
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

In this appendix, we present detailed information about the datasets, comparing baselines and
evaluation metrics, along with additional experimental results of HyperAdapter on longer task
sequences as well as parameter and computation efficiency comparison with other methods. In
Section A, we show details about all the CL benchmark datasets. In Section B, we provide details
about comparing baselines and other SOTA method. In Section C, we provide details about evaluation
metrics used in experiments. In Section D, we conduct additional experiments of HyperAdapter
on Split DomainNet with longer task sequences. In Section E and F, we show the parameter and
computation efficiency comparison between our HyperAdapter and other comparable methods.

A ADDITIONAL DETAILS OF DATASET

In this paper, we utilize seven datasets with varying levels of dataset scale. Table 5 summarizes the
used datasets, number of classes, number of tasks, number of training and test images. Furthermore,
we introduce two benchmarks with a longer task sequence that includes a relatively large number of
classes to validate the superior performance of HyperAdapter on larger or/and longer benchmarks.

Table 5: Specifications of the various CL benchmarks evaluated.
Dataset # Classes # Tasks Train Validation Test
Split Flowers-100 100 10 1600 400 6083
Split Caltech-100 100 10 2400 600 5617
Split Dogs-100 100 10 8000 2000 7028
Split CIFAR-100 100 10 40000 10000 10000
Split Food-100 100 10 50000 25000 25000
Split ImageNet-R 200 10 18000 6000 6000
Split DomainNet 345 15 96724 24182 52041

CIFAR-100 Caltech-101

Figure 5: Samples of CIFAR-100 and Caltech-101. Each row shows samples from the same class.

Flowers Dogs Food-101

Figure 6: Samples of Flowers, Dogs and Food-101. Each row shows samples from the same class.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Here, a description of each benchmark is provided below:

• CL-100 Benchmark: To help better understand CL-100 Benchmark, we provide represen-
tative examples of all CL-Benchmarks at Figure 5 and Figure 6.

1. The original Flowers-102 dataset (Nilsback & Zisserman, 2008) contains 102 flower
categories with a total of 8189 images. To create Split Flowers-100, we exclude 2
categories, resulting in a dataset with 100 categories, and divide it into a training set of
2000 images and a test set of 6083 images.

2. The original Caltech-101 dataset (Fei-Fei et al., 2006) consists of 101 categories
and 9146 images. We adjust this dataset to create Split Caltech-100 by removing 2
categories, leading to 100 categories with a training set of 3000 images and a test set of
5617 images.

3. The original Dogs-100 (Dataset, 2011) dataset contains 100 dog categories with 12000
training images and 8580 test images. We modify this dataset to maintain the same 100
categories but with 10000 training images and 7028 test images.

4. The CIFAR-100 (Krizhevsky et al., 2009) dataset originally includes 100 categories
with 50000 training images and 10000 test images. We keep the structure intact for
Split CIFAR-100, maintaining 100 categories with the same number of training and
test images.

5. The original Food-101 dataset (Bossard et al., 2014) comprises 101 food categories
with a total of 75750 training images and 25250 test images. For Split Food-100,
we exclude 1 category, resulting in 100 categories, and create a training set of 75000
images and a test set of 25000 images.

• Large Benchmark: We incorporate two benchmarks with a substantial number of classes
to showcase the robustness of HyperAdapter in managing large-scale datasets.

1. ImageNet-R (Hendrycks et al., 2021) is a collection encompassing 200 classes from
ImageNet, featuring various artistic renditions such as graffiti, origami, paintings,
and sketches. As shown in Table 5, this benchmark originates from the 200 original
ImageNet classes used for pre-training the ViT model. Due to this, its domain similarity
to ImageNet remains high. The primary objective of including this benchmark is
to evaluate scalability concerning dataset size rather than domain adaptation. Split
ImageNet-R is constructed by partitioning the 200 classes into 10 distinct tasks, each
comprising 20 unique classes.

2. DomainNet (Peng et al., 2019) consists of images from six different types, totaling
345 categories. For our experiments, we focus on real-type images to create the Split
DomainNet benchmark. This benchmark is employed to test the model’s robustness
over a large number of classes and extended sequences. Split DomainNet is utilized in
two configurations: one where the 345 classes are divided into 15 tasks, each containing
23 distinct classes, and another where they are divided into 69 tasks, each containing 5
distinct classes.

B ADDITIONAL DETAILS OF COMPARING BASELINES

To verify the relative effectiveness of all methods, we include FT-seq, the naive sequential training
approach (considered the lower bound), and the upper bound, which represents supervised joint
fine-tuning on the combined data of all tasks. In order to emphasize the ability of PTMs to help
continuous learning, we add FT-Linear baseline and only fine-tuned the head of the model pre-trained
on Imagenet to ensure a fair comparison.

EWC (Kirkpatrick et al., 2017), a prominent algorithm in continual learning, addresses catastrophic
forgetting by regularizing the model’s weights based on Fisher information. For fairness, we initialize
the model weights from an ImageNet pre-trained model. Similarly, LwF (Li & Hoiem, 2017) employs
distillation loss to mitigate catastrophic forgetting, and is a well-established baseline in continual
learning. Here we start with ImageNet pre-trained weights for a fair comparison. L2P (Wang et al.,
2022b) is the pioneering prompt-based method in continual learning. It utilizes a shared prompt pool
to adapt to incoming sequential tasks using a pre-trained model. For consistency and fair comparison,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

we employ the same pre-trained model in our method. In contrast, DualPrompt (Wang et al., 2022a)
introduces a different prompt-based approach. It distinguishes itself from L2P by employing two
types of prompts with distinct objectives: task-invariant and task-agnostic. This method leverages
both types of prompts to enhance adaptability across various tasks. CODA-P (Smith et al., 2023)
proposes to learn a set of prompt components which are assembled with input-conditioned weights to
produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme.
DAP (Jung et al., 2023), a pool-free approach that generates a suitable prompt in an instance-level
manner at inference time. Currently, it is the state-of-the-art prompt-based method in continual
learning. EASE (Zhou et al., 2024), serving as the only adapter-based baseline accepted by CVPR
2024, train a distinct lightweight adapter module for each new task, aiming to create task-specific
subspaces. We use the same pre-trained model for a fair comparison.

C ADDITIONAL DETAILS OF EVALUATION METRICS

1. Average Accuracy: As outlined in Chaudhry et al. (2018a), average accuracy is defined as
the mean accuracy over all tasks after the model has been trained on the final task T . It is a
widely adopted metric in continual learning, and the metric can be formulated as:

Avg Acc = aT where ai =
1

i

i∑
j=1

ai,j ,

where ai,j represents the accuracy on the test set of the j-th task when the model is trained
up to the i-th task.

2. Forgetting Measure: The forgetting measure (Chaudhry et al., 2018a) quantifies the
difference between the maximum performance on previous tasks and the performance on
those tasks after subsequent training. It estimates how much the model forgets prior tasks j
when training on a new task k (with k > j). It can be defined as:

Forgetting =
1

T − 1

T−1∑
j=1

fT
j where fk

j = max
l∈{1,2,...,k−1}

al,j − ak,j .

3. Learning accuracy: Referenced in Riemer et al. (2019), learning accuracy measures the
model’s ability to acquire new knowledge from incoming tasks. It is calculated as the mean
accuracy of each task immediately after training on it, expressed as:

Lrn Acc =
1

T

T∑
j=1

aj,j .

D LONGER TASK SEQUENCES RESULTS

Table 6: Results on Split DomainNet with 15/69 tasks.

Benchmark DAP HAmodel HAblock
Avg Acc (↑) Forgetting (↓) Lrn Acc (↑) Avg Acc (↑) Forgetting (↓) Lrn Acc (↑) Avg Acc (↑) Forgetting (↓) Lrn Acc (↑)

15-Split DomainNet 83.51± 1.07 5.30± 0.52 88.77± 0.79 89.20± 0.54 4.18± 0.49 93.10± 0.24 91.56 ± 0.11 2.18 ± 0.10 93.58 ± 0.12
69-Split DomainNet 83.36± 0.81 6.75± 1.72 90.50± 0.79 87.16± 0.39 6.95± 0.31 93.80± 0.10 90.05 ± 0.09 4.80 ± 0.19 94.58 ± 0.21

To validate the performance of our method in continual learning with longer task sequences, we also
conducted experiments on the 69-Split DomainNet dataset, with results shown in Table 6. Even with
such a large number of tasks, our HyperAdapter consistently achieved optimal performance (90.05%),
significantly outperforming DAP (83.36%). Furthermore, compared to experiments with a 15-task
partition (91.56%), there was no noticeable decline in performance, further demonstrating that our
design is well-suited for continual learning with long task sequences.

E PARAMETER EFFICIENCY COMPARISON

The parameter efficiency comparison results of different methods are shown in Table 7. From this
table, we can draw the following observations:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Parameter efficiency comparison. Mean Acc. denotes the mean final accuracy on the
Continual-100 benchmark. Learnable Params. indicates the total number of learnable parameters.
Percentile Params. represents the proportion of learnable parameters relative to the total parameters
of the pre-trained backbone. Relation outlines the connections between the learnable parameters
and various hyperparameters. Hyperparameters display the specific values of the hyperparameters
involved in each method, where Θ denotes the backbone, d is the backbone embedding size (768), e
is the task embedding dimension, k represents the ratio of pool size to the task number, n is the token
number, p, pg , and pe represent the lengths of the normal, general, and expert prompts, respectively, r
is the bottleneck dimension in the adapter, C is the class number, L, Lg , and Le are the layers applied
in each method, and T denotes the task number. In the line of EASE, the parentheses indicate parts
that are not learnable but occupy memory.

Method Mean
Acc. (%)

Learnable
Params. (M)

Percentile
Params. (%) Relation Hyperparameters

Full-seq 28.53 85.80 100.00 Θ -
Linear-seq 70.07 0.00 0.00 0 -
EWC 57.67 85.80 100.00 Θ -
LwF 62.48 85.80 100.00 Θ -
L2P 82.80 0.05 0.05 dk(p+ 1)T k = 1, p = 5
DualPrompt 85.04 0.48 0.55 dpgLg + d(peLe + 1)T pg = 5, Lg = 2, pe = 20, Le = 3
CODA-P 87.34 3.23 3.76 dk(pL+ 2)T k = 10, p = 8, L = 5
DAP 92.63 0.36 0.42 ((n+ 1)p+ 2d(e+ 2))L+ (d+ e)T e = 16, n = 196, p = 10, L = 12
EASE 91.80 2.95(+7.68) 3.44(+8.95) 2drLT + dCT 2 r = 16, L = 12
HAmodel 91.13 0.42 0.49 2der + (2d+ e)L+ (d+ e)T e = 16, r = 16, L = 12
HAmodel 93.13 1.60 1.86 2der + (2d+ e)L+ (d+ e)T e = 32, r = 32, L = 12
HAblock 93.72 4.74 5.53 2d(er + 1)L+ (d+ e)T e = 16, r = 16, L = 12
Upper Bound 94.06 85.80 100.00 Θ -

1. Pre-trained model-based methods have a relatively small number of learnable parameters.
Notably, HyperAdapter can achieve competitive performance with only 0.5% of the pa-
rameters. With just 1.9% of parameters, HyperAdapter significantly outperforms all other
methods, and with 5.5% parameters, it even surpasses the multi-task learning upper bound.

2. In experiments on model scalability from other works, increasing the number of learnable pa-
rameters does not significantly improve performance. However, in our method, this increase
markedly enhances the model’s performance, and this trend shows no signs of saturation,
indicating that the hypernetwork-based approach has great potential for scalability.

3. Among all methods, the number of learnable parameters in our HyperAdapter shows the
smallest variation with the number of tasks. This means that for a new task, HyperAdapter
can be accomplished with minimal cost, which is highly valuable for deploying models in
real-world scenarios with thousands of complex tasks.

F COMPUTATIONAL EFFICIENCY COMPARISON

L2P

Dua
lProm

pt

CODA-P
DAP

EASE

HAmo
de
l

HA blo
ck

0

25

50

75

100

Tr
ai

ni
ng

 F
LO

Ps
 (G

)

L2P

Dua
lProm

pt

CODA-P
DAP

EASE

HAmo
de
l

HA blo
ck

0

100

200

300

Tr
ai

ni
ng

 T
im

e 
(m

s)

L2P

Dua
lProm

pt

CODA-P
DAP

EASE

HAmo
de
l

HA blo
ck

0

50

100

150

In
fe

re
nc

e 
FL

O
Ps

 (G
)

L2P

Dua
lProm

pt

CODA-P
DAP

EASE

HAmo
de
l

HA blo
ck

0

50

100

150

In
fe

re
nc

e 
Ti

m
e 

(m
s)

Figure 7: Computational efficiency comparison. From left to right: training FLOPs, training time,
inference FLOPs, and inference time. FLOPs are calculated on instance-level input. Time costs
represent the average cost of processing a batch with size 32, measured on a single A100-80GB GPU.

We have analyzed the runtime costs of different methods in Figure 7. Overall, HyperAdapter
maintains similar FLOPs and time costs to other existing methods while achieving significantly better
performance. During the training phase, only EASE does not use the query-key matching mechanism,
resulting in the lowest FLOPs. Other methods include two forward passes of the backbone, making
their FLOPs approximately twice that of EASE. CODA-P introduces an attention mechanism in the
prompt, which adds extra computation, resulting in higher FLOPs than other methods. The time cost
also considers the parameter update process, with DualPrompt and HyperAdapter taking less time
but showing no significant difference. During the inference phase, EASE’s required forward passes
are related to the number of tasks, resulting in the highest FLOPs. The inference time costs follow a
similar trend to FLOPs, with HyperAdapter being comparable to other prompt-based methods.

18


	Additional Details of Dataset
	Additional Details of Comparing Baselines
	Additional Details of Evaluation Metrics
	Longer Task Sequences Results
	Parameter Efficiency Comparison
	Computational Efficiency Comparison

