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Proposition 1. STACKELSAT is polynomially reducible to
STACKELMIN.

Proof. Let ΠLF = ⟨V,AL, AF , I, GF ⟩ be a Stackelberg
task. Then STACKELSAT is true iff STACKELMIN is true,
setting BL = 2|V | · maxaL∈AL c(aL) and BF = 2|V | ·5

maxaF∈AL c(aF ). Clearly, both bounds can be computed in
time linear in the size of ΠLF .

Theorem 1. STACKELSAT is PSPACE-complete.

Proof. Membership: By Savitch’s theorem (Savitch 1970),
we only have to prove membership in NPSPACE. We can10

non-deterministically guess a leader plan and compute the
resulting state sL. We then have to check that the fol-
lower’s task ⟨V,AF , sL, GF ⟩ is unsolvable. For this, we
use the same idea as in the Immerman–Szelepcsényi theo-
rem (Szelepcsényi 1987; Immerman 1988): We know that15

classical plan existence is NPSPACE-complete. By Sav-
itch’s theorem, there then is a deterministic poly-space algo-
rithm that determines classical plan existence. We can apply
this deterministic algorithm to determine the solvability of
⟨V,AF , sL, GF ⟩. If it is not, we return true, otherwise false.20

Hardness: We reduce from PLANSAT. Given a classical
planning problem Π = (V,A, I,G), we create the Stackel-
berg planning problem ΠLF = (V, ∅, A, I,G), i.e., we treat
all actions as follower actions. Apply a deterministic algo-
rithm to solve STACKELSAT for ΠLF . If the answer was25

true, return false, otherwise return true. Since the leader can-
not perform any action, STACKELSAT is true iff the origi-
nal planning task was unsolvable.

Theorem 2. STACKELMIN is PSPACE-complete.

Proof. Membership: Determining whether a given classical30

planning problem has a plan of cost at most c is PSPACE
complete (Bylander 1994). As such there is a deterministic
poly-space Turing machine that determines whether there
is a plan of cost at most c for a given planning problem.
To decide the base version of Stackelberg planning, we can35

now perform the following algorithm: (1) From the state I ,
non-deterministiaclly guess an applicable sequence of ac-
tions with cost at most cL and compute the resulting state sL.
(2) Apply the deterministic algorithm to determine whether
there is a plan of cost at most cF in the classical planning40

problem Π = (V,AF , sL, G). If not, return yes, otherwise

no. This algorithm solves the decision variant of Stackelberg
planning. Step (1) can be performed in polynomial space, as
the sequence can never plausibly be longer than exponen-
tial. 45

Hardness: We reduce from the plan existence problem for
classical planning. Given a classical planning problem Π =
(V,A, I,G), we create the Stackelberg planning problem
Π = (V, ∅, A, I,G), i.e., we treat all actions as follower
actions. We set cL = 0 and cF = 1 + 2|V | · maxa∈A c(a). 50

Since the leader cannot perform any action, if it is possible to
force the follower cost above cF , then the original planning
problem was unsolvable.

Theorem 3. STACKELPOLY is ΣP
2 -complete.

Proof. Membership: Membership in ΣP
2 can be shown by 55

providing an alternating Turing Machine, which switches
only once from existential to universal nodes during each
run. Using existential nodes, we guess a leader plan πL

with cost of at most cL, execute it (if possible), to reach a
state sL = IJπLK. As argued above, |πL| is polynomially 60

bounded, so sL can be computed in polynomial time. Once
sL is computed, we switch to universal nodes and then guess
a follower plan πF of cost at most cF which is again at most
polynomially long. We then determine whether πF is appli-
cable in sL and whether sLJπF K ⊆ G. If so we return false, 65

otherwise true.
Hardness: We reduce from the corresponding restricted

QBF problem – which is to determine whether formulae of
the form ∃xi∀yjϕ are satisfiable. W.l.o.g. we can assume
that ϕ is in DNF.1 Let ψi be the ith cube of ϕ. We construct a 70

Stackelberg task ΠLF = ⟨V,AL, AF , I, GF ⟩, in which the
leader selects the xi variable assignment, and the follower
tries to find a yj assignment making ϕ evaluate to false:

V ={T x
i , F

x
i , S

x
i | xi} ∪ {T y

j , F
y
j , S

y
j | yj} ∪ {ci | ψi ∈ ϕ}

The initial state is I = {}. The leader actions consists of:

• selxi -T with pre(selxi -T ) = {¬Sx
i } and 75

add(selxi -T ) = {Sx
i , T

x
i }

• selxi -F with pre(selxi -F ) = {¬Sx
i } and

add(selxi -F ) = {Sx
i , F

x
i }

1Satisfiability of ∃xi∀yjϕ is trivial if ϕ is in CNFs as tautology
is trivial for CNFs.



The follower has the following actions

• selyj -T with pre(selyj -T ) = {¬Sy
j } and80

add(selyj -T ) = {Sy
j , T

y
j }

• selyj -F with pre(selyj -F ) = {¬Sy
j } and

add(selyj -F ) = {Sy
j , F

y
j }

• valjci with add(valjci) = {ci}, where lj is the j-th literal
in the i-th cube.85

– If it is positive literal then pre(valjci) = {F l
j}

– If it is a negative literal, then pre(valjci) = {T l
j}

• valSj
ci with add(valSj

ci) = {ci} and pre(valSj
ci) =

{¬Sx
k}, where lj is the j-th literal in the i-th cube, and

lj ∈ {xk,¬xk} for some k.90

All actions have cost 1. We set the goal to G = {ci |
for every cube i in ϕ}. We lastly set BL = |{xi|i}| and
BF = |{yj | j}|+#cubes+ 1.

The leader chooses the xi assignment by executing either
selxi -T or selxi -F for every xi variable. After that, the fol-95

lower can select truth values of the yj variables using the
selyj -T and selyj -F actions, in attempts to make one of the
valci actions for every cube ci applicable. If this is possible,
the respective cubes must be violated. If all cubes evaluate
to false, then so does the overall formula ϕ. The additional100

valSj
ci actions are necessary to forces the leader to choose

an assignment to all xi variables. Otherwise, unassigned xi
variables could make it impossible for the follower to find
violations to all cubes. The value of BL allows the leader to
choose an assignment for all xi variables. If the follower can105

reach her goal, she obviously has a plan with cost less than
BF . If there is a leader plan πL where cF (πL) ≥ BF , then
the formula ∃xi∀yjϕ is satisfiable.

Theorem 5. STACKELSAT1
+1 is ΣP

2 -complete.

Proof. Membership: As there are no delete effects, no ac-110

tion ever needs to be applied more than once. Hence, if a
leader plan satisfying STACKELSAT1

+1 exists, then there
exists one whose size is polynomially bounded. The same
also holds for the follower. To decide STACKELSAT1

+1, we
can thus use a similar approach as in Theorem 3.115

Hardness: We show hardness again via a reduction from
the satisfiability of restricted QBF of the form ∃xi∀yjϕ, as-
suming ϕ to be in DNF. Similar to the proof of Theorem 3,
the idea of our construction is to let the leader choose an
assignment to xi, which the follower needs to counter by120

finding an assignment to yj that makes ϕ false.
The Stackelberg problem is defined as follows: The state

variables are V = {T x
i , T

y
j , Ck}i,j,k for appropriately rang-

ing i, j, k. The initial state is I = ∅. The follower’s
goal is GF = {Ck|for each cube k in ϕ}. The leader can125

choose the truth value for each xi: via either selxi -T with
pre(selxi -T ) = {¬F x

i } and add(selxi -T ) = {T x
i } or

selxi -F with pre(selxi -F ) = {¬T x
i } and add(selxi -F ) =

{F x
i }. The follower can choose the truth value for each

yj via either selyj -T with pre(selyj -T ) = {¬F y
j } and130

add(selyj -T ) = {T y
j } or selyj -F with pre(selyj -F ) =

{¬T y
j } and add(selyj -F ) = {F y

j }, and she can make false

each cube ck in ϕ via each literal li ∈ ck by valick where
add(valick) = {ck} and if li is positive, then pre(valick) =
{¬T l

i }, else if if li is negative, then pre(valick) = {¬F l
i }. 135

This task obviously satisfies the STACKELSAT1
+1 planning

task restrictions. Moreover, note that ∃xi∀yjϕ is satisfiable
iff the answer to STACKELSAT1

+1 is yes.

Theorem 6. STACKELSAT+
1 is NP-complete.

Proof. Membership: Due to the restrictions, no action needs 140

to be executed more than once. Hence, as before, the con-
sideration of polynomially length-bounded plans suffices for
answering Stackelberg plan existence for this class of tasks.
To solve STACKELSAT+

1 , non-deterministically choose a
(polynomially bounded) leader plan πL and construct the 145

corresponding follower task ΠF (πL). This can be done in
polynomial time. PLANSAT for ΠF (πL) can be answered
in (deterministic) polynomial time (Bylander 1994). Return
true if the follower task is unsolvable, otherwise return false.

Hardness: By reduction from Boolean satisfiability. Let ϕ 150

be a CNF over propositional variables x1, . . . , xn. We con-
struct a Stackelberg task, in which the leader decides the
variable assignment, and the follower evaluates the chosen
assignment so that it has a plan iff the leader’s chosen as-
signment does not satisfy ϕ. The task is composed of the 155

state variables V = {Ti, Fi | 1 ≤ i ≤ n} ∪ {U}. The
initial state is I = {Ti, Fi | 1 ≤ i ≤ n}. The follower’s
goal is G = {U}. The leader chooses the truth assign-
ment by removing the unwanted value via either seli-T with
pre(seli-T ) = {Ti} and del(seli-T ) = {Fi} or seli-F 160

with pre(seli-F ) = {Fi} and del(seli-F ) = {Ti}. The
follower can evaluate each clause Ck ∈ ϕ via valk where
add(valk) = {U} and pre(valk) = {Fi|xi ∈ Ck} ∪
{Ti|¬xi ∈ Ck} (the negation of the clause). The construc-
tion obviously fulfills the syntactic restrictions. Moreover, 165

the answer to STACKELSAT+
1 is yes iff ϕ is satisfiable.

Theorem 7. STACKELSAT0 is polynomial.

Proof. Any v ∈ V \G can be ignored. Consider the set LF

of all follower actions aF ∈ AF with del(aF ) = ∅. The
last action of any follower plan must be an action aF ∈ LF , 170

i.e., if LF = ∅, the follower can only use the empty plan.
Otherwise, the follower can always execute all aF ∈ LF as
its last actions. We can thus remove any v ∈ add(aF ) for
any aF ∈ LF from consideration (remove it from GF and
V ). We can now recalculate LF and repeat this process until 175

LF = ∅. This process terminates after polynomially many
steps. If at this point GF ̸⊆ I , the follower has no plan for
the empty leader plan. Otherwise, the follower has no plan
iff there is an action v ∈ GF s.t. there is aL ∈ AL with
v ∈ del(aL). The leader plan is then aL. 180

Corrolary 1. STACKELMIN1
+1 is ΣP

2 -complete.

Proof. Follows directly from Theorem 5.

Theorem 8. STACKELMIN+1
1 is ΣP

2 -complete.



Proof. Membership: As argued in Theorem 6, the con-
sideration of polynomially long plans suffices to answer185

STACKELMIN+1
1 . Membership then follows via the proce-

dure sketched in Theorem 3.
Hardness: Reduction from the satisfiability problem for

restricted QBFs ∃xi∀yjϕ, assuming ϕ to be in DNF. Let n
be the number of xi variables and m the number of yj vari-190

ables. For convenience of notation, we assume for this proof
(and only this proof) that the yj variables are numbered from
yn+1 to yn+m. Let k be the number of cubes in ϕ. The idea
of our Stackelberg planning task construction is similar to
all prior proofs. The state variables are V = {Ti, Fi|1 ≤195

i ≤ n + m} ∪ {Sn+i|1 ≤ i ≤ m} ∪ {Cj |1 ≤ j ≤ k}.
The initial state is I = {Ti, Fi|1 ≤ i ≤ n}. The follower’s
goal is GF = {Sn+i|1 ≤ i ≤ m} ∪ {Ci|1 ≤ i ≤ k}.
The leader can choose the xi truth assignments by remov-
ing the unwanted value (1 ≤ i ≤ n) via seli-T with200

pre(seli-T ) = {Ti} and del(seli-T ) = {Fi} and seli-F
with pre(seli-F ) = {Fi} and del(seli-F ) = {Ti}. The fol-
lower can choose the truth value for each yj (n + 1 ≤ i ≤
n+m) via seli-T with add(seli-T ) = {Ti} or seli-F with
add(seli-F ) = {Fi}. The follower can indicate that yj has205

been assigned through (n + 1 ≤ i ≤ n +m): via donei-T
with pre(donei-T ) = {Ti} and add(donei-T ) = {Si} or
donei-F with pre(donei-F ) = {Fi} and add(donei-F ) =
{Si}, and, finally, it can evaluate each cube cj in ϕ through
each of the literals li ∈ ck by valij where add(valij) = {Cj}210

and if li is positive, then pre(valij) = {Fi} and otherwise
if li is negative, then pre(valij) = {Ti}. All actions have
unit cost. Note that the construction satisfies the syntactic
restrictions of STACKELMIN+1

1 . In order to reach its goal,
the follower must execute one of the donei actions for each215

variable yj , which in turn requires executing one of the seli
actions for each variable yj , and it must execute one of the
valj actions for each cube. Hence, there is no follower plan
shorter than 2m + k. Plans which assign some yj variable
multiple values are possible, but they have to be longer than220

2m + k. If the follower has a plan with exactly that length,
then the formula ϕ can be falsified given the xi assign-
ments chosen by the leader. So, let BF = 2m + k + 1 and
BL = n. The latter suffices to allow the leader to choose an
assignment for every xi. The answer to STACKELMIN+1

1225

for these bounds is yes iff the QBF is satisfiable.

Theorem 9. STACKELMIN0
2 is ΣP

2 -complete.

Proof. Membership: Since actions have no preconditions, it
never makes sense to execute an action more than once. As
such, if a plan exists, a polynomially long plan exists as well.230

We can thus use the same algorithm as in Theorem 3.
Hardness: We again reduce from satisfiability of QBF for-

mulae of the form ∃xi∀yjϕ. We assume that ϕ is in DNF. We
further assume that the variables xi are numbered 1 to n and
the yj are numbered n+ 1 to n+m.235

Let k be the total number of cubes in ϕ. Our Stackelberg
task encoding follows once again also the same idea as be-
fore. The state variables are V = {notT x

i , notF
x
i , S

x
i | 1 ≤

i ≤ n}∪ {notT y
j , notF

y
j , S

y
j | n+1 ≤ i ≤ n+m}∪ {Ci |

1 ≤ i ≤ k}. The initial state is {notT x
i , notF

x
i | 1 ≤240

i ≤ n} ∪ {notT y
j , notF

y
j | n + 1 ≤ i ≤ n + m}. The

follower’s goal is GF = {notT x
i , notF

x
i , S

x
i |1 ≤ i ≤

n} ∪ {notT y
j , notF

y
j , S

y
j |n + 1 ≤ i ≤ n +m} ∪ {Cj |1 ≤

j ≤ k}. We then add the following leader actions seli-T
with add(seli -T ) = {notFi} and del(seli -T ) = {notTi} 245

and seli-F with del(seli -F ) = {notTi} and del(seli -F ) =
{notFi}. For the follower, we add the following actions:
(1) to assume the truth value of a variable (xi or yj)
to be B ∈ {T, F} (1 ≤ i ≤ n + m): assumei-B
with add(assumei -B) = {Si} and del(assumei -B) = 250

{notBi}, (2) to evaluate the i-th cube to false by using the
assumption that literal lj ∈ Ci is false: add(valjCi

) = {Ci}
and if lj is a positive literal, then del(valjCi

) = {notTj}
and otherwise if it is a negative literal, then del(valjCi

) =
{notFj}. Note that if the assumption is indeed satisfied, the 255

delete effect becomes a noop. (3) And finally, to revert an as-
sumption: reverti-B with add(reverti -B) = {notBi} All
actions have cost 1.

To reach the goal, the follower needs to perform three
things: (1) Make an assumption about the value of every xi 260

and yj variable. (2) Evaluate all cubes to false by picking
one literal and forcing its negation to be true. (3) Unassign
every variable by applying revert according to the deleted
facts. All in all, each follower plan must contain at least
2(n + m) + k actions. If there is a plan with exactly this 265

length, then all the chosen valj actions had to use an al-
ready assumed variable-truth-value; and every variable must
have exactly one assumed truth value; in particular, the fol-
lower plan must assume the truth value of the xi variables
that was chosen by the leader. Hence, each such plan corre- 270

sponds to a violating assignment to ϕ. If, on the other hand,
for the xi assignment chosen by the leader ∀yj : ϕ is true, the
length of an optimal follower plan must exceed 2(n+m)+k,
as making false all cubes in ϕ then requires assuming both
truth-values for at least one variable (meaning additional 2 275

actions). The answer to STACKELMIN0
2 for BL = n and

BF = 2(n+m)+k+1 is yes iff the QBF is satisfiable.

Theorem 10. STACKELMIN0
1 is NP-complete in general,

but polynomial when additionally assuming unit cost.

Proof. For the leader it only makes sense to execute actions 280

with a deleting effect and for the follower actions with an
adding effect. More specifically, let G′ := G ∩ I . In order
to increase the plan cost of the follower, the leader needs to
apply actions that delete some fact from G′. On the other
hand, the follower has to apply an action for every G \ G′, 285

and in addition an action for every fact from G′ the leader
has deleted. If all costs are equal, the leader either has to
delete a state variable that the follower cannot add or the cost
bound BL and the available actions must allow to delete at
least BF + |G′| − |G| many facts from G′. Otherwise the 290

leader cannot solve the task. This can be checked in polyno-
mial time. Suppose that actions may have non-unit cost.

Membership: We can non-deterministically guess a subset
of the leader actions of cost at most BL and execute them.
From the resulting state s, the follower has to execute her 295

actions that make the state variables in G \ s true. We can



select per variable the cheapest action and add the costs up.
We return true if this is above BF .

Hardness: We reduce from integer knapsack (Garey and
Johnson 1979, MP10). Let U = {u1, . . . , un} be a set of300

objects, s : U 7→ N+ be their sizes, v : U 7→ N+ their val-
ues, B the size limit, and K the minimal desired total value.
We construct a Stackelberg task following the same intuition
as in the proof of Theorem 6: the leader picks a possible so-
lution and the follower’s plans correspond to the evaluation305

of this solution. We set facts V , initial state I , and goal GF

all to be the set of objects U , i.e., V = I = GF = U . The
leader has for every ui an action selui

with del(selui
) =

{ui} and cost s(ui). The follower has for every ui an ac-
tion takeui

with add(takeui) = {ui} and cost v(ui). We310

set BL = B and BF = K. The leader’s selection of selui

actions encodes a set of objects S ⊆ U fitting the size limit,
i.e.,

∑
u∈S s(u) ≤ B. In order to achieve its goal, the fol-

lower needs to take (at least) all the objects selected by the
leader, resulting in a cost of at least

∑
u∈S v(u). Therefore,315

the leader selection is a solution to the bin-packing prob-
lem if the follower’s optimal plan cost is at least K = BF .
The answer to STACKELMIN0

1 is yes iff the bin-packing
instance has a solution.

Theorem 11. METAOPVER is PSPACE-complete.320

Proof. Membership: Iterate over all states in Π (which only
requires to store the currently considered state, i.e., can be
done in polynomial space). For each state s: (1) check if
s |= pre(σ), and if so (2) check whether s is reachable
from I , and if this is also the case, (3) check whether sJσK325

is reachable from s. (1) can be clearly tested in polynomial
space. (2) and (3) can be done in polynomial space with a
small modification of the algorithm used to show plan exis-
tence in classical planning: instead of using the subset-based
goal termination test, we enforce equality, terminating only330

at states twith (2) t = s respectively (3) t = sJσK. We return
true if (3) was satisfied for states tested, and false otherwise.

Hardness: We reduce from PLANSAT. Let Π =
⟨V,A, I,G⟩ be a classical planning task. Let g be a fresh
state variable, and ag be a fresh action. We create a new335

planning task Π ′ = ⟨V ∪ {g}, A ∪ {ag}, I, {g}⟩ where
pre(ag) = G, add(ag) = {g}, del(ag) = V . Note that Π is
solvable iff Π ′ is solvable. We define a new meta-operator
σ for Π ′, setting pre(σ) = {p|p ∈ I} ∪ {¬p|p ∈ V \ I},
add(σ) = {g}, and del(σ) = V . Obviously, σ is a meta-340

operator for Π ′ iff Π ′ is solvable, what shows the claim.

Theorem 12. polyMETAOPVER is ΠP
2 -complete.

Proof. Membership: Membership in ΠP
2 can be show by

providing an alternating Turing Machine, which switches345

only once from universal to existential nodes during each
run. Using universal nodes, we guess a plan of cost at most
cR, execute it (if possible), to reach a state sP and check
whether sP |= pre(σ). If not, return true (as we can not dis-
prove validity with this trace). If sP |= pre(σ), then using350

existentially quantified decision nodes, guess a plan of cost

at most cM , check its applicabiltiy (else return false) and
whether it reaches sP [[σ]]. If so, return true, else false.

Hardness: We reduce from the respective restricted QBF
satisfiability problem – which are formulae of the form 355

∀xi∃yjϕ. We can assume that ϕ is in 3-CNF. We define the
state variables

V ={B} ∪ {T x
i , F

x
i , S

x
i | xi} ∪ {T y

j , F
y
j , S

y
j | yj}

∪ {cli | for every clause i in ϕ}
The initial state is {B}. We then define actions

• selxi -T with pre(selxi -T ) = {¬Sx
i , B} and

add(selxi -T ) = {Sx
i , T

x
i } 360

• selxi -F with pre(selxi -F ) = {¬Sx
i , B} and

add(selxi -F ) = {Sx
i , F

x
i }

• do-block with pre(do-block) = {B} ∪ {Sx
i | xi} and

del(do-block) = {B}
• selyj -T with pre(selyj -T ) = {¬Sy

j ,¬B} and 365

add(selyj -T ) = {Sy
j , T

y
j }

• selyj -F with pre(selyj -F ) = {¬Sy
j ,¬B} and

add(selyj -F ) = {Sy
j , F

y
j }

• valjcli with add(valjcli) = {cli}. Let lj be the jth literal
in the clause i. 370

– If it is positive literal then pre(valjcli) = {¬B, T l
j}

– If it is a negative literal, then pre(valjcli) = {¬B,F l
j}

• re-block with pre(re-block) = {¬B} ∪ {Sy
j | yj},

add(re-block) = {B}, and
del(re-block) = {T y

j , F
y
j | yj} 375

All actions have cost 1.
We then ask, whether the meta operator σ with pre(σ) =

{B} ∪ {Sx
i | xi} ∪ {¬Sy

j | yj} and
add(σ) = {cli | for every clausei in ϕ} ∪ {Sy

j | yj} is valid
under the cost limits cR = |{xi | xi}| and cM = |{yj | 380

yj}|+ |{i | for every clausei in ϕ}|+ 2
We claim that the meta operator σ is valid if and only if

the formula ϕ is satisfiable. To validate σ, we have to con-
sider any reachable state sP (with cost at most cR) in which
B, all the Sx

i , but none of the Sy
j are true. Since the block 385

variable B has to be true in this state, we cannot have exe-
cuted do-block – otherwise we would also require a re-block
which exceeds together with the necessary selx action the
cost limit cR. Thus in any such state sP , we have enforced
that truth values for all the xi variables have been selected, 390

but for none of the yj variables.
For σ to be valid, for any such sP , we have to find a plan

that reaches sP [[σ]]. Given the effects of σ, this means that
we have to select a value for all yj variables and satisfy all
clauses (via the cli variables). As the first action of any such 395

plan, we have to perform do-block – as all other actions (ex-
cept the selx which we can’t execute anyhow) require ¬B.
We then have to select truth values for the variables yj us-
ing the sely actions. At this point a single, non-modifiable
valuation of the xi and yj has been chosen. Executing the 400

appropriate selection of valcli actions then marks all clauses
as satisfied (if this is indeed the case). Lastly, the plan has use
the re-block action to clear the information on how we set



the truth values for the yj variables and to make the variable
B true again. This is required as we have to reach sP [[σ]] ex-405

actly. In essence, the re-block action allows us not to “leak”
any information on how we selected the truth values of the
yj variables out of the execution of the meta operator.

If σ is valid then every valuation of the xi corresponds to
a reachable state sP and the fact that σ is valid means that410

for every such valuation we can find a plan that sets the yj
in a way that all clauses in the formula are satisfied. If σ is
not valid, we can on the other hand find a valuation of the
xi for which we cannot achieve the target state of σ thus it
is impossible to set the yj to satisfy the formula. Thus σ is415

valid if and only if the original formula is true.
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On the Computational Complexity of Stackelberg Planning and Meta-Operator
Verification

Primary Keywords: (4) Theory

Abstract

Stackelberg planning is a two-player variant of classical plan-
ning, in which one player tries to “sabotage” the other player
in achieving its goal. This yields a bi-objective planning prob-
lem, which appears to be computationally more challenging
than the single-player case. But is this actually true? All in-5

vestigations so far focused on practical aspects, i.e., algo-
rithms, and applications like cyber-security or very recently
for meta-operator verification in classical planning. We close
this gap by conducting the first theoretical complexity analy-
sis of Stackelberg planning. We show that in general Stack-10

elberg planning is no harder than classical planning. Under
a polynomial plan-length restriction, however, Stackelberg
planning is a level higher up in the polynomial complexity hi-
erarchy, suggesting that compilations into classical planning
come with an exponential plan-length increase. In attempts to15

identify tractable fragments exploitable, e.g., for Stackelberg
planning heuristic design, we further study its complexity un-
der various planning task restrictions, showing that Stackel-
berg planning remains intractable where classical planning is
not. We finally inspect the complexity of the meta-operator20

verification, which in particular gives rise to a new interpre-
tation as the dual problem of Stackelberg plan existence.

Introduction
Stackelberg planning (Speicher et al. 2018a) is a two-player
variant of classical planning, where one player (the leader)25

tries to “sabotage” the other player (the follower). The leader
moves first, committing to an action sequence, which sub-
sequently the follower needs to complete to a plan. The
leader’s objective is maximizing the follower’s optimal plan
cost while minimizing her own cost. This type of planning30

is useful for real-world adversarial settings commonly found
in the cyber-security domain (Speicher et al. 2018b; Di Tizio
et al. 2023). Leader-follower search (Speicher et al. 2018a)
is the so far only algorithm paradigm proposed for solv-
ing such tasks. In essence, it boils down to a search in the35

leader state space, solving for every visited leader state the
follower’s associated classical planning task. Given that ex-
ponentially such follower tasks must be solved in the worst
case, one might wonder whether Stackelberg planning is in
fact computationally more difficult than classical variant.40

Past work on Stackelberg planning however so far focused
on algorithmic improvements rather than studying this ques-
tion (Torralba et al. 2021; Sauer et al. 2023).

To close this gap, we present the first theoretical investi-
gation of Stackelberg planning’s complexity. We show that 45

Stackelberg planning remains PSPACE-complete in general.
However, Stackelberg planning with polynomial plan-length
bounds is ΣP

2 -complete, contrasting the NP-completeness
of the corresponding classical planning problem (Bylander
1994). Assuming that the polynomial hierarchy does not col- 50

lapse, this suggests that compilations of Stackelberg plan-
ning into classical planning need to come with an exponen-
tial increase in plan length.

The analysis of tractable fragments has shown to be an im-
portant source for the development of domain-independent 55

heuristic in classical planning (e.g., Hoffmann and Nebel
2001; Domshlak, Hoffmann, and Katz 2015). With the vi-
sion of establishing a basis for the development of leader-
follower search heuristics, we analyze the complexity of
Stackelberg planning under various syntactic restrictions. 60

An overview of our results is given in Tab. 1.
Lastly, we explore a problem related to Stackelberg plan-

ning: meta-operator (Pham and Torralba 2023) verification.
Meta-operators are action-sequence wild cards, which can
be instantiated freely for every state satisfying the opera- 65

tor’s precondition as long as operator’s effects match. Pham
and Torralba have cast verifying whether a given action is a
valid meta-operator as a Stackelberg planning task. We show
that meta-operator verification PSPACE-complete and ΠP

2 -
complete under a polynomial plan-length restriction. This 70

gives rise to a new interpretation of the meta-operator veri-
fication as the dual problem of Stackelberg planning.

Note to Reviewers: This is a short-paper version without
proofs. All proofs are in the supplement, which we will pub-
lish. Alternatively, if you so desire, we can include all proofs 75

into a long version of paper (see alternative attached).

Background
Classical Planning We assume STRIPS notation (Fikes
and Nilsson 1971). A planning task is a tuple Π =
⟨V,A, I,G⟩ consisting of a set of propositional state vari- 80

ables (or facts) V , a set of actions A, an initial state I ⊆ V ,
and a goal G ⊆ V . For p ∈ V , p and ¬p are called literals.
A state s is a subset of V , with the interpretation that all state
variables not in s do not hold in s. Each action a ∈ A has a
precondition pre(a), a conjunction of literals, an add effect 85

(also called positive effect) add(a) ⊆ V , a delete effect (neg-



Plan existence Optimal planning

Syntactic restrictions PLANSAT STACKELSAT PLANMIN STACKELMIN METAOPVER

∗ preconds ∗ effects
|π| not bounded

PSPACE PSPACE (Theorem 1) PSPACE PSPACE (Theorem 2) PSPACE (Theorem 11)

∗ preconds ∗ effects
|π| ∈ O(nk)

NP ΣP
2 (Theorem 3) NP ΣP

2 (Theorem 3) ΠP
2 (Theorem 12)

1 precond 1+ effect NP ΣP
2 (Theorem 5) NP ΣP

2 (Corollary 1) –

∗+ preconds 1 effect P NP (Theorem 6) NP ΣP
2 (Theorem 8) –

0 preconds 2 effects P P for ∞ effects (Theorem 7 ) NP ΣP
2 (Theorem 9) –

0 preconds 1 effect
non-unit cost

P P for ∞ effects (Theorem 7) P NP (Theorem 10) –

Table 1: Overview of our complexity results. For comparison, the PLANSAT and PLANMIN columns show the complexity
of classical planning under the respective task restrictions, as given by (Bylander 1994). All results prove completeness with
respect to the different complexity classes. ∗ means arbitrary number, + only positive, ∗+ arbitrary positive, and n+ n positive.

ative effect) del(a) ⊆ V , and a non-negative cost c(a) ∈ N0.
a is applicable in a state s iff s |= pre(a). Executing a in s
yields the state sJaK = (s \ del(a)) ∪ add(a). These def-
initions are extended to action sequences π in an iterative90

manner. The cost of π is the sum of costs of its actions. π is
called an s-plan if π is applicable in s andG ⊆ sJπK. π is an
optimal s-plan if c(π) is minimal among all s-plans. An (op-
timal) plan forΠ is an (optimal) I-plan. If there is no I-plan,
we say that Π is unsolvable. Two decision problem formu-95

lations of classical planning are considered in the literature.
PLANSAT is the problem of given a planning task Π , de-
ciding whether there exists any plan for Π . PLANMIN asks,
given in addition a (binary-encoded) cost bound B, whether
there is a plan π for Π with cost c(π) ≤ B. Both problems100

are known to be PSPACE-complete (Bylander 1994).

Stackelberg Planning A Stackelberg planning task (Spe-
icher et al. 2018a) is a tuple ΠLF = ⟨V,AL, AF , I, GF ⟩,
where the set of actions is partitioned into one for each
player. A leader plan is an action sequence πL =105

⟨aL1 , . . . , aLn⟩ ∈ (AL)n that is applicable in I . πL in-
duces the follower task ΠF (πL) = ⟨V,AF , IJπLK, GF ⟩.
An (optimal) follower response to πL is an (optimal) plan
for ΠF (πL). We denote by cF (πL) the cost of the opti-
mal follower response to πL, defining cF (πL) = ∞ if110

ΠF (πL) is unsolvable. Leader plans are compared via a
dominance order between cost pairs where ⟨cL1 , cF1 ⟩ weakly
dominates ⟨cL2 , cF2 ⟩ (⟨cL1 , cF1 ⟩ ⊑ ⟨cL2 , cF2 ⟩), if cL1 ≤ cL2
and cF1 ≥ cF2 . ⟨cL1 , cF1 ⟩ (strictly) dominates ⟨cL2 , cF2 ⟩
(⟨cL1 , cF1 ⟩ ⊏ ⟨cL2 , cF2 ⟩), if ⟨cL1 , cF1 ⟩ ⊑ ⟨cL2 , cF2 ⟩ and115

⟨cL1 , cF1 ⟩ ≠ ⟨cL2 , cF2 ⟩. To simplify notation, we write πL
1 ⊏

πL
2 if ⟨c(πL

1 ), c
F (πL

1 )⟩ ⊏ ⟨c(πL
2 ), c

F (πL
2 )⟩. A leader plan

πL is optimal if it is not dominated by any leader plan. Pre-
vious works have considered algorithms for computing the
set of all optimal solutions, called the Pareto frontier.120

Stackelberg Planning Decision Problems
We distinguish between two decision-theoretic formulations
of Stackelberg planning, akin to classical planning:

Definition 1 (STACKELSAT). Given ΠLF , STACKELSAT
is the problem of deciding whether there is a leader plan πL 125

that makes ΠF (πL) unsolvable.
Definition 2 (STACKELMIN). Given ΠLF , and two
binary-encoded numbers BL, BF ∈ N0. STACKELMIN is
the problem of deciding whether there is a leader plan πL

with ⟨c(πL), cF (πL)⟩ ⊑ ⟨BL, BF ⟩. 130

Interpreting the leader’s objective as rendering the fol-
lower’s objective infeasible, the first definition directly mir-
rors the PLANSAT plan-existence decision problem. Sim-
ilarly, the second definition mirrors PLANMIN in looking
for solutions matching a given quantitative cost bound. It is 135

worth mentioning that both decision problems are implicitly
looking for only a single point in the Pareto frontier, whereas
previous practical works dealt with algorithms computing
this frontier entirely. In terms of computational complex-
ity, this difference is however unimportant. In particular, an- 140

swering even just a single STACKELMIN question does in
fact subsume the computation of the entire Pareto frontier –
if the answer is no, one necessarily had to compare the given
bounds to every element in the Pareto frontier.

As in classical planning, STACKELSAT can be easily 145

(with polynomial overhead) reduced to STACKELMIN:
Proposition 1. STACKELSAT is polynomially reducible to
STACKELMIN.

Proof. Let ΠLF = ⟨V,AL, AF , I, GF ⟩ be a Stackelberg
task. Then STACKELSAT is true iff STACKELMIN is true, 150

setting BL = 2|V | · maxaL∈AL c(aL) and BF = 2|V | ·
maxaF∈AL c(aF ). Clearly, both bounds can be computed in
time linear in the size of ΠLF .

Given that Stackelberg planning is a proper generaliza-
tion of classical planning, the Stackelberg decision problems 155

are guaranteed to be at least as hard as the respective classi-
cal planning decision problem. By applying the same proof
idea as the Immerman–Szelepcsényi theorem (Szelepcsényi
1987; Immerman 1988), we can prove that it is also no
harder than classical planning in the general case: 160



Theorem 1. STACKELSAT is PSPACE-complete.

Proof. Membership: By Savitch’s theorem (Savitch 1970),
we only have to prove membership in NPSPACE. We can
non-deterministically guess a leader plan and compute the
resulting state sL. We then have to check that the fol-165

lower’s task ⟨V,AF , sL, GF ⟩ is unsolvable. For this, we
use the same idea as in the Immerman–Szelepcsényi theo-
rem (Szelepcsényi 1987; Immerman 1988): We know that
classical plan existence is NPSPACE-complete. By Sav-
itch’s theorem, there then is a deterministic poly-space algo-170

rithm that determines classical plan existence. We can apply
this deterministic algorithm to determine the solvability of
⟨V,AF , sL, GF ⟩. If it is not, we return true, otherwise false.

Hardness: We reduce from PLANSAT. Given a classical
planning problem Π = (V,A, I,G), we create the Stackel-175

berg planning problem ΠLF = (V, ∅, A, I,G), i.e., we treat
all actions as follower actions. Apply a deterministic algo-
rithm to solve STACKELSAT for ΠLF . If the answer was
true, return false, otherwise return true. Since the leader can-
not perform any action, STACKELSAT is true iff the origi-180

nal planning task was unsolvable.

Theorem 2. STACKELMIN is PSPACE-complete.

Proof. Membership: Determining whether a given classical
planning problem has a plan of cost at most c is PSPACE
complete (Bylander 1994). As such there is a deterministic185

poly-space Turing machine that determines whether there
is a plan of cost at most c for a given planning problem.
To decide the base version of Stackelberg planning, we can
now perform the following algorithm: (1) From the state I ,
non-deterministiaclly guess an applicable sequence of ac-190

tions with cost at most cL and compute the resulting state sL.
(2) Apply the deterministic algorithm to determine whether
there is a plan of cost at most cF in the classical planning
problem Π = (V,AF , sL, G). If not, return yes, otherwise
no. This algorithm solves the decision variant of Stackelberg195

planning. Step (1) can be performed in polynomial space, as
the sequence can never plausibly be longer than exponen-
tial.
Hardness: We reduce from the plan existence problem for
classical planning. Given a classical planning problem Π =200

(V,A, I,G), we create the Stackelberg planning problem
Π = (V, ∅, A, I,G), i.e., we treat all actions as follower
actions. We set cL = 0 and cF = 1 + 2|V | · maxa∈A c(a).
Since the leader cannot perform any action, if it is possible to
force the follower cost above cF , then the original planning205

problem was unsolvable.

In spite of these results, algorithms for Stackelberg plan-
ning are significantly more complicated than their classi-
cal planning counterparts. In particular, the results raise the
question of whether it is possible to leverage directly the210

classical planning methods for solving Stackelberg tasks via
compilation. Polynomial compilations necessarily exist as
per the theorems, yet, it is interesting to investigate which
“side-effects” these might need to have. For example, it
is possible any such compilation will have exponentially215

longer plan, rendering this approach infeasible in practice.

In order to investigate these questions, we turn to a more fine
granular analysis by considering the complexity under vari-
ous previously studied syntactic classes of planning tasks.

Stackelberg Planning under Restrictions 220

Polynomial Plan Length
For classical planning, it is commonly known that restrict-
ing the length of the plans to be polynomial in the size of
the planning task description, makes the decision problems
become NP-complete. 225

Definition 3 (Polynomial Stackelberg Decision). Given
ΠLF with non-0 action costs, and two binary-encoded num-
bers BL, BF ∈ N0 that are bounded by some polynomial
p ∈ O(ℓk) for ℓ = |V | + |AL| + |AF |. STACKELPOLY is
the problem of deciding whether there is a leader plan πL 230

such that ⟨c(πL), cF (πL)⟩ ⊑ ⟨BL, BF ⟩.
We restrict the action cost to be strictly positive, ensuring

that considering leader and follower plans with polynomial
length is sufficient to answer the decision problem. STACK-
ELPOLY is harder than the corresponding classical problem. 235

Theorem 3. STACKELPOLY is ΣP
2 -complete.

Proof. Membership: Membership in ΣP
2 can be shown by

providing an alternating Turing Machine, which switches
only once from existential to universal nodes during each
run. Using existential nodes, we guess a leader plan πL 240

with cost of at most cL, execute it (if possible), to reach a
state sL = IJπLK. As argued above, |πL| is polynomially
bounded, so sL can be computed in polynomial time. Once
sL is computed, we switch to universal nodes and then guess
a follower plan πF of cost at most cF which is again at most 245

polynomially long. We then determine whether πF is appli-
cable in sL and whether sLJπF K ⊆ G. If so we return false,
otherwise true.

Hardness: We reduce from the corresponding restricted
QBF problem – which is to determine whether formulae of 250

the form ∃xi∀yjϕ are satisfiable. W.l.o.g. we can assume
that ϕ is in DNF.1 Let ψi be the ith cube of ϕ. We construct a
Stackelberg task ΠLF = ⟨V,AL, AF , I, GF ⟩, in which the
leader selects the xi variable assignment, and the follower
tries to find a yj assignment making ϕ evaluate to false: 255

V ={T x
i , F

x
i , S

x
i | xi} ∪ {T y

j , F
y
j , S

y
j | yj} ∪ {ci | ψi ∈ ϕ}

The initial state is I = {}. The leader actions consists of:

• selxi -T with pre(selxi -T ) = {¬Sx
i } and

add(selxi -T ) = {Sx
i , T

x
i }

• selxi -F with pre(selxi -F ) = {¬Sx
i } and

add(selxi -F ) = {Sx
i , F

x
i } 260

The follower has the following actions

• selyj -T with pre(selyj -T ) = {¬Sy
j } and

add(selyj -T ) = {Sy
j , T

y
j }

1Satisfiability of ∃xi∀yjϕ is trivial if ϕ is in CNFs as tautology
is trivial for CNFs.



• selyj -F with pre(selyj -F ) = {¬Sy
j } and

add(selyj -F ) = {Sy
j , F

y
j }265

• valjci with add(valjci) = {ci}, where lj is the j-th literal
in the i-th cube.
– If it is positive literal then pre(valjci) = {F l

j}
– If it is a negative literal, then pre(valjci) = {T l

j}
• valSj

ci with add(valSj
ci) = {ci} and pre(valSj

ci) =270

{¬Sx
k}, where lj is the j-th literal in the i-th cube, and

lj ∈ {xk,¬xk} for some k.

All actions have cost 1. We set the goal to G = {ci |
for every cube i in ϕ}. We lastly set BL = |{xi|i}| and
BF = |{yj | j}|+#cubes+ 1.275

The leader chooses the xi assignment by executing either
selxi -T or selxi -F for every xi variable. After that, the fol-
lower can select truth values of the yj variables using the
selyj -T and selyj -F actions, in attempts to make one of the
valci actions for every cube ci applicable. If this is possible,280

the respective cubes must be violated. If all cubes evaluate
to false, then so does the overall formula ϕ. The additional
valSj

ci actions are necessary to forces the leader to choose
an assignment to all xi variables. Otherwise, unassigned xi
variables could make it impossible for the follower to find285

violations to all cubes. The value of BL allows the leader to
choose an assignment for all xi variables. If the follower can
reach her goal, she obviously has a plan with cost less than
BF . If there is a leader plan πL where cF (πL) ≥ BF , then
the formula ∃xi∀yjϕ is satisfiable.290

This result strongly suggests that a compilation of Stack-
elberg planning into classical planning is in general not pos-
sible without an exponential blow-up of some kind. Namely,
suppose it were possible to compile any Stackelberg plan-
ning task into classical planning in a way so that the size as295

well as the length of the plans of the classical planning task
can be related polynomially to the size of the Stackelberg
task. Suppose the plans of the Stackelberg task are polyno-
mially bounded. Since polynomial length plan existence for
classical planning is NP-complete, this would, together with300

our result, imply that NP = ΣP
2 , thus collapsing the poly-

nomial hierarchy (Arora and Barak 2007, Theorem 5.6). As
this is unlikely given out current knowledge, we hence sur-
mise that such polynomial compilations do not exist. Or in
other words: we know that an exponential blow-up in the305

computation is not avoidable in all circumstances.

Delete-Free Stackelberg Planning
Delete-free classical planning (Hoffmann and Nebel 2001),
with its application to heuristic computation, is probably the
class of planning tasks that probably has received most at-310

tention in planning literature. Formally, a planning task Π is
called delete-free if (1) there are no negative preconditions,
and (2) there are no delete effects.

Applying these assumptions to Stackelberg planning, the
leader’s actions can now only add facts to the state the fol-315

lowing is starting in. As executability is monotone w.r.t. the
state, any plan for the follower is a plan independent of the
actions the leader executes. I.e. the leader is no longer able to

affect any of the follower’s options in any way, rendering this
sub-class uninteresting for Stackelberg planning. The com- 320

plexity of Stackelberg planning follows directly from the re-
sults for classical planning:
Theorem 4. Let ΠLF be a delete-free Stackelberg task.
STACKELSAT can be decided in polynomial time. STACK-
ELMIN is NP-complete. 325

Stackelberg Planning under Bylander’s Syntactic
Restrictions
Bylander (1994) studied the complexity of classical plan-
ning under various syntactic restrictions, drawing a concise
borderline between planning’s tractability and infeasibil- 330

ity. Bylander distinguishes between different planning task
classes based on the number of action preconditions and ef-
fects, and the existence of negative preconditions or effects.
Table 1 provides an overview of the main classes. Here, we
take up his analysis and show that even for the classes where 335

classical planning is tractable, Stackelberg may not be. We
consider STACKELSAT and STACKELMIN in this order.
Definition 4. Let m,n ∈ N0 ∪ {∞}. STACKELSATm

n is the
problem of deciding STACKELSAT for Stackelberg tasks so
that | pre(a)| ≤ m and | add(a)| + | del(a)| ≤ n hold for 340

all actions a. Ifm is preceded by “+”, actions may not have
negative preconditions. If n is preceded by “+”, actions may
not have delete effects. STACKELMINm

n is defined similarly.

We omit m (n) if m = ∞ (n = ∞). We consider only
cases where the classical-planning decision problems are in 345

NP. Stackelberg planning is PSPACE-hard when classical
planning is.

Plan Existence
Bylander (1994) has shown that PLANSAT is already NP-
complete for tasks with actions that even have just a single 350

precondition and a single effect. Here we show that the cor-
responding Stackelberg decision problem is even one step
above in the polynomial hierarchy:
Theorem 5. STACKELSAT1

+1 is ΣP
2 -complete.

Proof. Membership: As there are no delete effects, no ac- 355

tion ever needs to be applied more than once. Hence, if a
leader plan satisfying STACKELSAT1

+1 exists, then there
exists one whose size is polynomially bounded. The same
also holds for the follower. To decide STACKELSAT1

+1, we
can thus use a similar approach as in Theorem 3. 360

Hardness: We show hardness again via a reduction from
the satisfiability of restricted QBF of the form ∃xi∀yjϕ, as-
suming ϕ to be in DNF. Similar to the proof of Theorem 3,
the idea of our construction is to let the leader choose an
assignment to xi, which the follower needs to counter by 365

finding an assignment to yj that makes ϕ false.
The Stackelberg problem is defined as follows: The state

variables are V = {T x
i , T

y
j , Ck}i,j,k for appropriately rang-

ing i, j, k. The initial state is I = ∅. The follower’s
goal is GF = {Ck|for each cube k in ϕ}. The leader can 370

choose the truth value for each xi: via either selxi -T with
pre(selxi -T ) = {¬F x

i } and add(selxi -T ) = {T x
i } or

selxi -F with pre(selxi -F ) = {¬T x
i } and add(selxi -F ) =



{F x
i }. The follower can choose the truth value for each

yj via either selyj -T with pre(selyj -T ) = {¬F y
j } and375

add(selyj -T ) = {T y
j } or selyj -F with pre(selyj -F ) =

{¬T y
j } and add(selyj -F ) = {F y

j }, and she can make false
each cube ck in ϕ via each literal li ∈ ck by valick where
add(valick) = {ck} and if li is positive, then pre(valick) =
{¬T l

i }, else if if li is negative, then pre(valick) = {¬F l
i }.380

This task obviously satisfies the STACKELSAT1
+1 planning

task restrictions. Moreover, note that ∃xi∀yjϕ is satisfiable
iff the answer to STACKELSAT1

+1 is yes.

Bylander (1994) has shown that PLANSAT is polynomial
if only positive preconditions and only a single effect per385

action are allowed. Even under these restrictive conditions,
STACKELSAT however still remains intractable:

Theorem 6. STACKELSAT+
1 is NP-complete.

Proof. Membership: Due to the restrictions, no action needs
to be executed more than once. Hence, as before, the con-390

sideration of polynomially length-bounded plans suffices for
answering Stackelberg plan existence for this class of tasks.
To solve STACKELSAT+

1 , non-deterministically choose a
(polynomially bounded) leader plan πL and construct the
corresponding follower task ΠF (πL). This can be done in395

polynomial time. PLANSAT for ΠF (πL) can be answered
in (deterministic) polynomial time (Bylander 1994). Return
true if the follower task is unsolvable, otherwise return false.

Hardness: By reduction from Boolean satisfiability. Let ϕ
be a CNF over propositional variables x1, . . . , xn. We con-400

struct a Stackelberg task, in which the leader decides the
variable assignment, and the follower evaluates the chosen
assignment so that it has a plan iff the leader’s chosen as-
signment does not satisfy ϕ. The task is composed of the
state variables V = {Ti, Fi | 1 ≤ i ≤ n} ∪ {U}. The405

initial state is I = {Ti, Fi | 1 ≤ i ≤ n}. The follower’s
goal is G = {U}. The leader chooses the truth assign-
ment by removing the unwanted value via either seli-T with
pre(seli-T ) = {Ti} and del(seli-T ) = {Fi} or seli-F
with pre(seli-F ) = {Fi} and del(seli-F ) = {Ti}. The410

follower can evaluate each clause Ck ∈ ϕ via valk where
add(valk) = {U} and pre(valk) = {Fi|xi ∈ Ck} ∪
{Ti|¬xi ∈ Ck} (the negation of the clause). The construc-
tion obviously fulfills the syntactic restrictions. Moreover,
the answer to STACKELSAT+

1 is yes iff ϕ is satisfiable.415

Stackelberg plan-existence however becomes easy, when
forbidding preconditions throughout. While this class of
tasks seems to be trivial at first glance, optimal Stackelberg
planning actually remains intractable as we show below.

Theorem 7. STACKELSAT0 is polynomial.420

Proof. Any v ∈ V \G can be ignored. Consider the set LF

of all follower actions aF ∈ AF with del(aF ) = ∅. The
last action of any follower plan must be an action aF ∈ LF ,
i.e., if LF = ∅, the follower can only use the empty plan.
Otherwise, the follower can always execute all aF ∈ LF as425

its last actions. We can thus remove any v ∈ add(aF ) for
any aF ∈ LF from consideration (remove it from GF and

V ). We can now recalculate LF and repeat this process until
LF = ∅. This process terminates after polynomially many
steps. If at this point GF ̸⊆ I , the follower has no plan for 430

the empty leader plan. Otherwise, the follower has no plan
iff there is an action v ∈ GF s.t. there is aL ∈ AL with
v ∈ del(aL). The leader plan is then aL.

Optimal Planning
As per Proposition 1, optimal planning is in general at least 435

as hard as deciding plan existence. All intractability results
shown for STACKELSAT carry over to STACKELMIN. As
in all classes analyzed in the previous section, the consider-
ation of polynomially length-bounded plans is sufficient for
hardness, ΣP

2 yields a sharp upper bound to the complexity 440

of STACKELMIN, as per Theorem 3. In particular:

Corrolary 1. STACKELMIN1
+1 is ΣP

2 -complete.

Proof. Follows directly from Theorem 5.

The results for STACKELSAT only provide a lower
bound to the complexity of STACKELMIN. This lower 445

bound may be strict as demonstrated by Thm. 8 and 9:

Theorem 8. STACKELMIN+1
1 is ΣP

2 -complete.

Proof. Membership: As argued in Theorem 6, the con-
sideration of polynomially long plans suffices to answer
STACKELMIN+1

1 . Membership then follows via the proce- 450

dure sketched in Theorem 3.
Hardness: Reduction from the satisfiability problem for

restricted QBFs ∃xi∀yjϕ, assuming ϕ to be in DNF. Let n
be the number of xi variables and m the number of yj vari-
ables. For convenience of notation, we assume for this proof 455

(and only this proof) that the yj variables are numbered from
yn+1 to yn+m. Let k be the number of cubes in ϕ. The idea
of our Stackelberg planning task construction is similar to
all prior proofs. The state variables are V = {Ti, Fi|1 ≤
i ≤ n + m} ∪ {Sn+i|1 ≤ i ≤ m} ∪ {Cj |1 ≤ j ≤ k}. 460

The initial state is I = {Ti, Fi|1 ≤ i ≤ n}. The follower’s
goal is GF = {Sn+i|1 ≤ i ≤ m} ∪ {Ci|1 ≤ i ≤ k}.
The leader can choose the xi truth assignments by remov-
ing the unwanted value (1 ≤ i ≤ n) via seli-T with
pre(seli-T ) = {Ti} and del(seli-T ) = {Fi} and seli-F 465

with pre(seli-F ) = {Fi} and del(seli-F ) = {Ti}. The fol-
lower can choose the truth value for each yj (n + 1 ≤ i ≤
n+m) via seli-T with add(seli-T ) = {Ti} or seli-F with
add(seli-F ) = {Fi}. The follower can indicate that yj has
been assigned through (n + 1 ≤ i ≤ n +m): via donei-T 470

with pre(donei-T ) = {Ti} and add(donei-T ) = {Si} or
donei-F with pre(donei-F ) = {Fi} and add(donei-F ) =
{Si}, and, finally, it can evaluate each cube cj in ϕ through
each of the literals li ∈ ck by valij where add(valij) = {Cj}
and if li is positive, then pre(valij) = {Fi} and otherwise 475

if li is negative, then pre(valij) = {Ti}. All actions have
unit cost. Note that the construction satisfies the syntactic
restrictions of STACKELMIN+1

1 . In order to reach its goal,
the follower must execute one of the donei actions for each
variable yj , which in turn requires executing one of the seli 480

actions for each variable yj , and it must execute one of the
valj actions for each cube. Hence, there is no follower plan



shorter than 2m + k. Plans which assign some yj variable
multiple values are possible, but they have to be longer than
2m + k. If the follower has a plan with exactly that length,485

then the formula ϕ can be falsified given the xi assign-
ments chosen by the leader. So, let BF = 2m + k + 1 and
BL = n. The latter suffices to allow the leader to choose an
assignment for every xi. The answer to STACKELMIN+1

1
for these bounds is yes iff the QBF is satisfiable.490

Theorem 9. STACKELMIN0
2 is ΣP

2 -complete.

Proof. Membership: Since actions have no preconditions, it
never makes sense to execute an action more than once. As
such, if a plan exists, a polynomially long plan exists as well.
We can thus use the same algorithm as in Theorem 3.495

Hardness: We again reduce from satisfiability of QBF for-
mulae of the form ∃xi∀yjϕ. We assume that ϕ is in DNF. We
further assume that the variables xi are numbered 1 to n and
the yj are numbered n+ 1 to n+m.

Let k be the total number of cubes in ϕ. Our Stackelberg500

task encoding follows once again also the same idea as be-
fore. The state variables are V = {notT x

i , notF
x
i , S

x
i | 1 ≤

i ≤ n}∪ {notT y
j , notF

y
j , S

y
j | n+1 ≤ i ≤ n+m}∪ {Ci |

1 ≤ i ≤ k}. The initial state is {notT x
i , notF

x
i | 1 ≤

i ≤ n} ∪ {notT y
j , notF

y
j | n + 1 ≤ i ≤ n + m}. The505

follower’s goal is GF = {notT x
i , notF

x
i , S

x
i |1 ≤ i ≤

n} ∪ {notT y
j , notF

y
j , S

y
j |n + 1 ≤ i ≤ n +m} ∪ {Cj |1 ≤

j ≤ k}. We then add the following leader actions seli-T
with add(seli -T ) = {notFi} and del(seli -T ) = {notTi}
and seli-F with del(seli -F ) = {notTi} and del(seli -F ) =510

{notFi}. For the follower, we add the following actions:
(1) to assume the truth value of a variable (xi or yj)
to be B ∈ {T, F} (1 ≤ i ≤ n + m): assumei-B
with add(assumei -B) = {Si} and del(assumei -B) =
{notBi}, (2) to evaluate the i-th cube to false by using the515

assumption that literal lj ∈ Ci is false: add(valjCi
) = {Ci}

and if lj is a positive literal, then del(valjCi
) = {notTj}

and otherwise if it is a negative literal, then del(valjCi
) =

{notFj}. Note that if the assumption is indeed satisfied, the
delete effect becomes a noop. (3) And finally, to revert an as-520

sumption: reverti-B with add(reverti -B) = {notBi} All
actions have cost 1.

To reach the goal, the follower needs to perform three
things: (1) Make an assumption about the value of every xi
and yj variable. (2) Evaluate all cubes to false by picking525

one literal and forcing its negation to be true. (3) Unassign
every variable by applying revert according to the deleted
facts. All in all, each follower plan must contain at least
2(n + m) + k actions. If there is a plan with exactly this
length, then all the chosen valj actions had to use an al-530

ready assumed variable-truth-value; and every variable must
have exactly one assumed truth value; in particular, the fol-
lower plan must assume the truth value of the xi variables
that was chosen by the leader. Hence, each such plan corre-
sponds to a violating assignment to ϕ. If, on the other hand,535

for the xi assignment chosen by the leader ∀yj : ϕ is true, the
length of an optimal follower plan must exceed 2(n+m)+k,
as making false all cubes in ϕ then requires assuming both

truth-values for at least one variable (meaning additional 2
actions). The answer to STACKELMIN0

2 for BL = n and 540

BF = 2(n+m)+k+1 is yes iff the QBF is satisfiable.

Optimal Stackelberg planning remains intractable even
when all actions have no preconditions and may have only
at most one effect.

Theorem 10. STACKELMIN0
1 is NP-complete in general, 545

but polynomial when additionally assuming unit cost.

Proof. For the leader it only makes sense to execute actions
with a deleting effect and for the follower actions with an
adding effect. More specifically, let G′ := G ∩ I . In order
to increase the plan cost of the follower, the leader needs to 550

apply actions that delete some fact from G′. On the other
hand, the follower has to apply an action for every G \ G′,
and in addition an action for every fact from G′ the leader
has deleted. If all costs are equal, the leader either has to
delete a state variable that the follower cannot add or the cost 555

bound BL and the available actions must allow to delete at
least BF + |G′| − |G| many facts from G′. Otherwise the
leader cannot solve the task. This can be checked in polyno-
mial time. Suppose that actions may have non-unit cost.

Membership: We can non-deterministically guess a subset 560

of the leader actions of cost at most BL and execute them.
From the resulting state s, the follower has to execute her
actions that make the state variables in G \ s true. We can
select per variable the cheapest action and add the costs up.
We return true if this is above BF . 565

Hardness: We reduce from integer knapsack (Garey and
Johnson 1979, MP10). Let U = {u1, . . . , un} be a set of
objects, s : U 7→ N+ be their sizes, v : U 7→ N+ their val-
ues, B the size limit, and K the minimal desired total value.
We construct a Stackelberg task following the same intuition 570

as in the proof of Theorem 6: the leader picks a possible so-
lution and the follower’s plans correspond to the evaluation
of this solution. We set facts V , initial state I , and goal GF

all to be the set of objects U , i.e., V = I = GF = U . The
leader has for every ui an action selui

with del(selui
) = 575

{ui} and cost s(ui). The follower has for every ui an ac-
tion takeui

with add(takeui) = {ui} and cost v(ui). We
set BL = B and BF = K. The leader’s selection of selui

actions encodes a set of objects S ⊆ U fitting the size limit,
i.e.,

∑
u∈S s(u) ≤ B. In order to achieve its goal, the fol- 580

lower needs to take (at least) all the objects selected by the
leader, resulting in a cost of at least

∑
u∈S v(u). Therefore,

the leader selection is a solution to the bin-packing prob-
lem if the follower’s optimal plan cost is at least K = BF .
The answer to STACKELMIN0

1 is yes iff the bin-packing 585

instance has a solution.

Complexity of Meta Operator Verification
Pham and Torralba (2023) have recently leveraged Stack-
elberg planning for synthesizing meta-operators in classi-
cal planning. Meta-operators, like macro-actions (Fikes and 590

Nilsson 1971), are artificial actions that aggregate the effect
of action sequences, therewith introducing shortcuts in state-
space search. Formally, we are given a classical planning



task Π and an action σ that is not in Π’s action set. σ is a
meta-operator for Π if, for every state s |= pre(σ) that is595

reachable from I , there exists a sequence π of Π’s actions
such that sJσK = sJπK. Whether a given σ is a meta-operator
can be verified by solving a Stackelberg planning task.

Here, we consider the question whether using an expres-
sive and computationally difficult formalism like Stackel-600

berg planning is actually necessary. For this, we determine
the computational complexity of meta-operator synthesis
and compare it to that of Stackelberg planning, and based
on this analysis point out an interesting connection.

Definition 5 (Meta-Operator Verification). Given Π and a605

fresh action σ. METAOPVER is the problem of deciding
whether σ is a meta-operator for Π .

Like for Stackelberg planning, the complexity of meta-
operator verification in general remains the same as that of
classical planning:610

Theorem 11. METAOPVER is PSPACE-complete.

Proof. Membership: Iterate over all states in Π (which only
requires to store the currently considered state, i.e., can be
done in polynomial space). For each state s: (1) check if
s |= pre(σ), and if so (2) check whether s is reachable615

from I , and if this is also the case, (3) check whether sJσK
is reachable from s. (1) can be clearly tested in polynomial
space. (2) and (3) can be done in polynomial space with a
small modification of the algorithm used to show plan exis-
tence in classical planning: instead of using the subset-based620

goal termination test, we enforce equality, terminating only
at states twith (2) t = s respectively (3) t = sJσK. We return
true if (3) was satisfied for states tested, and false otherwise.

Hardness: We reduce from PLANSAT. Let Π =
⟨V,A, I,G⟩ be a classical planning task. Let g be a fresh625

state variable, and ag be a fresh action. We create a new
planning task Π ′ = ⟨V ∪ {g}, A ∪ {ag}, I, {g}⟩ where
pre(ag) = G, add(ag) = {g}, del(ag) = V . Note that Π is
solvable iff Π ′ is solvable. We define a new meta-operator
σ for Π ′, setting pre(σ) = {p|p ∈ I} ∪ {¬p|p ∈ V \ I},630

add(σ) = {g}, and del(σ) = V . Obviously, σ is a meta-
operator for Π ′ iff Π ′ is solvable, what shows the claim.

In other words, meta-operator verification could as well
be compiled directly into a classical rather than a Stackel-635

berg planning task. But how difficult or effective would such
a compilation be? To shed light on this question, we again
turn to a length bounded version of the problem.

Definition 6 (Polynomial Meta-Operator Verification).
Given Π with non-0 action costs, a fresh action σ, and two640

binary-encoded numbers BP , BM ∈ N0 that are bounded
by some polynomial p ∈ O(ℓk) for ℓ = |V | + |A|. poly-
METAOPVER is the problem of deciding whether for all
states s |= pre(σ) reachable from I with a cost of at most
BP , there exists π with c(π) ≤ BM and sJπK = sJσK.645

The parameters BP and BM define the perimeter around
the initial state respectively the reached state under which
the meta-operator conditions are to be verified. As for Stack-
elberg planning, we require that the cost of all actions is

strictly positive, which together with the cost bounds ensures 650

that the radius of the perimeter is polynomially bounded.
Polynomial meta-operator verification too is on the sec-

ond level of the polynomial hierarchy. We again point
out that, under the assumption that the polynomial hierar-
chy does not collapse, this result shows that all classical- 655

planning encodings of meta-operator verification generally
need to come with an exponential explosion of some kind.

Theorem 12. polyMETAOPVER is ΠP
2 -complete.

Note that polyMETAOPVER is therefore in the co-
complexity-class of polynomial Stackelberg plan-existence, 660

i.e., they belong to co-classes on the same level of the poly-
nomial hierarchy. This may not be surprising given that
meta-operator verification can indeed be seen as the dual
of Stackelberg plan existence: while the latter asks for the
existence of a (leader) action sequence where all induced 665

(follower) action sequences satisfy some property, meta-
operator verification swaps the quantifiers.

Proof. Membership: Membership in ΠP
2 can be show by

providing an alternating Turing Machine, which switches
only once from universal to existential nodes during each 670

run. Using universal nodes, we guess a plan of cost at most
cR, execute it (if possible), to reach a state sP and check
whether sP |= pre(σ). If not, return true (as we can not dis-
prove validity with this trace). If sP |= pre(σ), then using
existentially quantified decision nodes, guess a plan of cost 675

at most cM , check its applicabiltiy (else return false) and
whether it reaches sP [[σ]]. If so, return true, else false.

Hardness: We reduce from the respective restricted QBF
satisfiability problem – which are formulae of the form
∀xi∃yjϕ. We can assume that ϕ is in 3-CNF. We define the 680

state variables

V ={B} ∪ {T x
i , F

x
i , S

x
i | xi} ∪ {T y

j , F
y
j , S

y
j | yj}

∪ {cli | for every clause i in ϕ}

The initial state is {B}. We then define actions

• selxi -T with pre(selxi -T ) = {¬Sx
i , B} and

add(selxi -T ) = {Sx
i , T

x
i }

• selxi -F with pre(selxi -F ) = {¬Sx
i , B} and 685

add(selxi -F ) = {Sx
i , F

x
i }

• do-block with pre(do-block) = {B} ∪ {Sx
i | xi} and

del(do-block) = {B}
• selyj -T with pre(selyj -T ) = {¬Sy

j ,¬B} and
add(selyj -T ) = {Sy

j , T
y
j } 690

• selyj -F with pre(selyj -F ) = {¬Sy
j ,¬B} and

add(selyj -F ) = {Sy
j , F

y
j }

• valjcli with add(valjcli) = {cli}. Let lj be the jth literal
in the clause i.
– If it is positive literal then pre(valjcli) = {¬B, T l

j} 695

– If it is a negative literal, then pre(valjcli) = {¬B,F l
j}

• re-block with pre(re-block) = {¬B} ∪ {Sy
j | yj},

add(re-block) = {B}, and
del(re-block) = {T y

j , F
y
j | yj}



All actions have cost 1.700

We then ask, whether the meta operator σ with pre(σ) =
{B} ∪ {Sx

i | xi} ∪ {¬Sy
j | yj} and

add(σ) = {cli | for every clausei in ϕ} ∪ {Sy
j | yj} is valid

under the cost limits cR = |{xi | xi}| and cM = |{yj |
yj}|+ |{i | for every clausei in ϕ}|+ 2705

We claim that the meta operator σ is valid if and only if
the formula ϕ is satisfiable. To validate σ, we have to con-
sider any reachable state sP (with cost at most cR) in which
B, all the Sx

i , but none of the Sy
j are true. Since the block

variable B has to be true in this state, we cannot have exe-710

cuted do-block – otherwise we would also require a re-block
which exceeds together with the necessary selx action the
cost limit cR. Thus in any such state sP , we have enforced
that truth values for all the xi variables have been selected,
but for none of the yj variables.715

For σ to be valid, for any such sP , we have to find a plan
that reaches sP [[σ]]. Given the effects of σ, this means that
we have to select a value for all yj variables and satisfy all
clauses (via the cli variables). As the first action of any such
plan, we have to perform do-block – as all other actions (ex-720

cept the selx which we can’t execute anyhow) require ¬B.
We then have to select truth values for the variables yj us-
ing the sely actions. At this point a single, non-modifiable
valuation of the xi and yj has been chosen. Executing the
appropriate selection of valcli actions then marks all clauses725

as satisfied (if this is indeed the case). Lastly, the plan has use
the re-block action to clear the information on how we set
the truth values for the yj variables and to make the variable
B true again. This is required as we have to reach sP [[σ]] ex-
actly. In essence, the re-block action allows us not to “leak”730

any information on how we selected the truth values of the
yj variables out of the execution of the meta operator.

If σ is valid then every valuation of the xi corresponds to
a reachable state sP and the fact that σ is valid means that
for every such valuation we can find a plan that sets the yj735

in a way that all clauses in the formula are satisfied. If σ is
not valid, we can on the other hand find a valuation of the
xi for which we cannot achieve the target state of σ thus it
is impossible to set the yj to satisfy the formula. Thus σ is
valid if and only if the original formula is true.740

We want to point out that the duality between
METAOPVER and STACKELSAT can be exploited fur-
ther, showing analogous results for Bylander’s (1994) task
classes. Contrary to Stackelberg planning, however, the
identification of tractable fragments is less useful for meta-745

operator verification due to the lack of the monotonicity in-
variance of the meta-operator condition. An action being a
meta-operator in a task abstraction does not imply that the
action is a meta-operator in the original task, and vice versa.
We hence do not further explore this analysis here.750

Related Work
Stackelberg planning is related to conformant and condi-
tional planning, extensions of classical planning by state
and/or action outcome uncertainty. A conformant plan is a
sequence of actions that will reach a goal state – for any755

possible initial state and action outcome. In contrast, a con-
ditional plan, is a tree-shaped structure that allows for differ-
ent plans, depending on observations. Under the restriction
to deterministic actions, both can be seen as a special case
of Stackelberg planning using the leader-reachable states as 760

an encoding of the initial belief. With this interpretation,
STACKELSAT is false iff the conditional planning task is
solvable. If the follower is restricted to use the same plan in-
dependent of the leader actions, we would have a model for
conformant planning. 765

In the general case, conditional planning under partial
observability and with conditional effects is EXPSPACE
complete (Rintanen 2004). Both conformant and condi-
tional planning have been investigated under the restriction
to only polynomially long plans, like we did here. Rinta- 770

nen (1999) showed that polynomially-length-bounded con-
ditional STRIPS planningΠP

2 complete, the co-result to our
Thm. 3. His hardness proof uses a similar proof idea as
ours, with technical differences owed to the different plan-
ning formalism. Bonet (2010) studied conditional planning 775

with non-determinstic actions, proving that polynomially
bounded plan existence for conditional plans with at most k
branching points is ΣP

2k+k-complete. Stackelberg planning
corresponds k = 1, the difference between determinism and
non-determinism causing theΣP

2 vs.ΣP
4 complexity results. 780

For conformant planning, Baral, Kreinovich, and
Trejo (2000) showed that plan existence is Σ2

P -complete, if
conditional effects are allowed. Turner (2002) considered
conditional and conformant planning, but his formalism
supported arbitrary boolean formulae as conditions, making 785

length-1 plan existence already NP-complete.
No prior work on conformant/conditional planning con-

sidered any of Bylander’s syntactical restrictions. Further,
Stackelberg planning differs from conditional/conformant
planning in using a more complex compact description of 790

the “relevant” states through reachability.

Conclusion
Stackelberg planning remains PSPACE-complete like classi-
cal planning in general, but is ΣP

2 complete under a polyno-
mial plan-length bound. Hence, unless the polynomial hier- 795

archy collapses at its first level, it is not possible to compile
Stackelberg planning into classical planning without expo-
nential blow-up. We showed that Stackelberg planning re-
mains intractable even under various syntactical restrictions.
Lastly, we have proven similar results for meta-operator ver- 800

ification, showing that it is PSPACE-complete in general and
ΠP

2 -complete for the polynomial plan-length bounded case,
implying the same type of results for it.
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