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Abstract

The purpose of offline multi-task reinforcement
learning (MTRL) is to develop a unified policy
applicable to diverse tasks without the need for
online environmental interaction. Recent advance-
ments approach this through sequence modeling,
leveraging the Transformer architecture’s scalabil-
ity and the benefits of parameter sharing to exploit
task similarities. However, variations in task con-
tent and complexity pose significant challenges
in policy formulation, necessitating judicious pa-
rameter sharing and management of conflicting
gradients for optimal policy performance. In this
work, we introduce the Harmony Multi-Task De-
cision Transformer (HarmoDT), a novel solution
designed to identify an optimal harmony subspace
of parameters for each task. We approach this as a
bi-level optimization problem, employing a meta-
learning framework that leverages gradient-based
techniques. The upper level of this framework
is dedicated to learning a task-specific mask that
delineates the harmony subspace, while the in-
ner level focuses on updating parameters to en-
hance the overall performance of the unified pol-
icy. Empirical evaluations on a series of bench-
marks demonstrate the superiority of HarmoDT,
verifying the effectiveness of our approach.

1. Introduction

Offline reinforcement learning (RL) (Levine et al., 2020)
enables the learning of policies directly from an existing
offline dataset, thus eliminating the need for interaction
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Figure 1. Illustration of a comparative analysis of success rates
across various task numbers within the Meta-World benchmark,
focusing on prevalent MTRL algorithms. An in-depth exploration
of these results refers to Section 5.

with the actual environment. Despite the promising devel-
opments of offline RL in various robotic tasks, its successes
have been largely confined to individual tasks within spe-
cific domains, such as locomotion or manipulation (Fu et al.,
2020; Kumar et al., 2020). Drawing inspiration from human
learning capabilities, where individuals often acquire new
skills by building upon existing ones and spend less time
mastering similar tasks, there’s a growing interest in the
potential of training a set of tasks with inherent similarities
in a more cohesive and efficient manner (Lee et al., 2022).
This perspective leads to the exploration of multi-task re-
inforcement learning (MTRL), which seeks to develop a
versatile policy to address a variety of tasks.

Recent developments in Offline RL, such as the Decision
Transformer (Chen et al., 2021) and Trajectory Transformer
(Janner et al., 2021), have abstracted offline RL as a se-
quence modeling (SM) problem, showcasing their ability to
transform extensive datasets into powerful decision-making
tools (Hu et al., 2022). These models are particularly bene-
ficial for multi-task RL challenges, offering a high-capacity
framework capable of accommodating task variances and
assimilating extensive knowledge from diverse datasets.
Additionally, they open up possibilities for integrating ad-
vancements (Brown et al., 2020) from language modeling
into MTRL methodologies. However, the application of
these high-capacity sequential models to MTRL presents
considerable algorithmic challenges. As indicated by Yu
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et al. (2020b), simply employing a shared network back-
bone for all diverse robot manipulation tasks can lead to
severe gradient conflicts. This situation arises when the
gradient direction for a particular task starkly contrasts with
the majority consensus direction. Such unregulated shar-
ing of parameters and their optimization under conflicting
gradient conditions can contravene the foundational goals
of MTRL, degrading performance relative to task-specific
training methods (Sun et al., 2022). Furthermore, the is-
sue of gradient conflict is exacerbated by an increase in the
number of tasks (detailed in Section 3), underscoring the
urgency for effective solutions to these challenges.

Existing works on offline MTRL generally address the prob-
lem in one of three ways (Sun et al., 2022): 1) develop-
ing shared structures for the sub-policies of different tasks,
as explored in works by Calandriello et al. (2014); Yang
et al. (2020); Lin et al. (2022); 2) optimizing task-specific
representations to condition the policies, as discussed by
Sodhani et al. (2021); Lee et al. (2022); He et al. (2023a); 3)
addressing the conflicting gradients arising from different
task losses during training, a focus of research by Yu et al.
(2020a); Chen et al. (2020); Liu et al. (2021a). While these
methods have demonstrated effectiveness in different scenar-
ios, they often fall short of adequately addressing the occur-
rence of conflicting gradients that stem from indiscriminate
parameter sharing (Guangyuan et al., 2022). In contrast,
our innovative method, the Harmony Multi-Task Decision
Transformer (HarmoDT), diverges from these traditional
approaches. HarmoDT endeavors to identify a harmony
parameter subspace within a single policy for each task,
offering a novel solution to the challenges of offline MTRL.

To reduce the occurrence of the conflicting gradient, the
idea of adopting distinct parameter subspaces for each task
is straightforward. Empirical observations, depicted by Fig-
ure 2(a), affirm that the application of masks significantly
mitigates conflicts, leading to considerable performance
gains across various sparsity ratios', as contrasted with the
non-mask baseline shown in Figure 2(b). Building upon
these insights, our HarmoDT seeks to identify an optimal
harmony subspace of parameters for each task by incorpo-
rating trainable task-specific masks during MTRL training.
This approach is conceptualized as a bi-level optimization
problem, employing a meta-learning framework to discern
the harmony subspace mask via gradient-based techniques.
At the upper level, we focus on learning a task-specific
mask that delineates the harmony subspace, while at the
inner level, we update parameters to augment the collective
performance of the unified model under the guidance of
the task-specific mask. Empirical evaluations of HarmoDT,
conducted across a broad spectrum of tasks in both seen
and unseen settings, demonstrate its efficacy against mul-

!Sparsity ratio refers to the percentage of inactive weights.
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(a) Conflicting during MTRL. (b) Success with task masks.

Figure 2. Illustration of the harmony degree among trainable
weights during training for policies with and without randomly
initialized masks (left panel), and the success rates achieved when
applying masks with varying sparsity levels (right panel).

tiple state-of-the-art algorithms. Additionally, we provide
extensive ablation studies on various aspects, including scal-
ability, model size, hyper-parameters, and visualizations, to
comprehensively validate our approach.

In summary, our research makes three significant contribu-
tions to the field of MTRL:

* We rethink the challenges in MTRL from the perspec-
tive of sequence modeling, analyze gradient conflicts
with increasing task numbers, and propose the harmony
subspace using task-specific masks (Section 3).

* We model the problem as a bi-level optimization prob-
lem and introduce a meta-learning framework to find the
optimal harmony subspace mask through gradient-based
techniques (Section 4).

* We demonstrate the superior performance of HarmoDT
through rigorous testing on a broad spectrum of bench-
marks, establishing its state-of-the-art effectiveness in
MTRL scenarios (Section 5).

2. Preliminary
2.1. Offline Reinforcement Learning

The goal of RL is to learn a policy mg(als) max-
imizing the expected cumulative discounted rewards
E[>,2 07 R(s¢, a¢)] in a Markov decision process (MDP),
which is a six-tuple (S, A, P, R,,dy), with state space
S, action space A, environment dynamics P(s’|s,a)
S§x8x A — [0,1], reward function R : § x A —
R, discount factor v € [0,1), and initial state distri-
bution dy (Sutton & Barto, 2018). The action-value
or Q-value of a policy 7 is defined as Q7 (s;,a¢) =
Eay a0 ~r D oieo V' R(St4i, a4i)]. In the offline set-
ting (Levine et al., 2020), instead of the online environment,
a static dataset D = {(s, a, s’, r)}, collected by a behavior
policy mg, is provided. Offline RL algorithms learn a policy
entirely from this static offline dataset D, without any online
interactions with the environment.
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In the multi-task setting, different tasks can have differ-
ent reward functions, state spaces, and transition func-
tions. We consider all tasks to share the same action
space with the same embodied agent. Given a specific
task 7 ~ p(T), a task-specified MDP can be defined
as (ST, AT, PT R7 ~,d}). Instead of solving a sin-
gle MDP, the goal of multi-task RL is to find an optimal
policy that maximizes expected return over all the tasks:
7 = argmax, Erp(7)Ea,~n[Ypo0 7’77 |- The static
dataset D correspondingly is partitioned into per-task sub-
sets as D = UN_, D;, where N is the number of tasks.

2.2. Prompt Decision Transformer

The integration of the Transformer (Vaswani et al., 2017)
architecture in offline RL for SM has gained prominence
in recent years. Studies in NLP reveal that Transformers
pre-trained on extensive datasets exhibit notable few-shot
or zero-shot learning capabilities within a prompt-based
framework (Liu et al., 2023; Brown et al., 2020). Building
on this, Prompt-DT adapts the prompt-based methodology
to offline RL, facilitating few-shot generalization to novel
tasks. Unlike NLP, where prompts are typically text-based
and adapt to various tasks through blank-filling formats,
Prompt-DT introduces trajectory prompts. These prompts
consist of state, action, and return-to-go tuples (s*, a*, #*),
providing directed guidance to RL agents with few-shot
demonstrations. Each element marked with the superscript
-* is relevant to the trajectory prompt. Note that the length of
the trajectory prompt is usually shorter than the task’s hori-
zon, encompassing only essential information to facilitate
task identification, yet inadequate for complete task imita-
tion. During training with offline collected data, Prompt-DT
utilizes TZ;LP ut — (7, 7:+) as input for each task 7;. Here,
TZ‘V’ZP “* consists of the K *-step trajectory prompt 7;* and the
most recent K -step history 7; ;, and is formulated as:

input __ A * *
Tit = (Fi1sSi1. a1,

Tit—K+1,Sit—K+1,Qit—K+15--

Ak * *
7Ti,K*’ Si,K* 5 ai,K*?
'ari,tasi,tvai,t)~ (D

The prediction head linked to a state token s is designed to
predict the corresponding action a. For continuous action
spaces, the training objective aims to minimize the mean-
squared loss:
1 t
* 2
Lpr :Erff;p“tNDi d Z (as,m — (7, Tim)) " | - (2)

m=t—K+1

3. Rethinking SM with MTRL

Recent works in offline RL conceptualize it as sequence
modeling (SM), effectively transforming extensive datasets
into potent decision-making systems. This approach is
advantageous for multi-task RL, offering a high-capacity

model that accommodates task discrepancies and assimilates
comprehensive knowledge from diverse datasets. However,
the application of such high-capacity sequential models to
multi-task RL introduces significant algorithmic challenges.
In this section, we delineate the primary challenges, par-
ticularly conflicting gradients, and explore the concepts of
parameter subspace and harmony, laying the groundwork
for the motivation behind our method.

3.1. Conflicting Gradients

In a multi-task training context, the aggregate gradient, g, is
computed across multiple tasks and is defined as

N

. 1

g=Erpm VLT (0) = ~ Zgi(9), 3)
i=1

where 6 represents the trainable parameter vector and g;; is
the gradient vector for task 7;. In scenarios where tasks are
diverse, the gradients g; from different tasks may conflict
significantly, a phenomenon known as gradient conflicts and
negative transfer in multi-task learning (Guangyuan et al.,
2022; Tang et al., 2023).

Definition 3.1 (Harmony Score on a Single Weight). The
harmony score of the j-th element in the weights vector is
estimated by calculating the corresponding coordinate of
the element-wise product of the task gradient and the total
gradient, denoted as (g; © §); = g, X &;.

Definition 3.2 (Averaged Harmony Score). The over-
all harmony score across all weights is evaluated using
= Zfil Z]K:1 I(gg:?\\gé)jl , where K and N denote the num-
ber of weights and tasks. This score, ranging between -1
and 1, reflects the degree of alignment among tasks.

To substantiate the presence of conflicts in MTRL, we es-
tablish two metrics to measure harmony scores and conduct
experiments utilizing the Prompt-DT method on 5 and 50
tasks from the Meta-world benchmark, recording the av-
erage harmony score. As illustrated in Figure 2(a), the
averaged harmony score significantly diminishes with the
escalation in the number of tasks, indicating pronounced
conflicts among tasks and underscoring the imperative to
address these conflicts in MTRL.

3.2. Parameter Subspace and Harmony

Parameter subspace, a concept prevalent in pruning-aware
training (Alvarez & Salzmann, 2017), aims to maintain com-
parable performance while achieving a sparse model. In
the context of MTRL via SM, pruning to preserve distinct
parameter subspaces for each task markedly alleviates gra-
dient conflicts. To validate this, we conduct experiments on
50 tasks from the Meta-World benchmark. Each task 7; is
assigned a randomly initialized mask M7+ with a specific
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Figure 3. Illustration of the conflicting problem and the framework of our method HarmoDT to find a harmony subspace for each task.
The left panel shows the conflicting phenomenon reflected by divergent task-specific gradients. The middle panel illustrates the procedure
to find a harmony subspace for each task via the strategic learning of task masks. The right panel demonstrates the workflow of HarmoDT
based on the DT architecture with prompts and learned harmony subspace of weights when handling a task, such as 7s.

sparsity ratio S. During training, this mask modulates both
the trainable parameters and gradients as follows:

g =VLr(0oMYoM” i=1,2,...,N, &

where © represents element-wise multiplication, and M7
is a binary vector. Intriguingly, as shown in Figure 2(b),
applying the mask could result in enhanced performance
across a wide range of sparsity ratios. This improvement,
coupled with a significantly higher harmony score in multi-
task settings as depicted in Figure 2(a), suggests that main-
taining a subspace of parameters through the implementa-
tion of task-specific masks effectively mitigates the conflicts
arising from unregulated parameter sharing.

3.3. Motivation

The complexity in MTRL is significantly amplified with
increasing task numbers, largely attributed to escalating
gradient conflicts. This challenge mainly stems from the
unregulated sharing of parameters among tasks, intended
to leverage similarities and enhance learning efficiency, but
often leading to performance degradation. In response to
these challenges, a nuanced approach involving task-specific
masks has been proposed. These masks aim to maintain
distinct parameter subspaces for each task, thereby ensuring
that the learning process of one task does not adversely af-
fect the others. While this strategy represents a step towards
mitigating gradient conflicts, it introduces a new challenge:
the determination of an optimal mask configuration for each
task remains an open question. The complexity of this chal-
lenge is compounded by the dynamic and often non-linear
nature of task interactions within the shared model space.

Addressing this intricate problem requires a sophisticated
solution that can navigate the delicate balance between
shared learning and task-specific adaptation. Our study
proposes a bi-level optimization strategy situated within a

meta-learning framework to address this issue. This ap-
proach leverages gradient-based techniques to meticulously
explore and exploit the parameter space, aiming to iden-
tify a harmony parameter subspace for each task, thereby
optimizing the overall MTRL performance.

4. Method: Find Harmony Subspace

To address the aforementioned problem, we introduce a
meta-learning framework that discerns an optimal harmony
subspace of parameters for each task, enhancing parameter
sharing and mitigating gradient conflicts. This problem
is formulated as a bi-level optimization, where we meta-
learn task-specific masks to define the harmony subspace.
Mathematically, we can express the problem as:

max Er [ /R (s, w(riP10T)), - (5)
t=0

s.tt. 0% = arg min ETin(T)ACDT(e, M), (6)
0

where 07 = 0* & M7 M = {Mﬂ}ﬂ,w(?')v N

where M7 represents a binary task mask vector corre-
sponding to 7;, and M denotes the set of all task masks. The
goal at the upper level is to learn a task-specific mask that
identifies the harmony subspace for each task. Concurrently,
at the inner level, the objective is to optimize the algorithmic
parameters §, maximizing the collective performance of the
unified model under the guidance of the task-specific masks.
The framework for our harmony subspace learning is de-
picted in Figure 3. Subsequent sections are meticulously
dedicated to elucidating the methodology for selecting the
harmony subspace, detailing the sophisticated update mech-
anism for task masks (refer to Section 4.1), and delineating
the procedural intricacies of the algorithm (see Section 4.2).
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Algorithm 1 HarmoDT

Algorithm 2 Mask Update

Input: A set of tasks T = {71, ..., 7n }, maximum iteration
E, episode length T', target return G*, learning rate 7, hyper-
parameters {max, NJmin, S, tm, A, thresh}.
// initializing stage
Initialize the parameters of the network 6o and the set of task
masks M = {M7* ... M7V} through ERK.
// training stage
t=1.
while t < E do
o = [nmaz + %(nmzn - 77m,az)(1 —+ cos (271—%))]
M=Mask_Update(T, M, 0:, A, at).
while ¢ mod ¢,,, # 0 do
sample a task 7; from the set of tasks T.
sample a batch of data 7; from the dataset D;.
0+ 0—-nVLr (0o M")o M.
t=1t+ 1.
end while
t=1t+ 1.
end while
// inference stage
fort=1,...,N do
Initialize history 7 with zeros, desired reward # = Gj, prompt
7", the parameters 0, < 0 ® M7
j=0.
for j < T do
Get action a = Transformery, (77, 7)[—1].
Step env. and get feedback s, a, r, 7 < 7 — r.
Append s, a, 7] to recent history 7.
end for
end for

4.1. Mask Update

For a given sparsity S and task masks M, we periodically
assess the harmony subspace of trainable weights 6 across
all tasks. This process involves masking” a; of the most
conflicting parameters and subsequently recovering an equal
number of previously masked parameters that have transi-
tioned to harmony after the subsequent iterative training
process. As delineated in Algorithm 2, this procedure en-
compasses three key steps: Weights Evaluation, Weights
Masking, and Weights Recovery.

Weights Evaluation. During training, our aim is to iter-
atively identify a harmony subspace for each task by as-
sessing trainable parameter conflicts and importance. This
involves defining two metrics: the Agreement Score and
the Importance Score, to gauge the concordance and signifi-
cance of weights respectively.

Definition 4.1 (Agreement Score). For each task 7; with
a set of task masks M, the agreement score vector of all
trainable weights is defined as follows: A(7;) = g ©
~ Zf\il g, where g; is defined in Equation 4.

>When the term “mask” is used as a verb, it refers to the action of

rendering the corresponding parameter inactive or modifying the
mask vector by changing the value from 1 to 0.

Input: A set of tasks T, a set of task masks M, trainable weights
vector ; and hyper-parameters {\, a }.
fori=1,...,N do
gi=VLr,(0oMT) oM.
g = VL, (0).
end for
g= % ZZV:1 8i-
fori=1,...,Ndo
// Weights Evaluation

Calculate H(7;) with \, g; and § as Sec. 4.1.

// Weights Masking
MT7i = M7 — ArgBtmK,,, (H(T7)).
// Weights Recovery
M7 =MTi ArgTopK,,, (g © &).
end for
Output:M.

Definition 4.2 (Importance Score). This metric evaluates
the significance of parameters for task 7;. It can be measured
either by the absolute value of the parameters I;(7;) =
|(§7+)|, indicating magnitude-based importance, or by the
Fisher information I (7;) = (Vlog L7, (67) ® MTi)2,
reflecting the parameters’ impact on output variability.

For task 7;, A(7T;) reflects the gradient similarity between
the task-specific and the average masked gradients, while
I (T;); and I (7;),; measure the j-th element’s importance.
Lower values of A(7;); or Ip;,p(T;); indicate increased
conflict or diminished importance regarding the j-th element
of the trainable parameters for the respective task. The
Harmony Score H(7;); for the j-th parameter of task 7; is
computed as a weighted balance between the Agreement
and Importance Scores, moderated by a balance factor A:

AT+ Magyp(T)j, (M7); =1,
H(mﬁ{inﬁ ’ : (MTL');:O. ®)

Parameters that have been already masked (i.e., (M7?); =
0) are assigned an infinite Harmony Score to prevent their
re-selection due to the pre-existing conflicts.

Weights Masking. Employing the Harmony Score, we
identify and mask the most conflicting and less significant
weights within the harmony subspace as follows:

M7 = M7 — ArgBtmK,,, (H(T)), ©

where o, represents the number of masks altered in the
t-th iteration, and ArgBtmK,, (-) generates zero vectors
matching the dimension of M ', marking the positions of
the top-cv; smallest values from H (7;) with 1.

Weights Recover. To maintain a fixed sparsity ratio and
recover weights that have transitioned from conflict to har-
mony, the following recovery process is applied:
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N

1
Ti _ aAqTi o=\ g
M7i=M +ArgTopKat(gz®N§1gl), (10)

where ArgTopK,, (-) generates zero vectors matching the
dimension of M '¢, setting the positions corresponding
to the top-ay largest values from (g; ® + Zfil g:) to 1.
This step ensures the reintegration of previously conflicting
weights that have harmonized after subsequent iterations.

4.2. Training and Inference

Algorithm 1 provides the meta-learning process for the task
mask set M and the update mechanism for the trainable
parameters 6 of the unified model. Given a set of source
tasks, we first initialize corresponding masks through the
ERK technique (Evci et al., 2020) with a predefined sparsity
ratio S for each task (See Appendix C for more details). In
the inner loop, we optimize the parameters of the unified
model under the guidance of the task-specific mask:

0111 = 0 — BTy VLR (OO MY o M. (1)

Then, in the outer loop, we optimize the set of task masks
through the procedure detailed in Section 4.1 to find the
harmony subspace for each separate task. Considering the
stability and efficiency of the updating, we adopt a warm-up
and cosine annealing strategy (Liu et al., 2021b) to control
the updating number «;. Given the maximum iterations F,
a; in t-th iteration is defined as:

1 t
ap = I—nmaz + i(nmzn - nmaa:)(l + cos (27(@))—'7 (]2)
where [-] represents the round-up command, and 7,,;,, and
Nmaz denote the lower and upper bounds, respectively, on
the number of parameters that undergo changes during the
mask update process.

In the inference stage, task IDs are accessible in the online
test environment, following the methodology of He et al.
(2023a). Accordingly, the task-specific mask is applied
to the parameters, and the inference process is conducted
in line with Xu et al. (2022). For unseen tasks that differ
from training tasks but share identical states and transitions,
we aggregate task-specific masks from training tasks to
formulate a generalized model. The mask for unseen tasks
is constructed as follows:

M, = 0, Z%l M; ; < thresh, 13
’ 1, >y M;; > thresh,

where M denotes the mask for the unseen task, and ‘thresh’
is a predefined threshold. This approach integrates insights
from all training tasks, enhancing the model’s adaptability
to novel scenarios.

5. Experiment

In this section, we conduct extensive experiments to an-
swer the following questions: (1) How does HarmoDT com-
pare to other offline and online baselines in the multi-task
regime? (2) Does HarmoDT mitigate the phenomenon of
conflicting gradients and identify an optimal harmony sub-
space of parameters for each task? (3) Can HarmoDT?
generalize to unseen tasks?

5.1. Environments and Baselines

Environment. Our experiments utilize the Meta-World
benchmark (Yu et al., 2020b), featuring 50 distinct manip-
ulation tasks with shared dynamics, requiring a Sawyer
robot to interact with various objects. We extend tasks to
a random-goal setting, consistent with recent studies (He
et al., 2023b; Sun et al., 2022). Performance evaluation is
based on the averaged success rate across tasks. Follow-
ing He et al. (2023a), we employ two dataset compositions:
a near-optimal dataset from SAC-Replay (Haarnoja et al.,
2018) ranging from random to expert experiences, and a
sub-optimal dataset with initial trajectories and a reduced
proportion (50%) of expert data.

For unseen tasks, HarmoDT’s performance is evaluated
on distinct objectives from datasets used in prior works
(Mitchell et al., 2021; Yu et al., 2020b; Xu et al., 2022; Hu
et al., 2023b), specifically Cheetah-dir, Cheetah-vel, and
Ant-dir, which challenge the agent to optimize direction
and speed. Details on environment specifications and hyper-
parameters are available in the Appendix A and B.

Baselines. We compare our proposed HarmoDT with the
following offline baselines. (i) MTBC: Extends Behav-
ior Cloning for multi-task learning with network scaling
and a task-ID conditioned actor; (ii) MTIQL: Adapts IQL
(Kostrikov et al., 2021) with multi-head critics and a task-
ID conditioned actor for multi-task policy learning; (iii)
MTDIFF-P (He et al., 2023a): A diffusion-based method
combining Transformer architectures and prompt learning
for generative planning in multitask offline settings; (iv)
MTDT: Extends DT (Chen et al., 2021) to multitask set-
tings, utilizing a task ID encoding and state input for task-
specific learning; (v) Prompt-DT (Xu et al., 2022): Builds
on DT, leveraging trajectory prompts and reward-to-go for
multi-task learning and generalization to unseen tasks. The
results of these offline methods are directly replicated from
He et al. (2023a), with the exception that the approaches
marked with * are implemented by us.

Besides, we compare our method with four online RL meth-
ods: (vi) CARE (Sodhani et al., 2021): Utilizes metadata

30ur code is available at:
charleshsc/HarmoDT

https://github.com/
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Figure 4. From the left to right, we illustrate the ablation results on the Meta-World benchmark with 50 tasks under the near-optimal
case. Default values are listed as 7min = 0, maz is 100 (about 1e-3% of total weights), S = 0.2, A = 10 and ¢,,, = 5e3. During each
individual ablation, a single parameter is varied, with all other parameters maintained at their default values. Detailed results pertaining to
additional settings are comprehensively documented in the Appendix E.

Table 1. Average success rate across 3 seeds on Meta-World MT50
with random goals (MT50-rand) under both near-optimal and sub-
optimal cases. Each task is evaluated for 50 episodes. Approaches
with * indicate baselines of our own implementation.

Method | Meta-World 50 Tasks

#Partition \ Near-optimal Sub-optimal Params
CARE (online) 46.1241.30 - 1.26 M
PaCo (online) 54.3141.32 - 3.39M
Soft-M (online) 53.41+0.72 - 1.62M
D2R (online) 63.53+£1.22 - 1.40 M
MTBC 60.3910.86 34.53+1.25 1.74M
MTIQL 56.21+1.39 43.281090 1.74M
MTDIFF-P 59.53+11.12 48.67+132 532M
MTDIFF-P-ONEHOT | 61.3210589 4894.095 5.32M
MTDT 20.994066 20.631221 0.87M
MTDT* 65.80+1.02 42.33+189 147TM
Prompt-DT 45.6841.84 39.76+279 0.87M
Prompt-DT* 69.33.089 48.404+0.16 147TM
HarmoDT-R (ours) 75391118 53.80+107 147TM
HarmoDT-M(ours) 80331097 57201073 147M
HarmoDT-F(ours) 82.2040.40 57204068 147TM

and a mixture of encoders for task representation; (vii)
PaCo (Sun et al., 2022): Employs a parameter composi-
tional approach for task-specific parameter recombination;
(viii) Soft-M (Yang et al., 2020): Focuses on a routing net-
work for the soft combination of modules; (ix) D2R (He
et al., 2023b): Adopts disparate routing paths for module
selection per task. The results of these methods are directly
extracted from He et al. (2023b). Detailed descriptions of
these baselines are summarized in the Appendix D.

5.2. Main Results

In this study, we benchmark HarmoDT and its variants
against established baselines on 50 Meta-World tasks. The
variants considered in this evaluation include HarmoDT-R,
which maintains frozen task masks throughout the train-
ing process; HarmoDT-F, which utilizes fisher information
Ir(T;) for calculating weight importance; and HarmoDT-
M, which employs magnitude information I;(7;) for deter-
mining weight importance. Note that the primary distinction
between HarmoDT-F and HarmoDT-M resides in their re-

spective approaches to weight masking (Equation 9).

As shown in Table 1, HarmoDT-R, following Prompt-DT’s
structure, surpasses all other methods, achieving a 6.1% and
4.9% improvement in near-optimal and sub-optimal scenar-
ios, respectively, compared to the best baseline. By employ-
ing fixed random masks, HarmoDT-R effectively competes
with the current state-of-the-art techniques. Furthermore,
the variants, HarmoDT-M and HarmoDT-F, enhance the per-
formance of HarmoDT-R by identifying optimal harmony
subspaces through task mask learning, resulting in substan-
tial gains of 6.8% and 3.4% in near-optimal and sub-optimal
cases, respectively. Our novel technique, HarmoDT, show-
cases its effectiveness in multi-task settings, encompassing
both sub-optimal datasets that require the stitching of use-
ful segments from suboptimal trajectories and near-optimal
datasets where the emulation of optimal behaviors is crucial.

5.3. Further Analysis

This section delves into the scalability of task scale, model
size, and hyper-parameters. It also examines the visualiza-
tion of task masks for the harmony subspace and evaluates
the performance on unseen tasks.

Scalability of Task Scale. We evaluated HarmoDT'’s scala-
bility across varying task numbers in the Meta-World bench-
mark. As shown in Table 2 and Figure 1, HarmoDT consis-
tently outperforms MTDIFF, MTDT, and Prompt-DT across
all task numbers and cases, demonstrating promising superi-
ority with increasing task count: 11% for 5 tasks, 11% for
30 tasks, and 8% for 50 tasks in sub-optimal settings.

Impact of Model Size. The influence of model size is
pronounced in multi-task training scenarios. Table 3 delin-
eates our ablation study on model size across 1e6 iterations.
Models are characterized by their parameters (z M), lay-
ers (x), and head attentions (y), represented as (X, y, z).
Results reveal that increasing model size markedly boosts
performance for all evaluated methods. Significantly, our ap-
proach, HarmoDT, demonstrates consistent superiority over
MTDT and Prompt-DT across a range of model sizes. This
success is attributed to HarmoDT’s effective establishment
of a harmony subspace for each task.
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Table 2. We randomly select 5, 30, 50 tasks from the Meta-World benchmark under both near-optimal and sub-optimal cases and record
the average success rate across 3 seeds. Each task is evaluated for 50 episodes.

Method | Meta-World 5 Tasks | Meta-World 30 Tasks | Meta-World 50 Tasks

#Partition | Near-optimal ~ Sub-optimal | Near-optimal ~ Sub-optimal | Near-optimal — Sub-optimal
MTDIFF 100.0 0.0 66.30£2.31 | 67.52+0.35 54.21+1.10 | 61.32+0.89 48.94 +0.95
MTDT 100.0 0.0 64.67£5.25 | 71.89 £0.95 49.33+2.05 | 65.80 +1.02 42.33 +1.89
Prompt-DT 100.0 £ 0.0 66.50 £2.74 | 7410+ 0.69 53.78 +0.63 | 69.33 +0.89 48.40 +0.16
HarmoDT-R 100.0 0.0 66.14 +£3.00 | 82.65+2.11 61.22+2.16 | 75.39+1.18 53.80 £ 1.07
HarmoDT-M | 100.0 £ 0.0 74.00+4.79 | 84.67+0.84 63.67£0.73 | 80.33 £0.97 57.204+0.73
HarmoDT-F 100.0 0.0 77.67 £3.25 | 88.00 £0.96 65.00+-0.92 | 82.20 +0.40 57.20 £0.68

Table 3. Ablation study on the model size of MTDT, Prompt-DT,
and our HarmoDT-F under near-optimal of Meta-World 30 tasks
and 50 tasks. We denote the model with z M parameters and x
layers of y head attentions as (X, y, z) in the table.

Case | Model | MTDT Prompt-DT HarmoDT-F
(1,2,048) | 35.78 100 4210131  59.33115
30 tasks (3,4,087) | 64.0141.4  69.5611.0 77.67+1.6
(6,8,147) | 71.8911.0 7410107  88.00+1.0
9.16,2.06) | 74.33 101 77.6Ts17 88.0041 ¢
(1,2,048) | 3193434 36.07125  58.2041.9
50 tasks | -4 0-87) [ 5813456 61.93504 7280116
(6,8,1.47) | 65.80£1.0 69.3310.9  82.2040.4
9, 16,2.06) | 68.33111 71.00200 83.3340.0

Table 4. Generalization ability to unseen tasks. Here we conduct
experiments and record the cumulative reward of unseen tasks
on three distinct datasets: Cheetah-dir, Cheetah-vel, and Ant-dir,
which challenge the agent to optimize direction and speed.

Setting ‘ MTDT Prompt-DT  HarmoDT-F
Cheetah-dir 662.404+1 .3 935.342.6 958.541 5
Cheetah-vel —170.11457 —127.74+99  -66.5111 >
Ant-dir 165.2940.4 278.7+38.7 298.3110
Average | 2192 362.1 396.89 6%+

Ablation on Hyper-parameters. This study introduces
hyper-parameters 1,4, for cosine annealing (with 7,,,;, =
0), mask alteration frequency t,,, overall sparsity S, and bal-
ance controller \. Comprehensive ablations are conducted
to establish an empirical strategy for selecting these param-
eters. Figure 4 delineates the ablation study on 50 tasks of
Meta-World benchmark in the near-optimal settings. Abla-
tion results on other settings can be found in the Appendix E.
Across a broad spectrum of hyper-parameter values, our ap-
proach consistently outperforms baselines. Based on these
insights, recommended settings for hyper-parameters are
sparsity ratio S = 0.2, 1,4, at approximately 0.001% of
total weights, balance factor A = 10 and mask changing
interval ¢,,, = 5000 rounds. These parameters collectively
contribute to the superior performance of our method.

(-
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Figure 5. The t-SNE visualization of optimal subspace via masks
learned by our HarmoDT on the 30 tasks of Meta-World bench-
mark. The figure illustrates the relational dynamics of task-specific
masks, with a focus on 10 representative tasks from the total set.

Visualization of Mask. As shown in Figure 5, we use t-
SNE (Van der Maaten & Hinton, 2008) to visualize the task
masks post-training on 30 tasks from the Meta-World bench-
mark. Note that even small distances in the visualization
can represent significant divergences in the original high-
dimensional parameter space. The visualization effectively
showcases the relational dynamics of the task masks; closely
related tasks such as ‘push-back-v2’ and ‘push-v2’ are posi-
tioned in proximity, while disparate tasks like ‘push-v2’ and
‘pick-place-wall-v2’ are distinctly separated. This spatial
arrangement underscores the efficacy of our HarmoDT in
delineating a harmony subspace tailored for each task.

Ability to unseen tasks. Prompt-DT’s proficiency with
unseen tasks prompted us to assess HarmoDT’s capabili-
ties in similar scenarios. We employ a voting mechanism
among all observed tasks to define a generalized subspace
for unseen tasks, as delineated in Equation 13. This tech-
nique operates on a foundational assumption: parameters
that are consistently identified as significant and harmonious
across a range of tasks (surpassing a predefined threshold)
are posited to hold universal value, potentially contributing
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positively to task performance in novel scenarios. Compara-
tive analysis involving HarmoDT, MTDT, and Prompt-DT is
conducted on three distinct datasets: Cheetah-dir, Cheetah-
vel, and Ant-dir. The results, presented in Table 4, affirm
HarmoDT’s comprehensive enhancements across all test
cases. Notably, HarmoDT demonstrates an average reward
of 396.8, surpassing Prompt-DT’s 362.1 with a substantial
9.6% improvement. This outcome underscores the efficacy
of our voting approach in addressing unseen tasks.

6. Conclusion

In this study, we introduce the Harmony Multi-Task Deci-
sion Transformer (HarmoDT), a novel approach designed
to discern an optimal parameter subspace for each task,
leveraging parameter sharing to harness task similarities
while concurrently addressing the adverse impacts of con-
flicting gradients. By employing a bi-level optimization
and a meta-learning framework, HarmoDT not only excels
as a comprehensive policy in multi-task environments but
also exhibits robust generalization capabilities to unseen
tasks. Our rigorous empirical evaluations across a diverse
array of benchmarks underscore HarmoDT’s superior per-
formance compared to existing baselines, establishing its
state-of-the-art effectiveness in MTRL scenarios.

Limitation. We present an innovative approach to policy
learning in multi-task offline RL, achieving state-of-the-art
performance across various tasks. However, the efficacy of
our approach depends on the model’s capacity, as it employs
a sparsification strategy for each task’s parameter space.
Moreover, tasks of differing complexity inherently require
varying numbers of parameters for optimal performance.
Our method, however, uses the same number of task-specific
parameters across different tasks. Complex tasks could ben-
efit from a denser parameter allocation, while simpler tasks
might achieve peak efficiency with a sparser configuration.
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A. Detailed Environment
A.1. Meta-World

The Meta-World benchmark, introduced by Yu et al. (2020b), encompasses a diverse array of 50 distinct manipulation tasks,
unified by shared dynamics. These tasks involve a Sawyer robot engaging with a variety of objects, each distinguished
by unique shapes, joints, and connective properties. The complexity of this benchmark lies in the heterogeneity of the
state spaces and reward functions across tasks, as the robot is required to manipulate different objects towards varying
objectives. The robot operates with a 4-dimensional fine-grained action input at each timestep, which controls the 3D
positional movements of its end effector and modulates the gripper’s openness. In its original configuration, the Meta-World
environment is set with fixed goals, a format that somewhat limits the scope and realism of robotic learning applications. To
address this and align with recent advancements in the field, as noted in works by Sun et al. (2022); Yang et al. (2020), we
have modified all tasks to incorporate a random-goal setting, henceforth referred to as MT50-rand. The primary metric
for evaluating performance in this enhanced setup is the average success rate across all tasks, providing a comprehensive
measure of the robotic system’s adaptability and proficiency in varied task environments.

For the creation of the offline dataset, we follow the work by He et al. (2023a) and employ the Soft Actor-Critic (SAC)
algorithm (Haarnoja et al., 2018) to train distinct policies for each task until they reach a state of convergence. Subsequently,
we compile a dataset comprising 1 million transitions per task, extracted from the SAC replay buffer. These transitions
represent samples observed throughout the training period, up until the point where each policy’s performance stabilized.
Within this benchmark, we have curated two distinct dataset compositions:

» Near-optimal dataset consisting of the experience (100M transitions) from random to expert (convergence) in SAC-Replay.

* Sub-optimal dataset consisting of the initial 50% of the trajectories (SOM transitions) of the near-optimal dataset for each
task, where the proportion of expert data decreases a lot.

A.2. Unseen Tasks

In our evaluation, we apply our approach to a diverse array of meta-RL control tasks, each offering distinct challenges to
assess the performance and generalization capabilities of our model. The tasks are detailed as follows:

* Cheetah-dir: This task involves two distinct directions: forward and backward. The objective is for the cheetah agent to
achieve high velocity in the assigned direction. The evaluation encompasses both training and testing sets, covering these
two directions comprehensively to gauge the agent’s performance effectively.

* Cheetah-vel: Here, the task defines 40 unique sub-tasks, each associated with a specific goal velocity, uniformly distributed
between 0 and 3 m/s. The agent’s performance is assessed based on the [5 error relative to the target velocity, with a
penalty for deviations. For testing, 5 of these tasks are selected, while the remaining 35 are used for training purposes.

* Ant-dir: This task comprises 50 different sub-tasks, each with a goal direction uniformly sampled in a two-dimensional
plane. The agent, an 8-jointed ant, is incentivized to attain high velocity in the designated direction. Of these, 5 tasks are
earmarked for testing, with the rest allocated for training.

By evaluating our approach on these diverse tasks, we can assess its performance and generalization capabilities across
different control scenarios. The generalization ability of our approach is rigorously tested by examining the distribution of
tasks between the training and testing sets, as outlined in Table 5. This experimental setup, as described in Section 5, adheres
to the divisions specified, ensuring consistency in our evaluation and facilitating a thorough assessment of our approach’s
adaptability and effectiveness across varied control tasks.

B. Hyper-parameters and Resources

This section elaborates on the specifics of the training regimen implemented in our study. During the training phase, tasks
are randomly selected for model refinement. The configuration for each training iteration is meticulously set, with a batch
size of 8 and the utilization of the Adam optimizer, operating at a learning rate of 1e-4. The total number of training steps is
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established at 10 million. We build our policy as a Transformer-based model, which is based on minGPT open-source code
4. The specific model parameters and hyper-parameters utilized in our training process are outlined in Table 6.

Table 5. Training and testing task indexes when testing the generalization ability in meta-RL tasks

Cheetah-dir

Training set of size 2 [0,1]
Testing set of size 2 [0.1]

Cheetah-vel

Training set of size 35  [0-1,3-6,8-14,16-22,24-25,27-39]
Testing set of size 5 [2,7,15,23,26]

Ant-dir

Training set of size 45  [0-5,7-16,18-22,24-29,31-40,42-49]
Testing set of size 5 [6,17,23,30,41]

Table 6. Hyper-parameters of HarmoDT in our experiments.

Parameter Value
Number of layers 6
Number of attention heads 8
Embedding dimension 256
Nonlinearity function ReLU
Batch size 8
Context length K 20
Dropout 0.1
Learning rate 1.0e-4
Total rounds le6
Sparsity S 0.2

minimum of mask changing 7,,,;, 0

maximum of mask changing 7,4, 100

balance factor A 10
mask changing interval ¢, 5000
threshold in Equation 13 25

Training Resources. We use NVIDIA GeForce RTX 3090 to train each model. The training duration for each model
is typically observed to be 36 hours in the 50 tasks setting, while it takes approximately 24 hours in the 30 tasks setting.
However, since each environment needs to be trained three times with different seeds, the total training time is usually
multiplied by three.

C. ERK initialization

This section elucidates the utilization of the Erdés-Rényi Kernel (ERK), as proposed by Evci et al. (2020), for initializing
the sparsity in each layer of the model. ERK tailors sparsity distinctively for different layers. In convolutional layers, the
proportion of active parameters is determined by %, where n;_1, n;, w;, and h; represent the number of input
channels, output channels, and the kernel’s width and height in the [-th layer, respectively. For linear layers, the active
parameter ratio is set to %, with n;_; and n; indicating the number of neurons in the (! — 1)-th and {-th layers. ERK

41'1ttps ://github.com/karpathy/minGPT
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ensures that layers with fewer parameters maintain a higher proportion of active parameters.

D. Baselines

We compare our proposed HarmoDT with the following baselines.

i. MTBC. We extend Behavior cloning (BC) to multi-task offline policy learning via network scaling and a task-ID
conditioned actor that is similar to MTIQL.

ii. MTIQL. We extend IQL (Kostrikov et al., 2021) with multi-head critic networks and a task-ID conditioned actor for
multi-task policy learning. The TD-based baselines are used to demonstrate the effectiveness of conditional generative
modeling for multi-task planning.

iti. MTDIFF-P (He et al., 2023a). MTDIFF-P is a diffusion-based method that incorporates Transformer backbones and
prompt learning for generative planning and data synthesis in multitask offline settings.

iv. MTDT. We extend the DT architecture (Chen et al., 2021) to learn from multitask data. Specifically, MTDT
concatenates an embedding z and a state s as the input tokens, where z is the encoding of task ID. In evaluation, the
reward-to-go and task ID are fed into the Transformer to provide task-specific information.

v. Prompt-DT (Xu et al., 2022). Prompt-DT built on DT aims to learn from multi-task data and generalize the policy to
unseen tasks. Prompt-DT generates actions based on the trajectory prompts and reward-to-go.

In addition to offline methods, our analysis also encompasses a comparison with several online methodologies to provide a
comprehensive evaluation of our approach. These include:

vi. CARE (Sodhani et al., 2021). This method utilizes additional metadata alongside a combination of multiple encoders
to enhance task representation, offering a nuanced approach to multi-task learning.

vii. PaCO (Sun et al., 2022). PaCO introduces a parameter compositional strategy, ingeniously recombining task-specific
parameters to foster a more flexible and adaptive learning process.

viii. Soft-M (Yang et al., 2020).This approach is centered around the development of a routing network, which adeptly
orchestrates the soft combination of various modules, thereby facilitating more dynamic learning pathways.

ix. D2R (He et al., 2023b). D2R innovatively employs disparate routing paths, enabling the selection of varying numbers
of modules tailored to the specific requirements of each task, thereby enhancing the model’s adaptability and efficiency.

E. More Ablations

This section comprehensively details the ablation study conducted on key hyper-parameters within our experimental
framework. These hyper-parameters include 7),,,4, Which is integral to the cosine annealing process (with a fixed 7, = 0),
the mask alteration frequency denoted as ¢,,, the overall sparsity parameter S, and the balance controller A. Figure 6 presents
an in-depth analysis of these hyper-parameters’ impact on the performance of our model across 30 and 50 tasks within
the Meta-world benchmark. This evaluation spans both near-optimal and sub-optimal settings, providing a comprehensive
understanding of the hyper-parameters’ influence under varied conditions. Remarkably, our approach consistently surpasses
baseline models across a diverse range of hyper-parameter values. From this extensive analysis, we derive optimal settings
for these parameters: a sparsity ratio S set to 0.2, an 7,4, = 100 value approximating 0.001% of the total weight count, a
balance factor A fixed at 10, and a mask changing interval ¢,,, established at 5000 rounds. These recommended configurations
are grounded in empirical evidence and are instrumental in achieving enhanced performance in multi-task learning scenarios.

F. Related Work

F.1. Offline Reinforcement Learning

Offline RL algorithms learn a policy entirely from this static offline dataset D, without online interactions with environment
(Levine et al., 2020). This paradigm can be precious in case the interaction with the environment is expensive or high-risk
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Figure 6. This figure presents an ablation study on critical hyper-parameters: sparsity ratio (S), maximum mask change (7)maq<), and
balance ratio (). Displayed from left to right are the results for 30 tasks (near-optimal and sub-optimal) and 50 tasks (near-optimal and
sub-optimal). Default settings are 7maz = 100, S = 0.2, and A = 10. Each ablation varies one parameter while others remain default.

(e.g., safety-critical applications). However as the learned policy might differ from the behavior policy, the offline algorithms
must mitigate the effect of the distribution shift, which can result in a significant performance drop, as demonstrated in prior
research (Fujimoto et al., 2019). Several previous works have utilized constrained or regularized dynamic programming to
mitigate deviations from the behavior policy (Fujimoto & Gu, 2021; Kumar et al., 2020; Kostrikov et al., 2021).

Conditional sequence modeling approaches have been a promising direction for solving offline RL, which predicts subsequent
actions from a sequence of past experiences, encompassing state-action-reward triplets. This paradigm lends itself to a
supervised learning approach, inherently constraining the learned policy within the boundaries of the behavior policy and
focusing on a policy conditioned on specific metrics for future trajectories (Chen et al., 2021; Hu et al., 2023a; 2024a;
Yamagata et al., 2023; Hu et al., 2023b; 2024b; Meng et al., 2023).

Recently, there has been a growing interest in incorporating diffusion models into offline RL methods. This alternative
approach to decision-making stems from the success of generative modeling, which offers the potential to address offline RL
problems more effectively. Diffuser and its variants (Janner et al., 2022; Ajay et al., 2022; Chen et al., 2022; Wang et al.,
2022) utilize diffusion-based generative models to represent policies or model dynamics, achieving competitive or superior
performance across various tasks.

F.2. Multi-Task Reinforcement Learning

Multi-task RL aims to learn a shared policy for a diverse set of tasks, and there are many different approaches have been
proposed in the literature (Xu et al., 2020; Yang et al., 2020; Sarafian et al., 2021; Sodhani et al., 2021; Zhou et al., 2024).
One of the most straightforward approaches to MTRL is to formulate the multi-task model as a task-conditional one (Yu
et al., 2020b), as commonly used in goal-conditional RL (Plappert et al., 2018). Conditional sequence modeling approaches,
which consider handling multi-task problems, mainly rely on expert trajectories and entail substantial training expenses (Xu
et al., 2022; Hu et al., 2023b; Lee et al., 2022). Diffusion model is also verified to have the potential to address the challenge
of multi-task generalization in RL. MTDIFF (He et al., 2023a) extends the conditional diffusion model to be capable of
solving multi-task decision-making problems and synthesizing useful data for downstream tasks.

Although these methods are simple and have shown some success in certain cases, one inherent limitation is the conflicting
gradients among different data sources, phenomenon known as gradient conflicts and negative transfer in many fields, such
as federated learning (Fan et al., 2022; 2024b; 2023; 2024a), domain generalization (Zhang et al., 2023a;b; Xu et al., 2023),
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and multi-task learning (Yu et al., 2020a; Chen et al., 2020; Liu et al., 2021a). To mitigate conflicting gradient impacts in a
multi-task context, several methodologies have been developed: PCGrad (Yu et al., 2020a) projects each task’s gradient onto
the orthogonal plane of another’s, subsequently updating parameters using the mean of these projected gradients. Graddrop
(Chen et al., 2020) employs a stochastic approach, randomly omitting certain gradient elements based on their conflict
intensity. CAGrad (Liu et al., 2021a) manipulates gradients to converge towards a minimum average loss across tasks. In
contrast, our method, HarmoDT, leverages gradient information in a fundamentally different manner. Instead of adjusting
gradients post hoc as in these methods, we proactively utilize gradient data to inform the selective activation of parameters
for each task through a masking mechanism. This direct intervention at the parameter level allows the model to update
without the typical interferences found in gradient-level adjustments, fostering a more streamlined and potentially more
efficacious optimization process.

On the other hand, D’Eramo et al. (2020) leverages the shared knowledge between multiple tasks by using a shared network
followed by multiple task-specific heads. Yang et al. (2020) further extends this approach by softly sharing features
(activations) from a base network among tasks, by generating the combination weight with an additional modularization
network taking both state and task-id as input. Since the base and modularization networks take state and task information
as input, there is no clear separation between task-agnostic and task-specific parts. PaCo (Sun et al., 2022) explores a
compositional structure in the parameter space and distinguishes the task-agnostic and task-specific parts with different
parameters, however, it still suffers the conflicting gradients within the shared parameters. Our method uses task-specific
masks to find out the task-agnostic and task-specific parameters and dynamically update them to mitigate the conflicting
gradients phenomenon, achieving state-of-the-art performance across various benchmarks.
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