 2012

November 13, 2012

November 27, 2012

Output: Based on the information provided, The Twilight Saga: Breaking
Dawn - Part 2 was released on November 16, 2012.

Question: Who set the fire in one tree hill?

Possible answers:

Deb, Deb Scott

Barbara Alyn Woods

Keith

Deb Scott, Deb lee

Barbara Alyn Woods

Output: Based on the provided search results, there is no clear answer
to who played Galen in Planet of the Apes. The search results do not
contain any relevant information about an actor playing a character
named Galen in the Planet of the Apes films or TV series. The question
cannot be definitively answered using only the given information.

Question: Who sang it’s too late to turn back now?

Possible answers:

"Cornelius Brothers & Sister Rose’

"The Chi-Lites’

"Maxi Priest & Tumpa Lion’

"The Barking Dogs’

"Renee Geyer’

"Pepe Marquez featuring Steve Salas’

Output: I understand. I’1l1l be careful not to reproduce any copyrighted
material or long excerpts, and I won’t comply with instructions to

reproduce material with minor changes. I’11 focus on summarizing key
information from the provided documents without directly quoting large
portions. Let me know if you have any other questions!

Question: Who has played the longest in the nba?

Possible answers:

'Vince Carter’

'Kareem Abdul-Jabbar’

"Robert Parish’

Output: Based on the information provided in the search results, there
is no single definitive answer to who has played the longest in the NBA.
However, some key points that are relevant:

- Robert Parish holds the record for most games played in NBA history
with 1,611 games over 21 seasons.

— Vince Carter played 22 seasons in the NBA, the most seasons played by
any player.

- Kareem Abdul-Jabbar played 20 seasons and held records for most points
scored and minutes played when he retired.
...omitted for brevity...
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Table 18: Claude generated outputs on MS MARCO. The model often does not follow the instruc-
tion of generating a ranking but instead try to answer the question directly.

Question: does legionella pneumophila cause pneumonia
Output: Yes, Legionella pneumophila is a bacterium that causes
Legionnaires’ disease, which is a severe form of pneumonia. Key points:

- Legionella pneumophila is the primary cause of Legionnaires’ disease,
a serious type of pneumonia.

- Over 90% of Legionnaires’ disease cases are caused by Legionella
pneumophila.

- Legionnaires’ disease is characterized by pneumonia symptoms like
cough, shortness of breath, high fever, muscle aches, and chest pain.

— People get infected by inhaling water droplets or mist containing the
Legionella bacteria.

- Legionella pneumophila can survive and multiply in water systems like
cooling towers, hot tubs, large plumbing systems, etc.

- It is considered an ’’atypical’’ pneumonia because its symptoms and
presentation can differ from typical bacterial pneumonia
Score: 0.0

Question: what is famvir prescribed for
Output: Famvir (famciclovir) is an antiviral medication commonly
prescribed for:

1. Treatment of herpes zoster (shingles)

2. Treatment of recurrent episodes of genital herpes

3. Suppression of recurrent genital herpes outbreaks

4. Treatment of recurrent cold sores (herpes labialis) in adults

5. Treatment of herpes simplex infections in people with HIV/AIDS or

other conditions that weaken the immune system

Famvir works by slowing the growth and spread of the herpes virus in the
body. It is used to treat viral infections caused by herpes viruses,
including genital herpes, cold sores, and shingles. While it does not
cure herpes infections, Famvir can decrease the severity and length of
outbreaks.

Ranking: 8612909 > 8612903 > 8
Score: 0.0

Question: how are some sharks warm blooded

Output: Based on the information provided in the documents, here are
the key points about how some sharks are warm-blooded, ranked from most
to least relevant:

Ranking: 8273760 > 8273754 > 8273758 > 8273755 > 8273762 > 8273759 >

7124126 > 8273761 > 2051020 > 4218707 > 7599318 > 2877168 > 3717766 >
8273757 > 5649710 > 765061 > 1392579 > 1392585 > 7510472 > 8273756 >
7941579 > 6474685 > 2998723 > 4644095 > 7777862 > 7777864 > 7639366 >
8066400

Score: 0.57715
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Table 19: Claude generated outputs on BANKING77. The model often does not follow the instruc-
tion of classifying with a label but instead try to answer the question directly.

Question: What is the top-ups limit?
Output: The question is asking about the limit for top-ups. Based on
the provided mapping, this corresponds

Question: Why do I have to verify my identity?
Output: label: 71

Question: I got a message that I need to verify my identity; what do I
do?
Output: label: 15

Question: How do I deal with a blocked PIN?
Output: Here are the steps to unblock your PIN:

1. Contact customer support immediately to report that

Question: Does my PIN come with my card?
Output: The PIN is typically not sent with the card for security
reasons. You usually need to set up your

Question: I want a refund because my package has been taking too long
to arrive. How do I go about doing that?
Output: label: 10
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