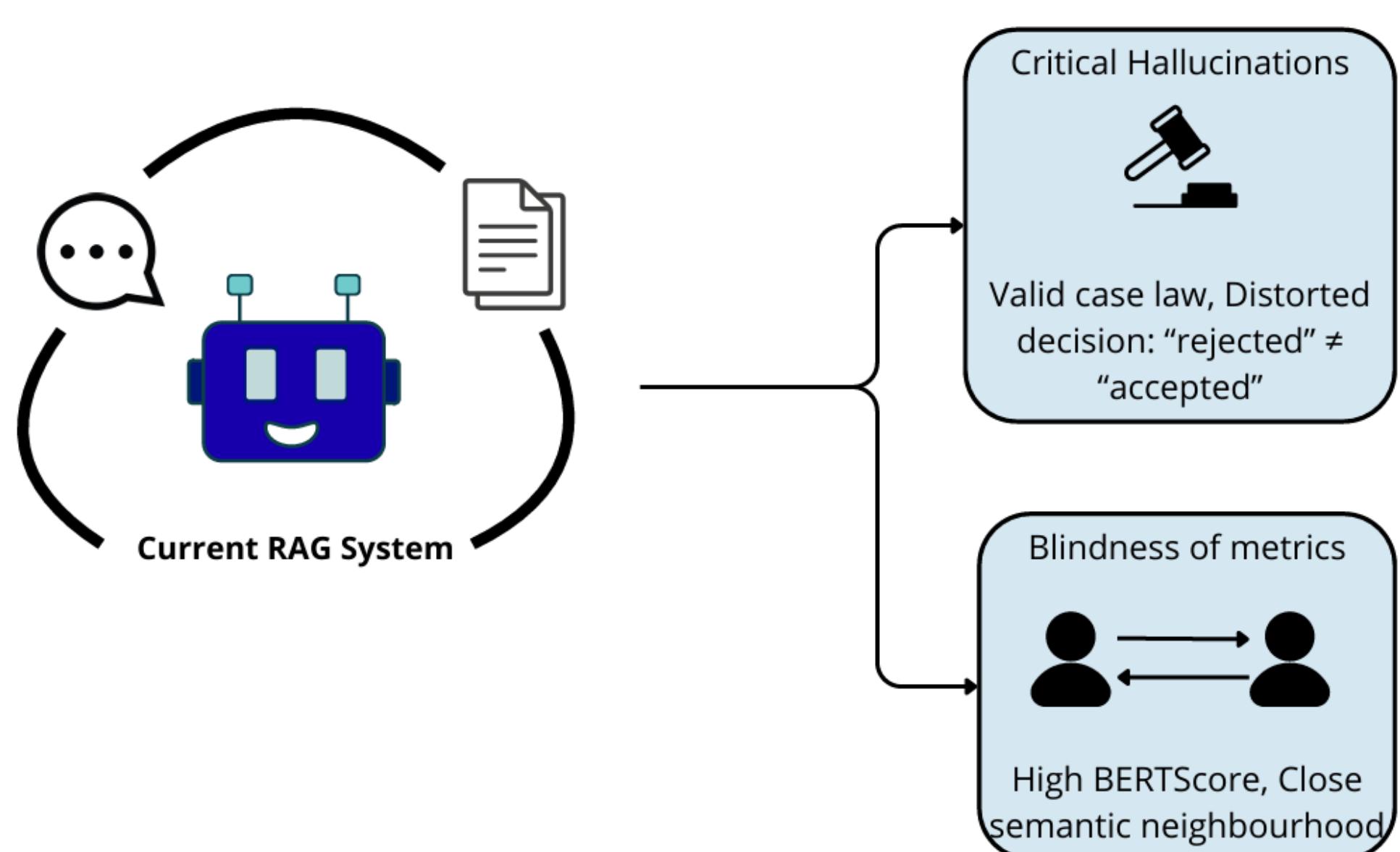


1. The Problem: Why Semantic Similarity Fails in Law?

In high-stakes domains like justice, precision is non-negotiable. Current RAG (Retrieval-Augmented Generation) systems suffer from two major flaws:

► **Critical Hallucinations:** A model can cite valid case law but misrepresent its holding ("rejected" instead of "accepted").

► **Blindness of Current Metrics:** Standard metrics (BERTScore [1]) tolerate entity substitutions (swapping "Plaintiff" and "Defendant") because semantic neighborhoods remain close.



The Challenge: To ensure Trustworthy AI, we must move from semantic similarity to **structural verification**.

3. Auditability Metrics

HalluGraph decomposes fidelity into two interpretable, bounded metrics $[0, 1]$:

► **Entity Grounding (EG):** Verifies whether entities mentioned in the response (persons, dates, laws) exist in source documents.

$$EG(G_a \| G_c, G_q) = \frac{|\{v \in V_a : \exists w \in V_c \cup V_q, \text{match}(v, w)\}|}{|V_a|}$$

Captures entity substitution hallucinations.

► **Relation Preservation (RP):** Verifies whether asserted relationships (e.g., "X is liable for Y") are supported by context.

$$RP = \frac{1}{|E_a|} \sum_{e \in E_a} 1 [\exists e' \in E_{\text{ref}} : \text{align}(e, e')]$$

Captures structural and logical hallucinations.

Full Audit Trail: Unlike black-box scores, every flagged error provides concrete evidence:

This ensures **accountability** and **professional responsibility** in legal AI [5].

5. Operating Regime & Transparency

Why Does It Work in Law?

Analysis shows HalluGraph excels on long, dense texts (> 400 words, > 20 entities), typical of contracts and court opinions. The structural complexity of law becomes an asset for graph-based verification.

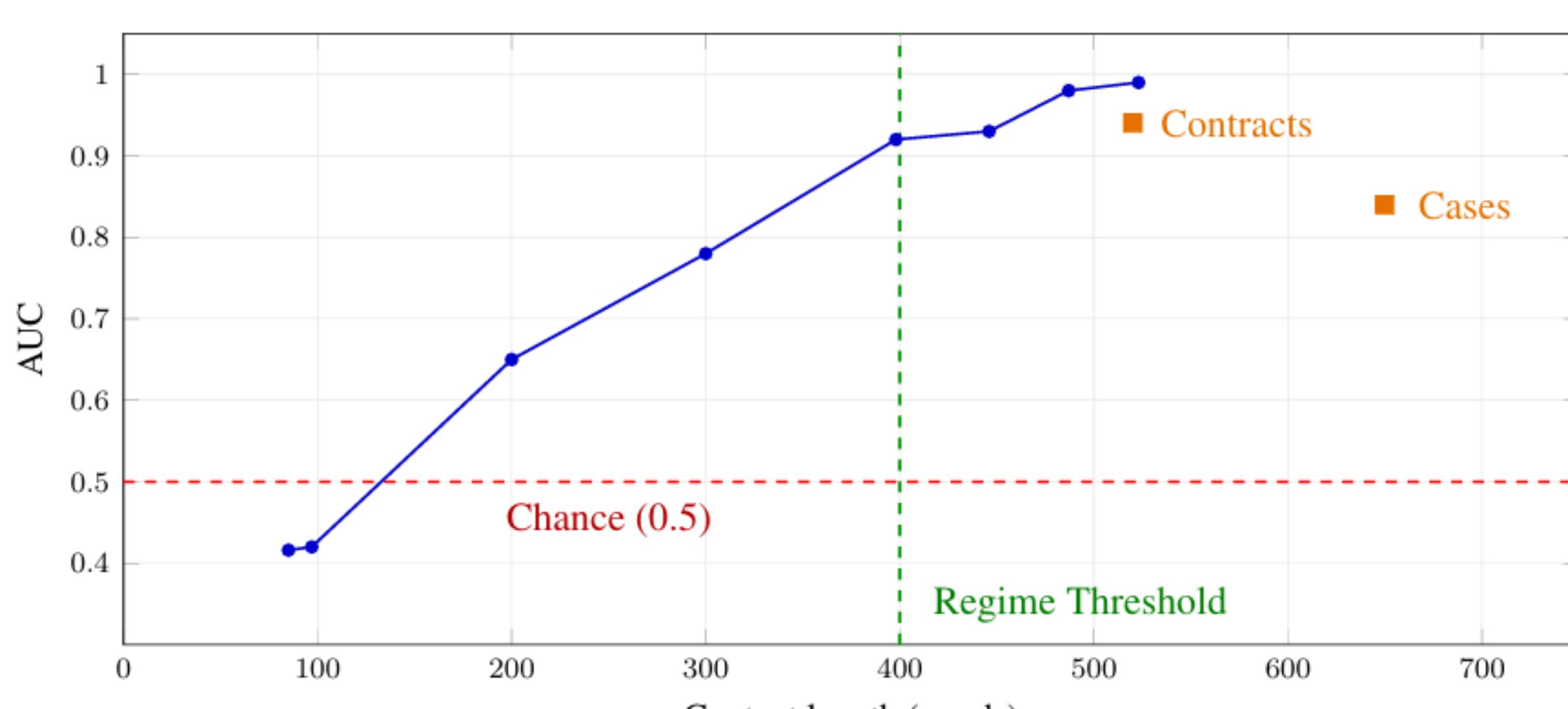


Figure 1. Performance vs. context length. Legal documents fall in the high-performance regime (AUC ≈ 0.89).

2. The Solution: HalluGraph

We introduce **HalluGraph**, a graph-theoretic framework that quantifies hallucinations via structural alignment between knowledge graphs (KG) extracted from context, query, and response [2].

Methodology:

1. **Triple Extraction:** Use a Small Language Model (SLM) to extract entities and relations (s, r, o) from source document (G_c) and generated response (G_a) [3].

2. **Graph Alignment:** Compare graphs to detect structural inconsistencies [4].

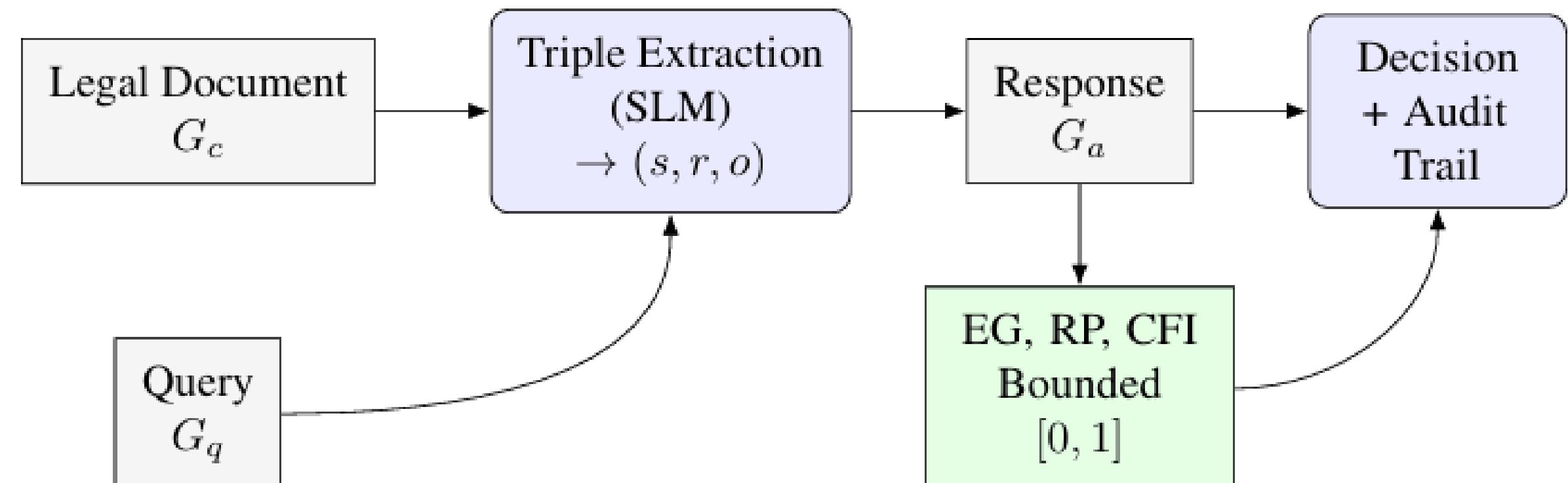


Figure 2. HalluGraph pipeline: Knowledge graphs extracted from legal documents enable structural verification.

4. Experimental Results: Superior Discrimination

On complex generative legal tasks (Contracts and Case Law), HalluGraph massively outperforms embedding-based methods.

Table 1. Detection Performance (AUC) on Legal RAG Tasks

Dataset	HalluGraph	BERTScore	Gain
Legal Contract QA	0.94	0.60	+0.34
Legal Case QA	0.84	0.54	+0.30
Coral Biology (Control)	1.00	0.59	+0.41
Economics (Control)	0.99	0.55	+0.44
Average (Legal)	0.89	0.57	+0.32

Key Finding: While BERTScore hovers around chance (≈ 0.57) on legal tasks, HalluGraph effectively detects subtle but fatal errors.

6. Conclusion: A Bridge to Reliable Legal AI

HalluGraph demonstrates that **structural verification** is critical for deploying AI in legal sectors. By grounding assertions in source text, we provide accountability guarantees for regulatory compliance.

Key Contributions:

- **Bounded metrics** (EG, RP) decomposing fidelity into auditable components.
- **Superior performance** on legal RAG tasks (AUC +0.32 vs. baselines).
- **Full audit trails** enabling professional accountability.

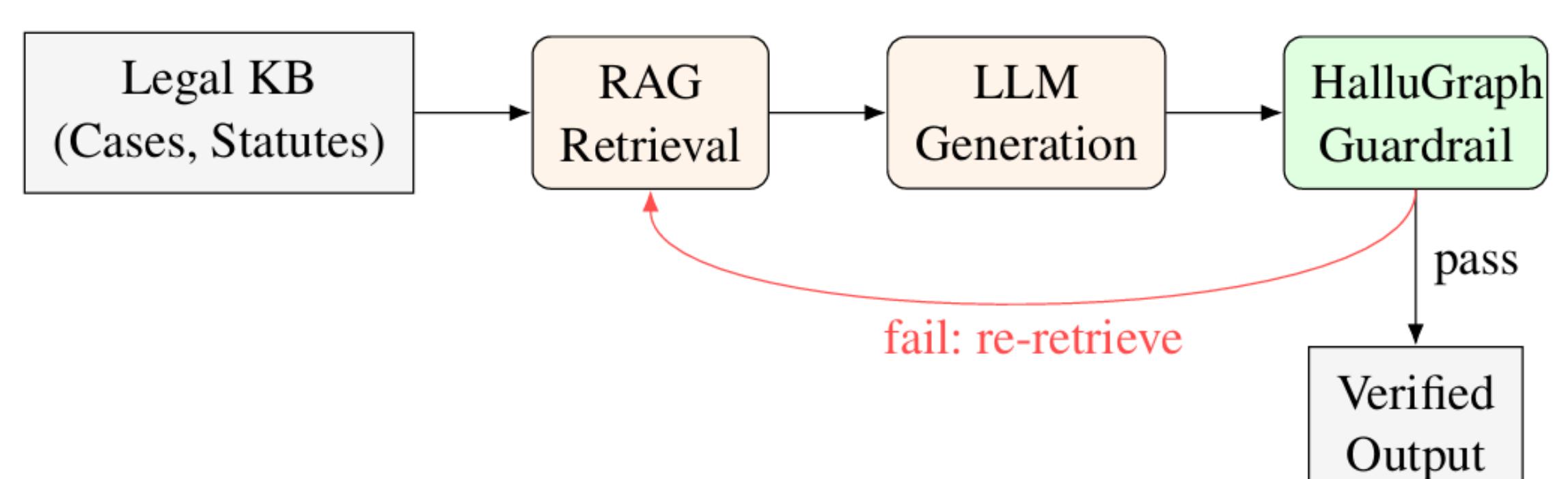


Figure 3. HalluGraph acts as a post-generation guardrail.

References

- [1] Zhang, T. et al. (2020). BERTScore: Evaluating text generation. *ICLR*.
- [2] Lewis, P. et al. (2020). Retrieval-augmented generation. *NeurIPS*.
- [3] Huguet Cabot, P.-L. & Navigli, R. (2021). REBEL: Relation extraction. *EMNLP*.
- [4] Koutra, D. et al. (2013). Big-Align: Fast bipartite graph alignment. *IEEE ICDM*.
- [5] Dahl, M. et al. (2024). LegalBench: Measuring legal reasoning in LLMs. *NeurIPS*.