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A DETAILS ABOUT THE DERIVATION OF THE
ENERGY FUNCTION

𝜕𝐸 ({H(𝑣) }𝑉
𝑣=1)

𝜕H(𝑖 ) = (I − S(𝑖 ) )H(𝑖 ) + 1
2

[
−

𝑣∑︁
𝑚=1

P𝑚𝑖 (H(𝑚) − H(𝑖 ) )
]
+

1
2

[ 𝑣∑︁
𝑛=1

P𝑖𝑛 (H(𝑛) − H(𝑖 ) )
]

= (I − S(𝑖 ) )H(𝑖 ) + H(𝑖 )
𝑉∑︁

𝑚=1
P𝑚𝑖 −

𝑉∑︁
𝑚=1

P𝑚𝑖H(𝑚)

= (2I − S(𝑖 ) )H(𝑖 ) −
𝑉∑︁

𝑚=1
P𝑖𝑚H(𝑚)

(1)

H(𝑖,𝑘+1) = H(𝑖,𝑘 ) − 𝛾
𝜕𝐸 ({H(𝑣,𝑘 ) }𝑉

𝑣=1)
𝜕H(𝑖,𝑘 )

= H(𝑖,𝑘 ) − 𝛾 (2I − S(𝑖 ) )H(𝑖 ) + 𝛾
𝑉∑︁

𝑚=1
P(𝑘 )
𝑖𝑚

H(𝑚,𝑘 )

=

[
(1 − 2𝛾)I + 𝛾S(𝑖,𝑘 )

]
H(𝑖,𝑘 ) + 𝛾

𝑉∑︁
𝑚=1

P(𝑘 )
𝑖𝑚

H(𝑚,𝑘 ) .

(2)

B DETAILS ABOUT DATASETS
B.1 Multi-view datasets

• BDGP: It contains 2,500 images of drosophila embryos, where
1,750-D visual features and 79-D textual features of each
image are extracted.

• Flickr: It consists of 12,154 images covering 7 categories with
1,386 text tags downloaded from the social photography site
Flickr, the feature processing reference.

• Caltech102: It is a dataset consisting of 9,144 pictures grouped
into 102 categories, including 48-D Gabor features, 49-DWM
features, 254-D GENTRIST features, 1,984-D HOG features,
512-D GIST features, and 928-D LBP features.

• GRAZ02: This widely used object dataset comprises images
from four different classes and includes six commonly used
representations: 512-D GIST features, 225-D WT features,
256-D LBP features, 500-D SIFT features, 500-D SURF fea-
tures, and 680-D PHOG features.

• HW: It consists of 2,000 pictures categorized into 6 classes,
with 153-D Profile-correlation features, 596-D Fourier-coefficient
features, 301-D Karhunen-Loeve-coefficient features, 27-D
Morphological features, 481-D intensity-averaged features,
157-D Zernike Moment features.

• OutScene: This image dataset contains 2,688 instances cate-
gorized into eight classes. It includes 512-D GIST features,
59-D LBP features, 864-D HOG features, and 254-D GENT
features.

• Scene15: This scene image dataset comprises 4,485 images
categorized into 15 different categories, with three perspec-
tives captured for each image. The feature dimensions for
each perspective are 1,800, 1,180, and 1,240, respectively.

• Youtube: This video dataset comprises 2,000 instances in 10
classes, with six views of both visual and audio features. The
views include 2,000-D cuboids histogram, 1,024-D motion es-
timate histogram, 64-D HOG features, 512-D MFCC features,
64-D volume streams, and 647-D spectrogram streams.

• NoisyMNIST: It is comprised of randomly selected 30,000
samples from theMNIST image database in 10 classes. Therein,
the given images come with white Gaussian noise of varied
intensities.

B.2 Heterogeneous datasets
• ACM dataset is a citation network comprising 3,025 nodes
classified into three types: papers, authors, and topics. These
nodes are utilized to build citation networks, study paper
contents, and integrate other data. For our experiments, we
employ the meta-path set PAP, PSP.

• DBLP dataset is extracted from the DBLP citation network
website and contains 334 attributes per node. All nodes are
categorized into four types: authors, papers, terms, and con-
ferences. For our experiments, we utilize the meta-path set
APA, APCPA, APTPA.

• IMDB dataset is a movie dataset comprising four types of
nodes: movie, actor, director, and year. These nodes are cate-
gorized into three types based on the movie genre: comedy,
light comedy, and drama. Movie features correspond to bag-
of-words representation elements of the drama genre. For
our experiments, we conduct experiments using the meta-
path set MAM, MDM, MYM.

• YELP dataset is a subset of merchant review sites, comprising
four types of nodes: business, user, service, and level. For our
experiments, we generate the set of meta-paths BUB, BLB,
BSB.

C DETAILS ABOUT COMPARED METHODS
C.1 Multi-view semi-supervised classification

• HLR-M2VS: The framework constructs a unified tensor space
to jointly explore the relationships among multiple views
using a local geometric structure. We select the weighted
factors as 𝜆1 = 0.2 and 𝜆2 = 0.4.

• ERL-MVSC: The framework integrates diversity, sparsity,
and consensus to deftly handle multi-view data with limited
labels. We set the smoothing factor 𝛼 = 2, the embedding
parameter 𝛽 = 1, the regularization parameter 𝛾 = 1, and the
fitting coefficient 𝛿 = 10.
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• Co-GCN: The method introduces GCN into multi-view learn-
ing and obtains multi-view spectral information by adap-
tively combining Laplacian matrices. The settings for the
graph convolutional layers are 2 and the number of neigh-
bors is 10.

• DSRL: The framework uses a deep sparse regularizer learning
model to adaptively learn data-driven sparse regularizers
for multi-view clustering and semi-supervised classification.
The number of layers is fixed at 10.

• LGCN-FF: The framework considers a joint neural network
of both feature and graph fusion. The default setting for
hyperparameters controlling the sparsity penalty degree is
𝛽 = 1.

• IMvGCN: The framework introduces multi-view reconstruc-
tion errors paired with Laplace embeddings to capture inde-
pendence and consistency. The default setting for hyperpa-
rameters 𝜆 = 0.5 and 𝛼 = 1𝑒−5.

• PDMF: The framework learns relations and the auxiliary
representation through pre-training to tune the mappings
from the original data to the comprehensive representation.

• GEGCN: This framework operates by combining the extrac-
tion of topological consistency and complementarity with
downstream tasks. The default parameters are set to 𝜖 = 0.05.

C.2 Heterogeneous graph semi-supervised
classification

• GCN is a semi-supervised homogeneous graph convolutional
network that obtains node embeddings by aggregating mes-
sage from local neighborhood structures.

• SGC is a simplified version of GCN framework, which only
employs the product of high-order adjacency matrices and
attribute matrix, removing non-linear transformation for the
semi-supervised classification tasks.

• HAN explores the node-level and semantic-level attention
on multiplex networks to learn the importance of nodes and
meta-paths, thereby generating node representations in a
hierarchical manner.

• DGI is an unsupervised graph learning representation ap-
proach that maximizes mutual information between the
graph-level summary embeddings and the local patches to
obtain global graph structures.

• DMGI is an unsupervised attributed multiplex network that
jointly integrates the node embeddings from multiple rela-
tions to learn high-quality representations through a consen-
sus regularization framework and a universal discriminator
for downstream tasks.

• IGNN is a graph learning framework which employs a fixed-
point equilibrium equation and the Perron-Frobenius theory
to iterate graph convolutional aggregation until converging
for node classification tasks.

• SSDCM is a semi-supervised framework for representation
learning which aims to maximize the mutual information be-
tween local and contextualized global graph summaries and
employs the cross-layer links to impose the regularization
of the node embeddings.

• MHGCN automatically learns the useful relation-aware topo-
logical structural signals by the multiplex relation aggrega-
tion and a multi-layer graph convolution for graph represen-
tation learning tasks.

D DETAILED EXPERIMENTAL RESULTS

BDGP Flickr

GRAZ02 Caltech102

OutScene Scene15

IMDB YELP

Figure 1: Loss and accuracy / macro-F1 curves of ECMGD.

Epoch 1 Epoch 50 Epoch 200

BDGP

Figure 2: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the BDGP dataset.
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Epoch 1 Epoch 50 Epoch 200

Youtube

Figure 8: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the Youtube dataset.

Epoch 1 Epoch 50 Epoch 200

ACM

Figure 9: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the ACM dataset.

Epoch 1 Epoch 50 Epoch 200

DBLP

Figure 10: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the DBLP dataset.

Epoch 1 Epoch 50 Epoch 200

IMDB

Figure 11: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the IMDB dataset.

Epoch 1 Epoch 50 Epoch 200

YELP

Figure 12: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the YELP dataset.

HLR-M²VS ERL-MVSC

Co-GCN DSRL

Figure 13: T-sne visualization of HLR-M2VS, ERL-MVSC, Co-
GCN, and DSRL on dataset HW.

ACM IMDB

Figure 14: Running time (seconds) of compared HGNNs with
500 training epochs on dataset DBLP and YELP.

HW GRAZ02

OutScene

Figure 15: The classification accuracy of ECMGD w.r.t hyper-
parameters 𝛼 and 𝐾 on the HW dataset.
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Epoch 1 Epoch 50 Epoch 200

Flickr

Figure 3: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the Flickr dataset.

Epoch 1 Epoch 50 Epoch 200

Caltech102

Figure 4: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the Caltech102 dataset.

Epoch 1 Epoch 50 Epoch 200

GRAZ02

Figure 5: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the GRAZ02 dataset.

Epoch 1 Epoch 50 Epoch 200

OutScene

Figure 6: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the OutScene dataset.

Epoch 1 Epoch 50 Epoch 200

scene15

Figure 7: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs on the Scene15 dataset.

HW GRAZ02

OutScene

Figure 16: The classification accuracy of ECMGD w.r.t hyper-
parameters 𝛼 and 𝐾 on the GRAZ02 dataset.

HW GRAZ02

OutScene

Figure 17: The classification accuracy of ECMGD w.r.t hyper-
parameters 𝛼 and 𝐾 on the OutScene dataset.

HW GRAZ02

OutScene Scene15

Figure 18: The classification accuracy of ECMGD w.r.t hyper-
parameters 𝛼 and 𝐾 on Scene15 dataset.
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