
Appendix

A Additional Notation, Preliminaries and General Tools

In this section, we provide some notation that will be useful in the proofs. Moreover, we report a
collection of existing results that we will apply in our proofs.

A.1 Additional Notation

Standard Notation. We denote with N the set of natural numbers {1, 2, 3, . . . } and N0 = {0}∪N.
We denote with Z the set of integer numbers {. . . ,−2,−1, 0, 1, 2, . . . } and with R the set of real
numbers. We denote vectors using bold letters e.g., 𝑎,𝑇 . We let ‖ · ‖𝑝 denote the 𝐿𝑝 norm with
𝑝 ∈ {1, 2,∞}. In general, we let ‖ · ‖ = ‖ · ‖2 be the standard Euclidean norm. The inner product
between two vectors 𝑎, 𝑏 is denoted by 𝑎 · 𝑏. We use Γ for the Gamma function and 𝜁 for the
Riemann zeta function. For any 𝑟 > 0, 𝑘 ∈ N, 𝑎 ∈ R𝑘, we denote with B𝑟(𝑎) (resp. B𝑟[𝑎]) the
open (resp. closed) ball centered at 𝑎 with radius 𝑟.

Probability. For a random variable 𝑋 , we may denote its distribution by ℒ(𝑋). We denote by
Pr,E,Var,Cov the probability, the expectation, the variance and the covariance operators. We
denote Be,Bin,NBin,Geo, 𝒯 𝒢,𝒵,Poi,Uni; the Bernoulli, Binomial, Negative Binomial, Geo-
metric, Truncated Geometric, discretized Gaussian, Poisson and Uniform probability distribution
respectively.

Notions of Distance for Distributions. Let 𝑃,𝑄 be two probability measures in the discrete prob-
ability space (Ω,ℱ). The total variation distance or statistical distance between 𝑃 and 𝑄, denoted
𝑑𝑇𝑉 (𝑃,𝑄), is defined as 𝑑𝑇𝑉 (𝑃,𝑄) = 1
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∑︀
𝑥∈Ω |𝑃 (𝑥) − 𝑄(𝑥)| = max𝐴∈ℱ |𝑃 (𝐴) − 𝑄(𝐴)|.

The Kullback–Leibler divergence (or simply, KL divergence), denoted 𝐷𝐾𝐿(𝑃 ‖ 𝑄), is defined
as 𝐷𝐾𝐿(𝑃 ‖ 𝑄) = E𝑥∼𝑃

[︁
log
(︁

𝑃 (𝑥)
𝑄(𝑥)

)︁]︁
=
∑︀

𝑥∈Ω 𝑃 (𝑥) log
(︁

𝑃 (𝑥)
𝑄(𝑥)

)︁
.

Exponential Families For 𝑘 ∈ N0, 𝒜 ⊆ R𝑘 and 𝑇 : Z → R𝑘, we denote with ℰ𝑇 (𝒜) the
exponential family with sufficient statistics 𝑇 and parameter space 𝒜. In particular, if 𝑊 ∼ ℰ𝑇 (𝑎)
for some 𝑎 ∈ 𝒜, then for any 𝑥 ∈ Z

Pr[𝑊 = 𝑥] ∝ exp(−𝑎 · 𝑇 (𝑥)) .

We will use the notation Pr𝑎[𝑊 = 𝑥] (similarly E𝑎[𝑊 ] and Var𝑎(𝑊 ) for expectation and variance
correspondingly) to refer to the probability that 𝑊 = 𝑥 given that 𝑊 ∼ ℰ𝑇 (𝑎), whenever it is clear
by the context that the distribution of 𝑊 belongs in ℰ𝑇 (𝒜). Note that we will use the following
notation E𝑊 [|𝑊 |0] = E𝑊 [1{𝑊 ̸= 0}] = Pr𝑊 [𝑊 ̸= 0], i.e., we interpret 00 as 0. Note that in the
general case, an exponential family ℰ supported on Z is defined in terms of some additional function
ℎ : Z → (0,+∞) so that if 𝑊 ∼ ℰ , then Pr[𝑊 = 𝑥] ∝ ℎ(𝑥) · exp(−𝑎 · 𝑇 (𝑥)). In this case,
we use the notation 𝑊 ∼ ℰ𝑇 ,ℎ(𝑎). However, we can reduce this setting to ℎ ≡ 1 by considering
𝒜′ = 𝒜 × {1} and 𝑇 ′ = (𝑇 ,− log𝑒(ℎ(𝑥))). We also define the logarithmic partition function
Λ𝑇 ,ℎ : R𝑘 → R+ as Λ𝑇 ,ℎ(𝑎) = log

(︁∑︀∞
𝑥=0 ℎ(𝑥) exp(−𝑎 · 𝑇 (𝑥))

)︁
.

Modes of Distributions. For any distribution 𝒟 over the lattice of integers Z, we consider the set
of modes of 𝒟 to beℳ = arg max𝑥∈Z𝒟(𝑥) (where 𝒟(𝑥) = Pr𝑊∼𝒟[𝑊 = 𝑥]). We say that 𝒟 is
unimodal if there exists some (mode) 𝑀 in Z such that if 𝑊 ∼ 𝒟, then

Pr[𝑊 = 𝑥] ≥ Pr[𝑊 = 𝑥 + 1] , for any 𝑥 ≥𝑀 and
Pr[𝑊 = 𝑥] ≤ Pr[𝑊 = 𝑥 + 1] , for any 𝑥 < 𝑀 .

Note that it might be the case that Pr[𝑊 = 𝑥] = Pr[𝑊 = 𝑥+1], and therefore𝒟 could have many
neighboring modes (although we call it unimodal).

For 𝑎 ∈ 𝒜, consider the distribution ℰ𝑇 (𝑎) which lies in the exponential family ℰ𝑇 (𝒜). We denote
withℳℰ𝑇 (𝑎) or simplyℳ𝑎 (whenever 𝑇 is clear by the context) the set of modes of ℰ𝑇 (𝑎). We also
use the notation 𝑀𝑎 to refer to any specific mode of ℰ𝑇 (𝑎), like in Pr𝑎[𝑊 = 𝑀𝑎] (the referenced
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point could equivalently be any mode of ℰ𝑇 (𝑎) since all modes are assigned the same probability
mass).

We say that the exponential family ℰ𝑇 (𝒜) is unimodal if ℰ𝑇 (𝑎) is unimodal for each 𝑎 ∈ 𝒜.
We denote with ℳ𝒜 the union of the sets of modes of the distributions in ℰ𝑇 (𝒜), i.e., ℳ𝒜 =
∪𝑎∈𝒜ℳ𝑎.

Sets and Set Operators. A polyhedron is the intersection of finitely many affine halfspaces. A
cone is a subset 𝐾 ⊆ R𝑘 with 0 ∈ 𝐾 and 𝛼𝑦 ∈ 𝐾 for all 𝑦 ∈ 𝐾 and 𝛼 ∈ R+. A polyhedral cone is
a polyhedron that is a cone. We say that Op is an extensive set operator on R𝑘 if for any set𝒜 ⊆ R𝑘,
Op𝒜 is a subset of R𝑘 and 𝒜 ⊆ Op𝒜. We will make use of some particular extensive set operators:
The closure operator closure: closure𝒜 = 𝒜 ∪ 𝜕𝒜. We also use the notation 𝒜 := closure𝒜.
The convex hull operator Conv:

Conv𝒜 =

⎧⎨⎩∑︁
𝑖∈[𝑛]

𝑡𝑖𝑎𝑖 : 𝑎𝑖 ∈ 𝒜, 𝑡𝑖 ∈ [0, 1],
∑︁
𝑖∈[𝑛]

𝑡𝑖 = 1, 𝑛 ∈ N

⎫⎬⎭ , (1)

for any 𝒜 ⊆ R𝑘. The conical hull operator Cone:

Cone𝒜 =

⎧⎨⎩∑︁
𝑖∈[𝑛]

𝑡𝑖𝑎𝑖 : 𝑎𝑖 ∈ 𝒜, 𝑡𝑖 ≥ 0, 𝑛 ∈ N

⎫⎬⎭ , (2)

for any 𝒜 ⊆ R𝑘 The 𝜚-conical hull operator 𝜚-Cone, where 𝜚 > 0:

𝜚-Cone𝒜 = 𝒜 ∪ (Cone𝒜 ∖ B𝜚(0)) .

In other words, 𝜚-Cone operator inserts in 𝒜 all points of the conical hull of 𝒜 with norm at least 𝜚.
The shade operator:

Shade𝒜 = {𝑡𝑎 : 𝑎 ∈ 𝒜, 𝑡 ≥ 1} .
We will use these set operators to rule out the possibility that 𝒜 is a very contrived set that makes
the proper covering problem unreasonably difficult or complicated, since we focus on providing the
first general approach for the proper covering problem. In particular, we will relax our demand that
the cover is proper, by enabling sums of random variables that belong in a slightly wider exponential
family by enlarging 𝒜 appropriately.

A.1.1 What do Proper Covering and Learning mean for SIIERVs?

(Weakly) Proper Covers. Below, we give a slightly relaxed definition for the notion of proper
covers for our setting. We will use these set operators to rule out the possibility that 𝒜 is a very
contrived set that makes the proper covering problem unreasonably difficult or complicated, since
we focus on providing the first general approach for the proper covering problem. In particular, we
will relax our demand that the cover is proper, by enabling sums of random variables that belong in
a slightly wider exponential family by enlarging 𝒜 appropriately.
Definition 2 (Proper Covers of SIIERVs). Let 𝒞 be a cover of ℰ𝑇 (𝒜)-SIIRVs of order 𝑛, where
𝒜 ⊆ R𝑘. Consider 𝑅 ≥ 1 and Op is an extensive set operator on R𝑘. If any element of 𝒞 is the
distribution of an ℰ𝑇 (Op𝒜)-SIIRV of order 𝑅 · 𝑛, then we say that 𝒞 is (𝑅, Op)-proper.

(Weakly) Proper Learning. For any 𝑛, 𝑘 ∈ N, any𝒜 ⊆ R𝑘 and any 𝑇 : Z→ R𝑘 (so that ℰ𝑇 (𝒜) is
well defined), we say that the the class of ℰ𝑇 (𝒜)-SIIRVs of order 𝑛 can be (𝑅, Op)-properly learned
if there exist some 𝑅 ≥ 1 and some extensive set operator Op such that for any 𝜖, 𝛿 ∈ (0, 1) there
exists some algorithm 𝐴 and some polynomial 𝑚 on 1/𝜖, 1/𝛿 (and other relevant parameters) such
that 𝐴, given 𝑚 independent samples from some unknown ℰ𝑇 (𝒜)-SIIRV 𝑋 of order 𝑛, outputs
some ℰ𝑇 (Op𝒜)-SIIRV 𝑌 of order 𝑅 · 𝑛 such that 𝑑𝑇𝑉 (𝑋,𝑌 ) ≤ 𝜖, with probability at least 1− 𝛿.

A.2 General Tools

We show that our novel notion of distance, the structural distance is actually a distance metric.
Lemma 10. The structural distance (Definition 1) is a distance metric between discrete distribu-
tions.
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Proof. Note that 𝑑ST is non-negative. It is sufficient to prove the three following properties:
Identity of indiscernibles. 𝑑ST(𝒟1,𝒟2) = 0 if and only if 𝒟1 and 𝒟2 are equivalent. The
first direction of the property is satisfied, since when 𝜖 = 0, any point outside the support of 𝒟1

must be assigned zero mass by 𝒟2 (hence they have common support) and any point in the support
must have proportionally equivalent mass (which implies exactly equal mass, since the probabilities
must sum to 1). For the other direction, observe that if 𝒟1 and 𝒟2 are equivalent, then the structural
distance is zero.
Symmetry. Observe that Definition 1 is, in fact, symmetric and so 𝑑ST(𝒟1,𝒟2) = 𝑑ST(𝒟2,𝒟1).
Triangle Inequality. We have to show that 𝑑ST(𝒟1,𝒟3) ≤ 𝑑ST(𝒟1,𝒟2) + 𝑑ST(𝒟2,𝒟3). Let
𝑑ST(𝒟1,𝒟2) = 𝜖1 and 𝑑ST(𝒟2,𝒟3) = 𝜖2.

Consider, first, any 𝑥 ∈ 𝒳 such that 𝒟1(𝑥) > (𝜖1 + 𝜖2) · 𝑝1. Then 𝒟1(𝑥) > 𝜖1 · 𝑝1 and hence, for
the point 𝑥 and the pair (𝒟1,𝒟2), it must hold 𝒟2(𝑥)/𝑝2 = 𝒟1(𝑥)/𝑝1 > 𝜖1 + 𝜖2. Similarly, we
have 𝒟2(𝑥)/𝑝2 > 𝜖1 + 𝜖2 and so 𝒟3(𝑥)/𝑝3 = 𝒟2(𝑥)/𝑝2 > 𝜖1 + 𝜖2. This implies that 𝒟3(𝑥)/𝑝3 =
𝒟1(𝑥)/𝑝1.

For the rest points 𝑥 ∈ 𝒳 with 𝒟1(𝑥) ≤ (𝜖1 + 𝜖2) · 𝑝1, we have to take cases for 𝒟1(𝑥) (either
≤ 𝜖1𝑝1 or > 𝜖1𝑝1) and after applying what we know about 𝑑ST(𝒟1,𝒟2), take cases for 𝒟2(𝑥) (and
apply knowledge about 𝑑ST(𝒟2,𝒟3)). In any case, we get that 𝒟3(𝑥) ≤ (𝜖1 + 𝜖2) · 𝑝3. Therefore
𝑑ST(𝒟1,𝒟3) ≤ 𝜖1 + 𝜖2.

We continue with a collection of general tools that we are going to need for our proofs. The
Minkowski-Weyl Theorem shows that any polyhedron can be either represented in a constrained
or a finitely generated form.
Proposition 11 (Minkowski-Weyl Theorem [Minkowski [1896],Weyl [1935]]). Let 𝒞 ⊆ R𝑘 for
𝑘 ∈ Z. Then the following are equivalent:

1. There exists 𝑡 ∈ N and some matrix 𝐻 ∈ R𝑘×𝑡 such that 𝒞 = {𝑢 ∈ R𝑘 : 𝐻𝑇𝑢 ≥ 0}.

2. There exists 𝑠 ∈ N and some matrix 𝑍 ∈ R𝑘×𝑠 such that 𝒞 = {𝑢 ∈ R𝑘 : 𝑢 = 𝑍𝑥,𝑥 ≥ 0}.

The next standard inequality shows that in order to control the statistical distance for two distribu-
tions, it suffices to control the KL divergence.
Proposition 12 (Pinsker’s Inequality). For any probability distributions 𝑃 and 𝑄 on a common
measurable space, the following inequality holds.

𝑑𝑇𝑉 (𝑃,𝑄) ≤
√︂

1

2
𝐷𝐾𝐿(𝑃 ‖ 𝑄) .

The following lemma is a useful tool in various parts of our proofs. It essentially controls ratios of
sums of positive quantities.
Lemma 13 (Ratio of Sums Inequality). Let 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 be positive numbers. Then, it
holds that

min
𝑖∈[𝑛]

𝑎𝑖
𝑏𝑖
≤
∑︀

𝑖∈[𝑛] 𝑎𝑖∑︀
𝑖∈[𝑛] 𝑏𝑖

≤ max
𝑖∈[𝑛]

𝑎𝑖
𝑏𝑖

.

Proof. We have that ∑︁
𝑖∈[𝑛]

𝑎𝑖 =
∑︁
𝑖∈[𝑛]

𝑏𝑖

(︂
𝑎𝑖
𝑏𝑖

)︂
≤
∑︁
𝑖∈[𝑛]

𝑏𝑖 max
𝑗∈[𝑛]

𝑎𝑗
𝑏𝑗

.

Hence, we get that ∑︀
𝑖∈[𝑛] 𝑎𝑖∑︀
𝑖∈[𝑛] 𝑏𝑖

≤ max
𝑗∈[𝑛]

𝑎𝑗
𝑏𝑗

.

The other direction follows similarly.

The next tool characterizes the expectation and the variance of the sufficient statistics vector in
terms of the log-partition function. Moreover, it provides a way to control the KL divergence of two
exponential family distributions.
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Lemma 14 (Moments and KL Divergence for Exponential Families). Let ℰ𝑇 ,ℎ be an exponential
family with parameters 𝑎 ∈ R𝑘, log-partition function Λ(·) = Λ𝑇 ,ℎ(·) and range of natural param-
eters 𝒜 = 𝒜𝑇 ,ℎ. The following hold for the distribution ℰ(𝑎) ∈ ℰ𝑇 ,ℎ.

(𝑖) For all 𝑎 ∈ 𝒜, it holds that
E

𝑥∼ℰ(𝑎)
[𝑇 (𝑥)] = ∇Λ(𝑎) .

(𝑖𝑖) For all 𝑎 ∈ 𝒜, it holds that

Cov
𝑥∼ℰ(𝑎)

[𝑇 (𝑥)] = ∇2Λ(𝑎) .

(𝑖𝑖𝑖) For all 𝑎,𝑎′ ∈ 𝒜 and for some 𝜉 ∈ 𝐿(𝑎,𝑎′)4, it holds that

𝐷𝐾𝐿(ℰ(𝑎) ‖ ℰ(𝑎′)) = (𝑎′ − 𝑎)𝑇∇2Λ(𝜉)(𝑎′ − 𝑎) . (3)

The upcoming lemma control the statistical distance for sums of independent random variables.
Lemma 15 (TV-Subadditivity for Sums of Random Variables). Let (𝑋𝑖)𝑖∈[𝑛] be a sequence of 𝑛
independent random variables and (𝑌𝑖)𝑖∈[𝑛] be also a sequence of 𝑛 independent random variables.
Then, we have that

𝑑𝑇𝑉

⎛⎝∑︁
𝑖∈[𝑛]

𝑋𝑖,
∑︁
𝑖∈[𝑛]

𝑌𝑖

⎞⎠ ≤ ∑︁
𝑖∈[𝑛]

𝑑𝑇𝑉 (𝑋𝑖, 𝑌𝑖) .

This lemma controls the statistical distance between two Poisson distributions.
Lemma 16 (Statistical Distance of Poisson RVs). Let 𝜆1, 𝜆2 > 0. Then, it holds that:

𝑑𝑇𝑉 (Poi(𝜆1),Poi(𝜆2)) ≤ 𝑒|𝜆1−𝜆2| − 𝑒−|𝜆1−𝜆2|

2
.

This lemma controls the statistical distance between two discretized Gaussian random variables.
Lemma 17 (Statistical Distance of Discretized Gaussian RVs). Let 𝜇1, 𝜇2 ∈ R and 0 < 𝜎1 ≤ 𝜎2.
Then, it holds that:

𝑑𝑇𝑉 (𝒵(𝜇1, 𝜎
2
1),𝒵(𝜇2, 𝜎

2
2)) ≤ 1

2

(︂
|𝜇1 − 𝜇2|

𝜎1
+

𝜎2
2 − 𝜎2

1

𝜎2
1

)︂
.

The next lemma provides a bound on the shift distance for SIIRVs.
Lemma 18 (Statistical Distance of Shifted SIIRV). Let 𝑋 =

∑︀
𝑖 𝑋𝑖 be the sum of independent

integer-valued random variables. Then, it holds that

𝑑𝑇𝑉 (𝑋,𝑋 + 1) ≤
√︀

2/𝜋√︁
1
4 +

∑︀
𝑖(1− 𝑑𝑇𝑉 (𝑋𝑖, 𝑋𝑖 + 1))

.

The next lemma is a standard tool that essentially says that an SIIRV that has bounded third moment
and TV shift invariance is close to a discretized Gaussian in statistical distance. The TV shift invari-
ance bound is crucial; note that if we drop this property, standard CLT theorems imply bounds for
the weaker Kolmogorov distance.
Lemma 19 (Discretized Gaussian Approximation (Chen et al. [2010])). Let 𝑋1, ..., 𝑋𝑛 be a fi-
nite sequence of independent integer-valued random variables and let 𝑋 =

∑︀
𝑖∈[𝑛] 𝑋𝑖. If

𝜇𝑖 = E[𝑋𝑖], 𝜎
2
𝑖 = Var(𝑋𝑖), 𝛽𝑖 = E[|𝑋𝑖 − 𝜇𝑖|3], 𝜇 =

∑︀
𝑖∈[𝑛] 𝜇𝑖, 𝜎

2 =
∑︀

𝑖∈[𝑛] 𝜎
2
𝑖 , 𝛽 =

∑︀
𝑖∈[𝑛] 𝛽𝑖

and
sup
𝑖∈[𝑛]

𝑑𝑇𝑉 (𝑋 −𝑋𝑖, 𝑋 −𝑋𝑖 + 1) ≤ 𝛿 ,

then, if 𝑍 is distributed according to the discretized Gaussian distribution 𝒵(𝜇, 𝜎2), we have that

𝑑𝑇𝑉 (𝑋,𝑍) ≤ 𝑂(1/𝜎) + 𝑂(𝛿) + 𝑂(𝛽/𝜎3) + 𝑂(𝛿𝛽/𝜎2) .

In particular, we have that

𝑑𝑇𝑉 (𝑋,𝑍) ≤ 𝛿

(︂
1 +

3

2

𝛽

𝜎2

)︂
+

1

𝜎

(︂
1

2
√

2𝜋
+ (5 + 3

√︀
𝜋/8)

𝛽

𝜎2

)︂
.

4We denote 𝐿(𝑥,𝑦) = {𝑧 ∈ R𝑘 : 𝑧 = 𝜆𝑥+ (1− 𝜆)𝑦, 𝜆 ∈ [0, 1]}.
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B Learning SIIURVs and SIIERVs

We now formally state our main learning results. To do this, we begin by formally setting up our
learning framework for SIIRVs.

Learning Framework. In the problem of learning an SIIRV 𝑋 =
∑︀

𝑖∈[𝑛] 𝑋𝑖, the learner is given
the value 𝑛 (of the number of summands) and has sample access to independent draws from an
unknown target 𝑋 . The goal of the learning algorithm is to output a hypothesis distribution ̃︀𝑋 that
is 𝜖-close to 𝑋 in total variation distance, i.e., 𝑑𝑇𝑉 (𝑋, ̃︀𝑋) ≤ 𝜖, with probability at least 1− 𝛿. The
accuracy 𝜖 and the confidence 𝛿 are both provided to the learner as input.

In Appendix B.1, the target 𝑋 will be an SIIURV of order 𝑛 for some given 𝑛 ∈ N (i.e., a sum with
𝑛′ ≤ 𝑛 random terms) that belongs to the family of distributions that contain all the sums of at most
𝑛 random variables that satisfy Assumption 1. We are going to provide a learning algorithm for this
class of distributions.

In Appendix B.2, the target 𝑋 will be an ℰ𝑇 (𝒜)-SIIRV of order 𝑛, i.e., a sum of at most 𝑛 random
variables each one belonging in the exponential family ℰ𝑇 (𝒜) satisfying Assumption 2. We will
give a (weakly) proper learning algorithm in the sense that the output will be an ℰ𝑇 (𝒜′)-SIIERV of
order 𝑚 where 𝑚 and 𝒜′ will be slightly different that 𝑛 and 𝒜 respectively.

Common Technical Tool. Our learning algorithms (Figure 1 and Figure 2) use hypothesis test-
ing as a distinct tool for the learning procedures. Hypothesis testing will appear in various points
of the algorithms; in the sparse learning phase (Claim 23 and Claim 27), in the proper dense one
(Claim 28) and in the hypothesis selection of the second stage (Proposition 20). Intuitively, for some
desired accuracy 𝜖 > 0, given a collection of 𝑀 candidate hypothesis distributions, one of which
is 𝜖-close in total variation distance to the target distribution of 𝑋 , a hypothesis testing algorithm
draws ̃︀𝑂(log(𝑀)/𝜖2) samples from 𝑋 , runs in time polynomial in 𝑀 and 1/𝜖 and outputs a hy-
pothesis (among the 𝑀 candidates) that is 𝑂(𝜖)-close to the true 𝑋 , with high probability. Such
testing procedures have been studied by a range of authors (see e.g., Yatracos [1985], Daskalakis
and Kamath [2014], Acharya et al. [2014], Daskalakis et al. [2013, 2015a], De et al. [2014, 2018]).
For concreteness we are going to recall some standard results later.

B.1 Learning SIIURVs

Assume that the target 𝑋 is an SIIURV satisfying Assumption 1. We first provide a discussion on
some previous results and the oracles we require.

B.1.1 Hypothesis Testing and Oracle Access

The following proposition about hypothesis selection can be found in Daskalakis et al. [2015a].
Proposition 20 (Hypothesis selection (Lemma 8 at Daskalakis et al. [2015a])). There exists an
algorithm SELECTHYPOTHESIS𝑋(𝐻1, 𝐻2, 𝜖, 𝛿), which is given sample access to a distribution 𝑋 ,
two hypothesis distributions 𝐻1, 𝐻2 for 𝑋 , an accuracy parameter 𝜖 and a confidence parameter
𝛿 > 0, draws

𝑂(log(1/𝛿)/𝜖2)

samples from 𝑋 and, in time polynomial in the number of samples, returns some 𝐻 ∈ {𝐻1, 𝐻2}
with the following guarantee: If 𝑑𝑇𝑉 (𝐻𝑖, 𝑋) ≤ 𝜖 for some 𝑖 ∈ {1, 2}, then the distribution 𝐻 that
SELECTHYPOTHESIS𝑋 returns satisfies 𝑑𝑇𝑉 (𝐻,𝑋) ≤ 6𝜖.

The routine SELECTHYPOTHESIS𝑋(𝐻1, 𝐻2, 𝜖, 𝛿) runs a competition between 𝐻1 and 𝐻2 as fol-
lows (for more details and a proof, we refer to Daskalakis et al. [2015a]): It first computes the set
𝒲1 = {𝑥|𝐻1(𝑥) > 𝐻2(𝑥)} and the probabilities 𝑝𝑖 = 𝐻𝑖(𝒲1), 𝑖 ∈ {1, 2}. The routine draws
𝑂(log(1/𝛿)/𝜖2) independent samples from 𝑋 and calculates the fraction 𝜏 of these samples that fall
inside𝒲1. If 𝜏 > 𝑝1 − 𝜖, it selects 𝐻1 as the winner and if 𝜏 < 𝑝2 + 𝜖, it chooses 𝐻2; otherwise, it
declares a draw and returns either 𝐻𝑖.
Remark 1. We underline that the result in Daskalakis et al. [2015a] does not require sample access
to 𝐻1, 𝐻2. These distributions are given as input (and their description is short enough to be read
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by the learner) and the set𝒲1 can then be computed efficiently. The work of De et al. [2014] deals
with scenarios where this is not the case (e.g., the domain is exponentially large in 𝑛) and in this
case sample and evaluation oracle access to 𝐻1, 𝐻2 is needed too. We discuss this point later.

The SELECTHYPOTHESIS𝑋 routine is the main tool of the following hypothesis testing mechanism
(Proposition 21), for which we refer the reader to [De et al., 2014, 2018] and, more generally, to
e.g., Daskalakis et al. [2015a, 2013]:
Proposition 21 (Tournament Selection De et al. [2018]). Let 𝐷 be a distribution over 𝑊 ⊆ Z and
let ℋ𝜖 = {𝐻𝑗}𝑗∈[𝑀 ] be a collection of 𝑀 hypothesis distributions over 𝑊 with the property that
there exists 𝑖 ∈ [𝑀 ] such that 𝑑𝑇𝑉 (𝐷,𝐻𝑖) ≤ 𝜖. There exists an algorithm SELECTTOURNAMENT𝐷

which is given 𝜖, a confidence parameter 𝛿 and is provided with access to (𝑖) a source of i.i.d. draws
from 𝐷 and from 𝐻𝑖 for all 𝑖 ∈ [𝑀 ]; and (𝑖𝑖) an ’evaluation oracle’ EVAL𝐻𝑖

for each 𝑖 ∈ [𝑀 ],
which, on input 𝑤 ∈ 𝑊 , deterministically outputs the value 𝐻𝑖(𝑤) and that has the following
behavior: It makes 𝑚 = 𝑂((1/𝜖2) ·(log(𝑀)+log(1/𝛿))) draws from 𝐷 and from each 𝐻𝑖, 𝑖 ∈ [𝑀 ]
and 𝑂(𝑚) calls to each oracle EVAL𝐻𝑖

, 𝑖 ∈ [𝑀 ]. It runs in time poly(𝑚,𝑀)5 and, with probability
1− 𝛿, it outputs an index 𝑖⋆ ∈ [𝑀 ] that satisfies 𝑑𝑇𝑉 (𝐷,𝐻𝑖⋆) ≤ 6𝜖.

The routine SELECTTOURNAMENT performs a tournament by running the procedure of Proposi-
tion 20 SELECTHYPOTHESIS𝑋(𝐻𝑖, 𝐻𝑗 , 𝜖, 𝑂(𝛿/𝑀)) for every pair (𝐻𝑖, 𝐻𝑗), 𝑖 < 𝑗 of distributions
in the collection of Proposition 21 of size 𝑀 and either outputs the distribution that was never a
loser or it fails. The bound on the running time is a result of the corresponding time bound of the
SELECTHYPOTHESIS𝑋 routine. The sample complexity is a result of the union bound over the
competitions.

Sampling & Evaluation Oracles. For this section, we only need sample access to the target 𝑋
in order to run the version of Proposition 20. During the learning phase of the sparse instances, we
will construct the sparse cover and we will perform the tournament procedure for the distributions
in the cover. Crucially, the sparse forms have bounded support and its size does not depend on 𝑛.
Hence, for each sparse form, we have access to an efficient evaluation oracle for the purposes of
Proposition 21. For any two distributions in the cover 𝐻𝑖, 𝐻𝑗 with domain 𝑊 ⊆ Z, the algorithm
can efficiently compute the set 𝑊𝑖𝑗 = {𝑤 ∈ 𝑊 |𝐻𝑖(𝑤) ≥ 𝐻𝑗(𝑤)} without additional assumptions.
In the dense case, the algorithm will estimate the best fitting discretized Gaussian distribution and
we do not need to contruct any cover or run any tournament procedure.

B.1.2 The Result and the Algorithm

Our main learning result for SIIURVs follows.
Theorem 22 (Learning SIIURVs). Under Assumption 1, for any 𝑛 ∈ N, accuracy 𝜖 > 0 and
confidence 𝛿 > 0, there exists an algorithm LEARNERSIIURV𝑋 (see Figure 1) with the following
properties: Given 𝑛, 𝜖, 𝛿 and sample access to independent draws from an unknown SIIURV 𝑋 of
order 𝑛, the algorithm uses

𝑚 = 𝑂

(︂
1

𝜖2
log(1/𝛿)

)︂
+ 𝑂 (poly(𝐵, 1/𝛾, 1/𝜖))

samples from 𝑋 and, in time
poly

(︁
𝑚,𝐿poly(𝐵,1/𝛾,1/𝜖)

)︁
,

outputs a (succint description of a) distribution ̃︀𝑋 which satisfies 𝑑𝑇𝑉 (𝑋, ̃︀𝑋) ≤ 𝜖, with probability
at least 1− 𝛿.

Our algorithm works as follows.

We continue with a short discussion on how the algorithm works: The learning algorithm (Figure
1) of Theorem 22 is separated in two distinct stages. In the first stage, it runs two different learning
procedures, corresponding to the sparse and dense case of our main structural covering result for
SIIURVs. At the end of this stage, two hypotheses are obtained and, hence, the second phase of
the learning algorithm performs hypothesis testing in order to select the correct one. In the first

5We count each call to an evaluation oracle EVAL𝐻𝑖 and draw from a 𝐻𝑖 distribution as unit time.

19



Algorithm for SIIURVs: (𝜖, 𝛿)-Learning SIIURVS 𝑋 =
∑︀

𝑖∈[𝑛] 𝑋𝑖.

1. Run LEARNSPARSE𝑋(𝑛, 𝜖, 𝛿/3) of Claim 23 and get the distribution 𝐻𝑆 .

2. Run LEARNDENSE𝑋(𝑛, 𝜖, 𝛿/3) of Claim 24 and get the distribution 𝐻𝐷.

3. Return the distribution that is the output of SELECTHYPOTHESIS𝑋(𝐻𝑆 , 𝐻𝐷, 𝜖, 𝛿/3)
of Proposition 20.

Figure 1: Learning algorithm for SIIURVs.

phase, the processes LEARNSPARSE𝑋 and LEARNDENSE𝑋 are performed. The LEARNSPARSE𝑋

procedure (see Claim 23) performs a tournament over the distributions of the cover of the sparse
regime 𝒟(𝑠)

U (𝜖) with error 𝜖 and outputs the hypothesis/distribution 𝐻𝑆 that is closer to 𝑋 . On the
other hand, the the LEARNDENSE𝑋 process (see Claim 24) estimates the parameters of a discretized
Gaussian, which approximates the input sum 𝑋 and outputs this distribution. We denote by 𝐻𝐷 the
output hypothesis of the dense procedure. Now, in the second phase, the learning algorithm runs the
black-box procedure SELECTHYPOTHESIS𝑋 (see Proposition 20) that chooses the winner between
the two hypotheses 𝐻𝑆 and 𝐻𝐷, i.e., the one that is closer to 𝑋 with high probability.

The Proof of Theorem 22.

Proof. The algorithm (Figure 1) runs the routine LEARNSPARSE𝑋 of Claim 23 with input
(𝑛, 𝜖, 𝛿/3) and gets the distribution 𝐻𝑆 . Then, it runs LEARNDENSE𝑋 of Claim 24 with input
(𝑛, 𝜖, 𝛿/3) and aims to learn the best fitting discretized Gaussian to the input sum 𝑋 and output
the hypothesis distribution 𝐻𝐷. In order to conclude the SIIURV learning part, via Proposition
20, one can examine which hypothesis between 𝐻𝑆 and 𝐻𝐷 is closer to the target 𝑋 , by running
SELECTHYPOTHESIS𝑋(𝐻𝑆 , 𝐻𝐷) with parameter 𝜖, 𝛿/3. In conclusion, with probability at least
1 − 𝛿, the algorithm will satisfy the desiderata of Theorem 22. We divide the proof in a series of
claims.

In Claim 23, we analyze an algorithm which learns sparse instances and outputs a hypothesis distri-
bution 𝐻𝑆 .

Claim 23 (Learning Sparse Instances). Under Assumption 1, for any 𝑛, 𝜖, 𝛿 > 0, there is an algo-
rithm LEARNSPARSE𝑋(𝑛, 𝜖, 𝛿) that given

𝑚 = 𝑂

(︂
poly(𝐵, 1/𝛾, 1/𝜖) · log(𝐿) +

1

𝜖2
log(1/𝛿)

)︂
samples from the target SIIURV 𝑋 over Z, outputs a (succint description of a) hypothesis distri-
bution 𝐻𝑆 with the following guarantee: If 𝑋 is 𝜖-close to a sparse form (see Theorem 2), then it
holds that 𝑑𝑇𝑉 (𝐻𝑆 , 𝑋) ≤ 𝑐1𝜖, for some universal constant 𝑐1 ≥ 1, with probability at least 1− 𝛿.
Furthermore, the running time of the algorithm is poly

(︀
𝑚,𝐿poly(𝐵,1/𝛾,1/𝜖)

)︀
.

Proof. Let 𝜖 > 0 and assume that Assumption 1 holds. Since we are in the sparse form case,
the algorithm can construct a cover of small size as described in the proof of Theorem 2 (see the
final part of Appendix C), i.e., by quantizing the probability mass on each point of each of a set of
intervals that provably include some interval that contains the support of 𝑋 . The structural result
of Theorem 2 implies that there exists a cover 𝒟(𝑠)

U = 𝒟(𝑠)
U (𝜖) of radius 𝜖 (i.e., a collection of

probability distributions that contains an 𝜖-close – in total variation distance – representative for
each distribution in 𝒟) whose size is equal to⃒⃒⃒

𝒟(𝑠)
U

⃒⃒⃒
≤ 𝐿poly(𝐵,1/𝛾,1/𝜖) .

By the hypothesis and from the structure of the cover, 𝑋 is 𝜖-close to an element of the set 𝒟(𝑠)
U .

Note that Proposition 21 is applicable since the learner can read the distributions of the cover as input
and so no specific oracle access is required. We can apply the SELECTTOURNAMENT𝑋 algorithm
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with input the distributions’ collection which lie in 𝒟(𝑠)
U with accuracy 𝜖 and confidence 𝛿. This

concludes the proof. The sample complexity of the algorithm is

𝑚 = 𝑂

(︂
1

𝜖2

(︁
log
⃒⃒⃒
𝒟(𝑠)

U

⃒⃒⃒
+ log(1/𝛿)

)︁)︂
,

and the running time is poly
(︁
𝑚,
⃒⃒⃒
𝒟(𝑠)

U

⃒⃒⃒)︁
.

As a next step, we analyze the learning phase concerning the dense instances: In Claim 24, we deal
with the SIIURV learning of the dense case, using the Gaussian approximation.

Claim 24 (Learning Dense Instances). Under Assumption 1, for any 𝑛, 𝜖, 𝛿 > 0, there is an algo-
rithm LEARNDENSE𝑋(𝑛, 𝜖, 𝛿) that given

𝑂(log(1/𝛿)/𝜖2)

samples from the target SIIURV 𝑋 over Z, runs in time 𝑂(log(1/𝛿)/𝜖2) and outputs a (succint
description of a) hypothesis distribution 𝐻𝐷 with the following guarantee: If 𝑋 is 𝜖-close to a
dense form (see Theorem 2), then it holds that 𝑑𝑇𝑉 (𝐻𝐷, 𝑋) ≤ 𝑂(𝜖), with probability at least 1− 𝛿,
and 𝐻𝐷 is a discretized Gaussian distribution.

Proof. Let 𝜖 > 0 and assume that 𝑋 is 𝜖-close to a dense form SIIURV. Let 𝑋 =
∑︀

𝑖∈[𝑛] 𝑋𝑖 be an
SIIURV and set 𝜇 = E[𝑋] and 𝜎2 = Var(𝑋). There exists an algorithm that uses 𝑂(log(1/𝛿)/𝜖2)
samples from 𝑋 and runs in time 𝑂(log(1/𝛿)/𝜖2) and, with probability at least 1 − 𝛿, computes
estimates ̂︀𝜇 and ̂︀𝜎2 so that

|𝜇− ̂︀𝜇| ≤ 𝜖𝜎 and |𝜎2 − ̂︀𝜎2| ≤ 𝜖𝜎2 ·𝑂(1) .

Our proof follows the steps presented in Daskalakis et al. [2015a]: We will provide a routine
achieving the desired estimation with probability at least 2/3. Afterwards, there exists a standard
procedure6 that boosts the success probability to 1−𝛿 at the expense of a multiplicative 𝑂(log(1/𝛿))
overhead in the number of samples.

Mean Estimation. In order to weakly estimate the mean 𝜇, let {𝑍𝑖}𝑖∈[𝑁 ] be i.i.d. samples from
𝑋 and let ̂︀𝜇 = 1

𝑁

∑︀
𝑖∈[𝑁 ] 𝑍𝑖. Chebyshev’s inequality implies that

Pr
[︁
|̂︀𝜇− 𝜇| ≥ 𝑡

√︀
Var(𝑋)

]︁
= Pr

[︁
|̂︀𝜇− 𝜇| ≥ 𝑡𝜎/

√
𝑁
]︁
≤ 1/𝑡2 .

Choosing 𝑡 =
√

3 and 𝑁 = 𝑂(3/𝜖2), we get that |̂︀𝜇− 𝜇| ≤ 𝜖𝜎 with probability at least 2/3.

Variance Estimation. Similarly, one can compute a weakly estimate for the variance 𝜎2. Let
{𝑍𝑖}𝑖∈[𝑁 ] be i.i.d. samples from 𝑋 and, using the Bessel’s correction, let ̂︀𝜎2 = 1

𝑁−1

∑︀
𝑖∈[𝑁 ](𝑍𝑖 −

1
𝑁

∑︀
𝑖∈[𝑁 ] 𝑍𝑖)

2. We have that

E
[︀̂︀𝜎2
]︀

= 𝜎2 and Var
(︀̂︀𝜎2
)︀

= 𝜎4

(︂
2

𝑁 − 1
+

𝜅

𝑁

)︂
,

where 𝜅 := E[(𝑋−𝜇)4]
𝜎4 − 3 is the excess kurtosis of the distribution of 𝑋 . For the random variable

𝑋 =
∑︀

𝑖∈[𝑛] 𝑋𝑖 with 𝑋𝑖 ∼ ℰ𝑇 (𝑎𝑖), we have that

𝜅 =
1

𝜎4
E[(𝑋 − 𝜇)4]− 3 =

∑︀
𝑖∈[𝑛](Var(𝑋𝑖))

2 ·
(︁

E[(𝑋𝑖−E[𝑋𝑖])
4]

(Var(𝑋𝑖))2
− 3
)︁

(︁∑︀
𝑖∈[𝑛] Var(𝑋𝑖)

)︁2 ≤ 1

𝑛
·𝐵/𝛾2 ,

by using independence and conditions (1) and (3). The second equality follows from the next com-
putations: Define 𝜅4(𝑋) := E[(𝑋 − E[𝑋])4] − 3Var(𝑋)2 be the fourth cumulant of 𝑋 . Since

6The boosting argument requires running the weak estimators 𝑂(log(1/𝛿)) times in order to obtain two
sequences of estimates (̂︀𝜇𝑖)𝑖∈[𝑂(log(1/𝛿))] and (̂︀𝜎2

𝑖 )𝑖∈[𝑂(log(1/𝛿))]. Finally, the boosting process will output the
median of these sequences of 𝑂(log(1/𝛿)) weak estimates.
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cumulants for sums of independent random variables are additive, we have that the excess kurtosis
of 𝑋 is

𝜅 = 𝜅(𝑋) =
𝜅4(𝑋)

Var(𝑋)2
=

∑︀
𝑖∈[𝑛] 𝜅4(𝑋𝑖)

(
∑︀

𝑖∈[𝑛] Var(𝑋𝑖))2
=

∑︀
𝑖∈[𝑛](Var(𝑋𝑖))

2 · 𝜅(𝑋𝑖)

(
∑︀

𝑖∈[𝑛] Var(𝑋𝑖))2
.

We expect 𝜅 to vanish with 𝑛 since for a Gaussian distribution 𝑊 we have E[(𝑊 − E[𝑊 ])4] =
3𝜎4 (and 𝑋 resembles a Gaussian as the number of terms increases). Note that the dense case
corresponds to large number of terms in 𝑋 and, in particular 𝑛 ≥ Ω(𝐵/𝛾2) (see Appendix C).
Therefore, we might assume here that 1

𝑛 ·𝐵/𝛾2 = 𝑂(1).

Hence, we have that

Var(̂︀𝜎2) ≤ 𝜎4

(︂
2

𝑁 − 1
+

𝜅

𝑁

)︂
≤ 𝜎4

𝑁
·𝑂(1) .

Chebyshev’s inequality implies that

Pr

[︂
|̂︀𝜎2 − 𝜎2| ≥ 𝑡

𝜎2

√
𝑁
·𝑂(1)

]︂
≤ 1

𝑡2
.

Choosing 𝑡 =
√

3 and 𝑁 = 𝑂(3/𝜖2), we get that |𝜎2−̂︀𝜎2| ≤ 𝑂(𝜖) ·𝜎2 with probability at least 2/3.

Total Variation Gap. Finally, we have that, using Lemma 17

𝑑𝑇𝑉 (𝑋,𝒵(̂︀𝜇, ̂︀𝜎2)) ≤ 𝑑𝑇𝑉 (𝑋,𝒵(𝜇, 𝜎2)) + 𝑑𝑇𝑉 (𝒵(𝜇, 𝜎2),𝒵(̂︀𝜇, ̂︀𝜎2)) .

Since 𝑋 is in dense form and the cover has radius 𝜖, the first quantity of the right-hand side is at
most 𝜖 and the second one, applying Lemma 17, gives

𝑑𝑇𝑉 (𝒵(𝜇, 𝜎2),𝒵(̂︀𝜇, ̂︀𝜎2)) ≤ 1

2

(︂
𝜖𝜎

𝜎
+

𝑂(𝜖) · 𝜎2

𝜎2

)︂
= 𝑂(𝜖) ,

with high probability (where the randomness is over the estimates ̂︀𝜇 and ̂︀𝜎2), if 𝜎2 is large enough.
Hence, the total variation distance between the two Gaussians is of order 𝑂(𝜖).

Conclusion of Claim 24. So, we get that there exists an algorithm that computes the param-
eters (̂︀𝜇, ̂︀𝜎2) of a discretized Gaussian distribution so that 𝑑𝑇𝑉 (𝑋,𝒵(̂︀𝜇, ̂︀𝜎2)) ≤ 𝑂(𝜖), with high
probability, using ̃︀𝑂(1/𝜖2) samples. We set 𝐻𝐷 = 𝒵(̂︀𝜇, ̂︀𝜎2). As a conclusion, there is an algorithm
that given 𝑂(log(1/𝛿)/𝜖2) samples from the target SIIURV 𝑋 over Z, runs in time 𝑂(log(1/𝛿)/𝜖2)
and outputs a hypothesis discretized Gaussian distribution 𝐻𝐷 with the following guarantee: If 𝑋
is 𝜖-close to a dense form SIIURV, then it holds that 𝑑𝑇𝑉 (𝐻𝐷, 𝑋) ≤ 𝑂(𝜖), with probability at least
1− 𝛿.

Combining the above claims concludes the proof.

B.2 Properly Learning SIIERVs

In the problem of learning ℰ𝑇 (𝒜)-SIIRVs, the learner is given the value 𝑛 (of the number of sum-
mands), accuracy and confidence parameters 𝜖, 𝛿 ∈ (0, 1) and has sample access to independent
draws from an unknown ℰ𝑇 (𝒜)-SIIRV 𝑋 . The goal of the learning algorithm is to output a hy-
pothesis distribution ̃︀𝑋 that is 𝜖-close to 𝑋 in total variation distance, i.e., 𝑑𝑇𝑉 (𝑋, ̃︀𝑋) ≤ 𝜖, with
probability at least 1− 𝛿. Recall that a weakly proper learner is an algorithm that outputs a distribu-
tion ̃︀𝑋 that is itself a ℰ𝑇 (𝒜′)-SIIRV, i.e., ̃︀𝑋 =

∑︀
𝑖∈[𝑚]

̃︀𝑋𝑖 with ̃︀𝑋𝑖 ∼ ℰ𝑇 ( ̃︀𝑎𝑖) with ̃︀𝑎𝑖 ∈ 𝒜′ ⊆ R𝑘

for any 𝑖 ∈ [𝑚], where 𝑚 may be different than the input’s order 𝑛 and 𝒜′ is a set containing 𝒜.

B.2.1 Hypothesis Testing and Oracle Access

Sampling & Evaluation Oracles. Apart from sample access to the target distribution 𝑋 , we will
require the following: Both in the sparse and the dense case, as we will see in the proof, we must
be able to perform the hypothesis selection routine for the dense cover whose elements are ℰ𝑇 (𝒜𝜚)-
SIIRVs. Hence, for any two distributions in the cover 𝐻𝑖, 𝐻𝑗 with domain Z, the algorithm has to

22



efficiently compute the mass assigned to the set 𝑊𝑖𝑗 = {𝑤 ∈ 𝑊 |𝐻𝑖(𝑤) ≥ 𝐻𝑗(𝑤)} by 𝐻𝑖 and
𝐻𝑗 . In fact, even an approximate computation of these two values (in the sense of De et al. [2014])
is sufficient7. Essentially the SELECTHYPOTHESIS𝑋 routine requires estimates to the probabilities
𝐻𝑖(𝑊𝑖𝑗) and 𝐻𝑗(𝑊𝑖𝑗) (see the routine ESTIMATE of Claim 24 in De et al. [2014], that estimates the
probability 𝑝𝑖 = 𝐻𝑖(𝑊𝑖𝑗)). Such estimates can be obtained using sample access to 𝐻𝑘 and access
to evaluation oracles EVAL𝐻𝑘

(even approximate evaluation oracles with multiplicative accuracy)
for 𝑘 = 1, 2. In our case, this can be done using an evaluation oracle: We assume that, given the set
𝒜, our algorithms have access to an ℰ𝑇 (𝒜𝜚) evaluation oracle, that with a parameter 𝑎 ∈ 𝒜𝜚 as an
input and query 𝑤 ∈ Z, it outputs a the probability mass assigned to 𝑥 (even with some multiplicative
error as in De et al. [2014]) by the distribution ℰ𝑇 (𝑎), where𝒜𝜚 = 𝜚-Cone𝒜. Moreover, we assume
sample access to the distributions in ℰ𝑇 (𝒜𝜚) and to a discretized Gaussian, in the sense that, given
(𝜇, 𝜎2), the learning algorithm can perform independent draws from the distribution 𝒵(𝜇, 𝜎2).

Specifically, we assume the following. The value of the approximation tolerance 𝛽 of the oracle
will be related with the learning accuracy 𝜖 and this relation is provided in De et al. [2014] (see
Assumption 3).
Assumption 3. We assume that the learning algorithm can (i) query a sample oracle with input
(𝜇, 𝜎2) and draw a sample from 𝒵(𝜇, 𝜎2), (ii) query a sample oracle with input 𝑎 ∈ 𝜚-Cone𝒜
and draw a sample from ℰ𝑇 (𝑎) and (iii) query a 𝛽-approximate evaluation oracle EVAL𝐷(𝛽) for
𝐷 = ℰ𝑇 (𝑎) with 𝑎 as in (ii) with input 𝑥 ∈ Z and obtain a value 𝑝𝑥 with 𝐷(𝑥)/(1 + 𝛽) ≤ 𝑝𝑥 ≤
(1 + 𝛽)𝐷(𝑥) for some 𝛽 > 0. Moreover, given learning accuracy 𝜖 ∈ (0, 1), we assume that
(1 + 𝛽)2 ≤ 1 + 𝜖/8.

We will replace Proposition 20 with the following statement. In a similar fashion, we can obtain the
analogue of Proposition 21 (see Proposition 6 in De et al. [2014]).
Proposition 25 (Lemma 22 in De et al. [2014]). Assume that 𝑋,𝐻1, 𝐻2 are distributions over
𝑊 ⊆ Z.8 Let 𝜖, 𝛿 ∈ (0, 1). There exists an algorithm SELECTHYPOTHESIS𝑋(𝐻1, 𝐻2, 𝜖, 𝛿), which
is given sample access to 𝑋 and (i) to independent samples from 𝐻𝑖 and (ii) to a 𝛽-approximate
evaluation oracle EVAL𝐻𝑖

(𝛽) for 𝑖 ∈ {1, 2}, an accuracy parameter 𝜖 and a confidence parameter
𝛿 > 0 and has the following behavior: It draws

𝑚 = 𝑂(log(1/𝛿)/𝜖2)

samples from each of 𝑋,𝐻1 and 𝐻2, it performs 𝑂(𝑚) calls to the oracles EVAL𝐻𝑖
(𝛽) for 𝑖 ∈

{1, 2}, it performs 𝑂(𝑚) arithmetic operations and if some 𝐻𝑖 has 𝑑𝑇𝑉 (𝑋,𝐻𝑖) ≤ 𝜖, then, with
probability 1− 𝛿, it outputs an index 𝑖⋆ ∈ {1, 2} that satisfies 𝑑𝑇𝑉 (𝑋,𝐻𝑖⋆) ≤ 6𝜖.

Cover Construction. Additionally, our algorithm has to construct the cover for ℰ𝑇 (𝒜)-sums. For
both the sparse and the dense case, given the parameters 𝜖, 𝜚, 𝜃, 𝐵, we can consider the set 𝒜′

of the parameters’ space where 𝒜′ = 𝜚-Cone𝒜 ∩ {𝑎 : ‖𝑎‖ ≤ 𝑟crit} for some sufficiently large
𝑟crit ≤ (𝜚+ 1

𝜃 )·ln(1/𝜖)+ 1
2𝜃 ·ln(𝐵)+𝑂(𝜚+ 1

𝜃 ). Using Proposition 33, we can obtain a discretization
for this set in time 𝑇c. Let us define the total construction time of the cover of Theorem 3 as

𝑇 total
c = 𝑇c(𝒜, 𝑛, 𝜖/𝑛′

crit,𝑇 , 𝜚, 𝜃, 𝐵) + 𝑇c(𝒜, 𝑛, 𝜖/𝑚,𝑇 , 𝜚, 𝜃, 𝐵) . (4)
The first term corresponds to the sparse cover construction (𝑛′

crit = poly(𝐵,𝐿, 1/𝛾)/𝜖2) and the
second for the dense one (𝑚 ≤ 𝑛′ ·

√
𝐵/𝛾).

Remark 2 (On the runtime). Note that when 𝒜 is not a very complicated set, then, for any 𝑟 > 0,
the set 𝒜𝜚 ∩ B𝑟[0] can be 𝑂(𝜖)-covered in Euclidean distance in time polynomial to the size of the
cover. Therefore, in such cases, 𝑇𝑐 can be omitted from the execution time of our learning algorithm,
since it is dominated by the remaining terms.

7In our setting, given an exponential family distribution 𝐷 = ℰ𝑇 (𝑎), we should be able to compute (even
approximately) the value 𝐷(𝑥) given a query 𝑥 ∈ Z. We will require access to approximate evaluation oracles;
this is natural since we may use some approximation method to estimate the partition function 𝑍 and then
output the value 𝐷(𝑥) = exp(−𝑎 · 𝑇 (𝑥))/ ̃︀𝑍, where ̃︀𝑍 is the estimation of the partition function.

8De et al. [2014] provide this result in the context of distributions with finite support. However, the sample
and time complexity bounds they derive do not depend on the size of the support. What is in fact dependent
on the size of the support is the bit complexity of the algorithms (since a sample could require, in principle, an
arbitrarily large representation). In our case, we do not account for bit complexity (in fact, we focus on sample
complexity). One could either think that the bit complexity is a random variable, which will, in practice take
only a small number of possible values, due to the concentration properties of the distributions we examine or
impose a “hard bound” on the number of bits the algorithm reads for each sample.
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B.2.2 The Result and the Algorithm

The main learning result is stated in Theorem 26.
Theorem 26 (Weakly Proper Learner for SIIERVs). Let 𝑘 ∈ N and consider the exponential family
ℰ𝑇 (𝒜) with 𝒜 ⊆ R𝑘. Let 𝑛 ∈ N, accuracy 𝜖 ∈ (0, 1), confidence 𝛿 ∈ (0, 1) and let 𝑋 be an un-
known ℰ𝑇 (𝒜)-sum over Z of order 𝑛. Assume that Assumption 2 holds with parameters 𝜚,𝐵, 𝛾,Λ, 𝜃
and that Assumption 3 holds. There exists an algorithm PROPERLEARNER𝑋 (see Figure 2) with the
following properties: Given 𝑛, 𝜖, 𝛿, the algorithm uses

𝑚 = 𝑂

(︂
1

𝜖2
log(1/𝛿)

)︂
+ 𝑘 · ̃︀𝑂(1/𝜖2) · poly

(︂
𝐵,𝐿,

1

𝛾

)︂
· log

(︃
𝜚
√

Λ

𝜃

)︃
samples from 𝑋 and, in time

poly

⎛⎝𝑚,

(︃
𝜚 ·
√

Λ

𝜃

)︃𝑘·poly(𝐵, 1𝜖 ,
1
𝛾 )

,

(︃
𝑛2 · poly

(︂
𝐵,

1

𝛾

)︂
·𝑂

(︃
𝜚 ·
√

Λ

𝜃 · 𝜖

)︃)︃𝑘

, 𝑇 total
c

⎞⎠ ,

where 𝑇 total
c is given in (4), outputs a (succint description of a) distribution ̃︀𝑋 which satisfies

𝑑𝑇𝑉 (𝑋, ̃︀𝑋) ≤ 𝜖, with probability at least 1 − 𝛿 and, moreover, ̃︀𝑋 is an ℰ𝑇 (𝒜′)-sum of order
at most (

√
𝐵/𝛾) · 𝑛 and 𝒜′ = 𝜚-Cone𝒜.

The algorithm follows. As in the SIIURV case, there are two regimes resembling to the input sum
𝑋 having small (i.e., sparse) or large (i.e., dense) variance and a final hypothesis testing routine.
We now shortly depict the two learning sub-routines, corresponding to the small and large variance
cases. When 𝑋 is close to a sparse form, the learning algorithm runs a tournament between all
possible distributions of the sparse case and chooses the hypothesis that won each pairwise com-
petition, i.e., the tournament’s winner . The dense proper case is more challenging: Our ultimate
goal is to learn the dense form hypothesis that is close to 𝑋 with a sample complexity that does not
depend on 𝑛. Crucially, we have to make use of the structure of the cover. In the dense regime, the
input sum 𝑋 is close to a discretized Gaussian random variable and its parameters can be estimated
using 𝑂(1/𝜖2) samples. Having this approximation for 𝑋 , we run the tournament hypothesis testing
procedure between the estimated Gaussian and the distributions of the dense form. Hence, we draw
no more samples from 𝑋 , but instead we generate draws from the Gaussian. By a union bound on
the two events (i.e., the Gaussian is close to 𝑋 and that the winner of the tournament is close to
the Gaussian), we get a dense form that is close to 𝑋 . In the following, we may omit the ”weakly
proper” phrasing and simply use the term ”proper”.

Algorithm for SIIERVs: (𝜖, 𝛿)-Learning SIIERVS 𝑋 =
∑︀

𝑖∈[𝑛] 𝑋𝑖.

1. Run PROPERLEARNSPARSE𝑋(𝑛, 𝜖, 𝛿/3) of Claim 27 and get the distribution 𝐻𝑆 .

2. Run PROPERLEARNDENSE𝑋(𝑛, 𝜖, 𝛿/3) of Claim 28 and get the distribution 𝐻𝐷.

3. Return the distribution that is the output of SELECTHYPOTHESIS𝑋(𝐻𝑆 , 𝐻𝐷, 𝜖, 𝛿/3)
of Proposition 25.

Figure 2: Proper Learning algorithm for SIIERVs.

After describing these fundamental procedures, we are now ready to provide a complete proof of
our main learning result (see Theorem 26).

The Proof of Theorem 26. The analysis of Theorem 26 works as follows: Under Assumption
2, we analyze our proper learner. As we have already mentioned, the algorithm (Figure 2) runs as
follows: First, it calls the PROPERLEARNSPARSE𝑋 of Claim 27 with input (𝑛, 𝜖, 𝛿/3) and gets the
distribution 𝐻𝑆 . Then, it runs PROPERLEARNDENSE𝑋 of Claim 28 with input (𝑛, 𝜖, 𝛿/3) and gets
a distribution 𝐻𝐷, which lies inside the desired distribution class. In order to conclude the proper
learning part, via Proposition 25, it runs the procedure SELECTHYPOTHESIS𝑋(𝐻𝑆 , 𝐻𝐷) with pa-
rameter 𝜖, 𝛿/3. In conclusion, with probability at least 1−𝛿, the algorithm PROPERLEARNER𝑋 will
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satisfy the desiderata of Theorem 26. We divide the proof in a series of claims. Before presenting
the proof, we remind the reader that the following hold for the (𝐵1/2/𝛾, 𝜚-Cone)-proper 𝜖-cover
𝒟E = 𝒟E(𝜖) = 𝒟(𝑠)

E ∪ 𝒟
(𝑑)
E with:

|𝒟(𝑠)
E |+ |𝒟

(𝑑)
E | =

(︃
𝜚 ·
√

Λ

𝜃

)︃𝑘· ̃︀𝑂( 1
𝜖2

)·poly(𝐵,𝐿, 1𝛾 )

+

(︃
𝑛2 · poly

(︂
𝐵,

1

𝛾

)︂
·𝑂

(︃
𝜚 ·
√

Λ

𝜃 · 𝜖

)︃)︃𝑘

. (5)

Claim 27 (Proper Learning of Sparse Instances). Assume that Assumption 2 and Assumption 3 hold.
For any 𝑛, 𝜖, 𝛿 > 0, there is an algorithm PROPERLEARNSPARSE𝑋(𝑛, 𝜖, 𝛿) that given

𝑚 = 𝑂

(︂
1

𝜖2
log(1/𝛿)

)︂
+ 𝑂

(︃
𝑘 · ̃︀𝑂(︂ 1

𝜖2

)︂
· poly

(︂
𝐵,𝐿,

1

𝛾

)︂
· log

(︃
𝜚 ·
√

Λ

𝜃

)︃)︃
samples from the target ℰ𝑇 (𝒜)-sum 𝑋 over Z of order 𝑛, outputs a (succint description of a) hy-
pothesis distribution 𝐻𝑆 with the following guarantee: If 𝑋 is 𝜖-close to some element of 𝒟(𝑠)

E (𝜖)
(of Equation (5)), then it holds that 𝑑𝑇𝑉 (𝐻𝑆 , 𝑋) ≤ 𝑐1 · 𝜖, for some universal constant 𝑐1 ≥ 1,
with probability at least 1− 𝛿. Moreover, if 𝒟(𝑠)

E (𝜖) is the sparse subset of the weakly proper cover
𝒟E(𝜖), then 𝐻𝑆 lies in 𝒟(𝑠)

E (𝜖) and the running time of the algorithm is

poly
(︁
𝑚, 2𝑘·poly(𝐵,1/𝜖,1/𝛾)·log(𝜚

√
Λ/𝜃), 𝑇 sparse

c

)︁
.

In particular,

1. 𝐻𝑆 will be an ℰ𝑇 (𝜚-Cone𝒜)-sum of order 1
𝜖2 · poly(𝐵,𝐿, 1/𝛾) and,

2. 𝑇 sparse
c = 𝑇c(𝒜, 𝑛, 𝜖3/poly(𝐵,𝐿, 1/𝛾),𝑇 , 𝜚, 𝜃, 𝐵).

Proof. Let 𝜖 ∈ (0, 1). Under Assumption 2, according to our structural result, there exists a sparse
form cover 𝒟(𝑠)

E = 𝒟(𝑠)
E (𝜖) of radius 𝜖 whose size is equal to

𝑀 =
⃒⃒⃒
𝒟(𝑠)

E

⃒⃒⃒
≤

(︃
𝜚 ·
√

Λ

𝜃

)︃𝑘· ̃︀𝑂(1/𝜖2)·poly(𝐵,𝐿, 1𝛾 )

,

and each ℰ𝑇 (𝒜)-SIIRV of order 𝑛′
crit (the sparse SIIERVs) can be 𝜖-approximated by some distri-

bution ℰ𝑇 (𝜚-Cone𝒜)-SIIRV of order 𝑛′
crit. The algorithm has to construct the cover in time 𝑇 sparse

c
(with accuracy 𝜖/𝑛′

crit since we are in the sparse regime; this is indicated by the proof of the sparse
case). Let us assume that 𝑋 is 𝜖-close to a sparse form element in the cover 𝒟E(𝜖). Using Assump-
tion 3, we can apply the SELECTTOURNAMENT𝑋 algorithm of De et al. [2014] (see Proposition 6
which is a variant of Proposition 21) with input the distributions’ collection 𝒟(𝑠)

E with accuracy 𝜖
and confidence 𝛿. We observe that there exists a distribution from the collection that is 𝜖-close in
total variation distance and, so, the requirements are satisfied. Moreover, we assume that we have
sample oracle access and evaluation oracle access to any distribution in 𝒟(𝑠)

E . We can apply the
variant of Proposition 21: The algorithm makes 𝑂

(︀
1
𝜖2 (log(𝑀) + log(1/𝛿))

)︀
draws from 𝑋 and

from each 𝑌 that is in 𝒟(𝑠)
E , runs in time polynomial in the number of samples and in the size of the

collection and, with probability at least 1−𝛿, outputs an index 𝑖⋆ ∈ [𝑀 ] so that the sum 𝑌 ⋆ with the
corresponding parameters satisfies 𝑑𝑇𝑉 (𝑋,𝑌 ⋆) ≤ 6𝜖. We set 𝑐1 = 6. Moreover, in order to obtain
a detailed expression for the sample complexity, we have that

𝑚 = 𝑂

(︂
1

𝜖2
(log(𝑀) + log(1/𝛿))

)︂
.

The running time is poly (𝑚,𝑀, 𝑇 sparse
c ) . The result follows by replacing 𝑀 .

As a next step, we analyze the learning phase concerning the dense instances:
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Claim 28 (Proper Learning of Dense Instances). Under Assumption 2 and Assumption 3, for any
𝑛, 𝜖, 𝛿 > 0, there is an algorithm PROPERLEARNDENSE𝑋(𝑛, 𝜖, 𝛿) that given

𝑚 = 𝑂

(︂
1

𝜖2
log(1/𝛿)

)︂
samples from the target ℰ𝑇 (𝒜)-sum 𝑋 over Z of order 𝑛, outputs a (succint description of a) hy-
pothesis distribution 𝐻𝐷 with the following guarantee: If 𝑋 is 𝜖-close to a dense form ℰ𝑇 (𝒜)-sum
in the 𝒟E(𝜖) of Equation (5) , then it holds that 𝑑𝑇𝑉 (𝐻𝐷, 𝑋) ≤ 𝑐1 · 𝜖, for some absolute constant
𝑐1 ≥ 1, with probability at least 1− 𝛿. Moreover, if 𝒟(𝑑)

E (𝜖) is the dense subset in the proper cover
𝒟E(𝜖), then 𝐻𝐷 lies in 𝒟(𝑑)

E (𝜖) and the running time of the algorithm is

poly

⎛⎝𝑚,

(︃
𝑛2 · poly

(︂
𝐵,

1

𝛾

)︂
·𝑂

(︃
𝜚 ·
√

Λ

𝜃 · 𝜖

)︃)︃𝑘

, 𝑇 dense
c

⎞⎠ .

In particular,

1. 𝐻𝐷 will be an ℰ𝑇 (𝜚-Cone𝒜)-sum of order (
√
𝐵/𝛾) · 𝑛 and,

2. 𝑇 dense
c = 𝑇c(𝒜, 𝑛, 𝜖 · 𝛾/(𝑛 ·

√
𝐵),𝑇 , 𝜚, 𝜃, 𝐵).

Proof. Let us assume that 𝑋 is 𝜖-close to a dense form ℰ𝑇 (𝒜)-sum in the 𝒟E(𝜖). We apply Claim
24 to the target sum with some accuracy 𝜖′ and confidence 𝛿/2. Hence, with high probability, after
drawing 𝑂(log(1/𝛿)/𝜖2) samples from 𝑋 , we get parameters ̂︀𝜇 and ̂︀𝜎2 so that the random variable
𝑍 ∼ 𝒵(̂︀𝜇, ̂︀𝜎2) satisfies

𝑑𝑇𝑉 (𝑋,𝑍) ≤ 𝜖 .

The accuracy 𝜖′ is chosen so that the resulting total variation gap is 𝜖. Our assumption about 𝑋
implies that there exists a distribution 𝑌 is a sum of i.i.d. random variables with common parameter
vector 𝑏 and distribution ℰ𝑇 (𝑏), then 𝑋 is close to 𝑌 . So, there exists a cover 𝒟(𝑑)

E = 𝒟(𝑑)
E (𝜖) of

radius 𝜖 for dense instances of size⃒⃒⃒
𝒟(𝑑)

E

⃒⃒⃒
=

(︃
𝑛2 · poly

(︂
𝐵,

1

𝛾

)︂
·𝑂

(︃
𝜚 ·
√

Λ

𝜃 · 𝜖

)︃)︃𝑘

.

The algorithm constructs the cover in time 𝑇 dense
c (with accuracy 𝜖/(𝑛

√
𝐵/𝛾) as indicated by the

proof of the dense case). By the structure of the cover, there exists a distribution 𝑌 so that

1. 𝑌 lies in 𝒟(𝑑)
E ,

2. and 𝑑𝑇𝑉 (𝑋,𝑌 ) ≤ 𝜖.

Hence, by the triangle inequality, we have that 𝑑𝑇𝑉 (𝑌,𝑍) ≤ 2𝜖. We then apply the algorithm
SELECTTOURNAMENT𝑋 (we use the modification of Proposition 21 (see De et al. [2014] with
hypothesis selection algorithm as in Proposition 25) with the following input:

1. Let the target 𝐷 be the distribution of 𝑍 (i.e., the discretized Gaussian),

2. consider the collection of distributions corresponding to the set 𝒟(𝑑)
E ,

3. and accuracy 2𝜖 and confidence 𝛿/2.

Note that there exists a distribution in the provided collection that is 2𝜖-close to the target distri-
bution and, using Assumption 3, we have the required sample and evaluation oracle access. The
SELECTTOURNAMENT𝑋 procedure makes 𝑂

(︁
1
𝜖2

(︁
log
⃒⃒⃒
𝒟(𝑑)

E

⃒⃒⃒
+ log(1/𝛿)

)︁)︁
draws from the target

𝑍 and from each distribution in the collection. This is possible and it only costs in runtime. Recall
that we have assumed samples access to a discretized Gaussian oracle and sample and evaluation
oracle access to the elements of the cover. Moreover, it runs in time polynomial in the number of
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samples and in the size of the collection (i.e., the runtime depends on 𝑛) and, with probability at
least 1− 𝛿/2, outputs an index 𝑖⋆ ∈

[︁⃒⃒⃒
𝒟(𝑑)

E

⃒⃒⃒]︁
so that the sum 𝑌 ⋆ with the corresponding parameters

satisfies
𝑑𝑇𝑉 (𝑍, 𝑌 ⋆) ≤ 12𝜖 .

Hence, it holds that 𝑑𝑇𝑉 (𝑋,𝑌 ⋆) ≤ 13𝜖. Let 𝑐1 = 13. Applying union bound, we have that, with
probability at least 1− 𝛿, the algorithm PROPERLEARNDENSE𝑋 will use

𝑚 = 𝑂(log(1/𝛿)/𝜖2)

samples (from the target 𝑋) and, in time poly
(︁
𝑚, 1/𝜖, log(1/𝛿),

⃒⃒⃒
𝒟(𝑑)

E

⃒⃒⃒)︁
, it will output a distribu-

tion 𝐻𝐷 so that

1. 𝐻𝐷 lies inside 𝒟(𝑑)
E ,

2. and 𝑑𝑇𝑉 (𝑋,𝐻𝐷) ≤ 13𝜖.

The result follows.

By combining Claim 27 and Claim 28 with the guarantees of Proposition 25, Theorem 26 follows.

C The Proof of Theorem 2 (Structural Result for SIIURVs)

Proof of Theorem 2. Let us consider the SIIURV 𝑋 =
∑︀

𝑖∈[𝑛′] 𝑋𝑖 for some 𝑛′ ≤ 𝑛 where the
distribution of each 𝑋𝑖 satisfies Assumption 1. There exists a critical threshold value 𝑛′

crit, to be
decided, that indicates whether 𝑋 belongs to the sparse or to the dense form. Let us first consider
the case where 𝑛′ ≥ 𝑛′

crit.
Dense Case. In this case, we will approximate 𝑋 with a suitable discretized Gaussian random
variable. Let 𝜇 = E[𝑋] =

∑︀
𝑖∈[𝑛′] 𝜇𝑖, where 𝜇𝑖 = E[𝑋𝑖] and 𝜎2 = Var(𝑋) =

∑︀
𝑖∈[𝑛′] 𝜎

2
𝑖 , where

𝜎2
𝑖 = Var(𝑋𝑖) and consider some random variable 𝑍𝑋 with 𝑍𝑋 ∼ 𝒵(𝜇, 𝜎2). Moreover, we set

𝛽 =
∑︀

𝑖∈[𝑛′] 𝛽𝑖 where 𝛽𝑖 =
∑︀

𝑖∈[𝑛′] E
[︀
|𝑋𝑖 −E[𝑋𝑖]|3

]︀
and consider 𝛿 ∈ [0, 1] to be such that

𝛿 = max
𝑖∈[𝑛′]

𝑑𝑇𝑉 (𝑋 −𝑋𝑖, 𝑋 −𝑋𝑖 + 1) .

If we apply the Gaussian approximation lemma (see Lemma 19), we get that

𝑑𝑇𝑉 (𝑋,𝑍𝑋) ≤ 𝑂(1/𝜎) + 𝑂(𝛿) + 𝑂(𝛽/𝜎3) + 𝑂(𝛿𝛽/𝜎2) .

Our goal is to control the right-hand side of this inequality. In fact, it is reasonable to upper bound
the ratio between the sum of third centered moments to the variance, to lower bound the variance of
𝑋 and to upper bound 𝛿. In what follows, we insist on these three desiderata.

Claim 29 (Variance Lower Bound). It holds that Var(𝑋) ≥ 𝑛′ · 𝛾/4.

Proof. Let us focus on a particular 𝑋𝑖 in the sum that satisfies Assumption 1. Let 𝑀 be a mode of the
unimodal random variable 𝑋𝑖. We have that Var(𝑋𝑖) ≥ 1

4

∑︀
𝑥∈Z Pr[𝑥]|𝑥−𝑀 |2 ≥ 1

4 min𝑥 ̸=𝑀 |𝑥−
𝑀 |2

∑︀
�̸�=𝑀 Pr[𝑥] = Θ(𝛾), since we can sum over 𝑥 ̸= 𝑀 and this sum has mass at least 𝛾, also

min𝑥 ̸=𝑀 |𝑥−𝑀 |2 = 1. Since the random variables 𝑋𝑖 are independent, the SIIRV 𝑋 has variance
at least 𝜎2 = Ω(𝑛′ · 𝛾).

Claim 30 (Third Centered Moment - Variance Ratio). It holds that 𝛽/𝜎2 = 𝑂
(︁

𝐵
𝛾

)︁
.

Proof. We have that
𝛽

𝜎2
=

∑︀
𝑖∈[𝑛′] 𝛽𝑖∑︀
𝑖∈[𝑛′] 𝜎

2
𝑖
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Note that each term in the above ratio is non-negative and so we can apply Lemma 13 in order to
obtain

𝛽

𝜎2
≤ max

𝑖∈[𝑛′]

𝛽𝑖

𝜎2
𝑖

Using the proof of the previous claim, we have that 𝜎2
𝑖 = Ω(𝛾). Moreover, the fourth centered

moment is upper bounded by 𝐵 and so

𝛽

𝜎2
= 𝑂

(︂
𝐵

𝛾

)︂
.

Claim 31 (TV Shift). It holds that 𝛿 = 𝑂

(︂
1√

1+(𝑛′−1)·(1−𝛾)

)︂
.

Proof. For a single term 𝑋𝑖, it holds that

𝑑𝑇𝑉 (𝑋𝑖, 𝑋𝑖 + 1) =
1

2
·
∑︁
𝑥∈Z
|Pr[𝑋𝑖 = 𝑥]−Pr[𝑋𝑖 = 𝑥− 1]|

Let 𝑀 be a mode of 𝑋𝑖. Since 𝑋𝑖 is unimodal, we get a telescopic sum and 𝑑𝑇𝑉 (𝑋𝑖, 𝑋𝑖 + 1) =
Pr[𝑋𝑖 = 𝑀 ]. Hence, we get that the TV shift is at most 1− 𝛾. We now apply Lemma 18 and get

𝑑𝑇𝑉 (𝑋 −𝑋𝑖, 𝑋 −𝑋𝑖 + 1) = 𝑑𝑇𝑉

⎛⎝∑︁
𝑗 ̸=𝑖

𝑋𝑗 , 1 +
∑︁
𝑗 ̸=𝑖

𝑋𝑗

⎞⎠ ≤ √︀
2/𝜋√︁

1
4 +

∑︀
𝑗 ̸=𝑖 𝑑𝑇𝑉 (𝑋𝑗 , 𝑋𝑗 + 1)

.

This implies that

𝑑𝑇𝑉 (𝑋 −𝑋𝑖, 𝑋 −𝑋𝑖 + 1) = 𝑂

(︃
1√︀

1 + (𝑛′ − 1) · (1− 𝛾)

)︃
.

Taking the supremum of 𝑖 ∈ [𝑛′], we get that

𝛿 = 𝑂

(︃
1√︀

1 + (𝑛′ − 1) · (1− 𝛾)

)︃
.

Claim 32. For 𝑛′ ≥ Ω
(︁

𝐵2

𝛾3𝜖2

)︁
, we get that 𝑑𝑇𝑉 (𝑋,𝒵𝑋) ≤ 𝜖.

Proof. We require that 1
𝜎 · 𝛽/𝜎

2 ≤ 𝜖, which implies that 𝐵
𝛾
√
𝑛′·𝛾 ≤ 𝜖 and so 𝑛′ = Ω(𝐵2/(𝛾3𝜖2)).

Also, we require that 𝛿𝐵/𝛾 ≤ 𝜖, which implies that
√︀

1 + (𝑛′ − 1)(1− 𝛾) ≥ 𝐵
𝛾𝜖 . This is satisfied

by the above choice of 𝑛′. Hence, we can choose 𝑛′
crit = Ω

(︁
𝐵2

𝛾3𝜖2

)︁
.

Sparse Case. Let us now focus on the case 𝑛′ ≤ 𝐵2

𝛾3𝜖2 . For the term 𝑋𝑖 with mode 𝑀 (𝑀 could
be any mode of 𝑋𝑖, since 𝑋𝑖 might have many consequent modes and still be considered unimodal),
we have that

E |𝑋𝑖 −𝑀 |4 = 𝑂(𝐵) ,

since |E[𝑋𝑖]−𝑀 |2 ≤ 3Var(𝑋𝑖) whenever 𝑋𝑖 is unimodal (see Johnson and Rogers [1951]).

It holds that |𝑥−𝑀 |4 Pr[𝑋𝑖 = 𝑥] ≤ 𝑂(𝐵) for any 𝑥 ∈ Z. Let us consider the points 𝑥 ∈ Z so that
Pr[𝑋𝑖 = 𝑥] ≥ 𝜖

|𝑥−𝑀 |3.5 . It holds that

𝑂(𝐵) ≥ |𝑥−𝑀 |4 Pr[𝑋𝑖 = 𝑥] ≥ 𝜖 ·
√︀
|𝑥−𝑀 |

and so these points lie in
|𝑥−𝑀 | ≤ 𝐵2/𝜖2
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We have that ∑︁
𝑥:|𝑥−𝑀 |>𝐵2/𝜖2

Pr[𝑋𝑖 = 𝑥] ≤
∑︁

𝑥:|𝑥−𝑀 |>𝐵2/𝜖2

𝜖

|𝑥−𝑀 |3.5
= 𝑂(𝜖) ,

since
∑︀

𝑥:|𝑥−𝑀 |>𝐵2/𝜖2
1

|𝑥−𝑀 |3.5 ≤
∑︀

𝑖≥1 1/𝑖2 = 𝜋2/6. This implies that there exists a distribution
supported on the bounded interval [𝑀 −𝐵2/𝜖2,𝑀 +𝐵2/𝜖2] which is (1− 𝜖) close in total variation
to 𝑋𝑖. In order to get the desired result, we have to make 𝜖 = ̃︀𝜖/𝑛′ and so the SIIRV 𝑋 will bẽ︀𝜖 close in statistical distance to a discrete random variable 𝑌 whose support is included within an
interval of size at most (𝑛′)3 · 𝐵2/̃︀𝜖2 = poly(𝐵/𝛾̃︀𝜖) (due to convolution). Moreover, for each
𝑋𝑖, the mode takes some out of 𝐿 at most values (due to condition (2)) and therefore there are
𝐿𝑛′

= 𝐿poly(𝐵,1/𝛾,1/̃︀𝜖) possible choices for the interval that contains the support of 𝑌 (since fixing
the modes fixes the intervals corresponding to each term 𝑋𝑖).

For every such interval ℐ, we know that it has size at most 𝑠 = poly(𝐵, 1/𝛾, 1/̃︀𝜖). Each point in the
interval can be assigned by 𝑌 a value within [0, 1]. Therefore, if we quantize the possible values for
each point in the interval ℐ into 𝑠/̃︀𝜖 equidistant levels, then we get 𝑠𝑠/̃︀𝜖 = 2poly(𝐵,1/𝛾,1/̃︀𝜖) possible
distributions 𝑌 ′, corresponding to ℐ. We know that for some ℐ there exists some distribution 𝑌 ′ that
is 𝑂(̃︀𝜖) close to 𝑌 (and hence to 𝑋) in total variation distance. The total number of possibilities is
𝐿poly(𝐵,1/𝛾,1/̃︀𝜖).
D The Proof of Theorem 3 (Structural Result for SIIERVs)

Proof. We consider some exponential family ℰ𝑇 (𝒜), the class ℰ𝑇 (𝒜)-SIIRVs of order 𝑛 and any
random variable 𝑋 with distribution within this class. That is

𝑋 =
∑︁
𝑖∈[𝑛′]

𝑋𝑖 , where 𝑛′ ≤ 𝑛,𝑋𝑖 ∼ ℰ𝑇 (𝑎𝑖),𝑎𝑖 ∈ 𝒜 and (𝑋𝑖)𝑖 independent.

We will show that, under our assumptions (see Assumption 2) we can approximate the distribution
of any such 𝑋 by some distribution lying within a small subset of ℰ𝑇 (𝒜′)-SIIRVs of order 𝑚, where
𝑚 ≤ 𝜚 · 𝑛 and 𝒜′ = Op𝒜, for some 𝜚 ≥ 1 and some extensive set operator Op.

Sparse Case. The proof we will give has two main ingredients. The first one is Theorem 5,
which states that, under our assumptions, we may sparsify the parameter space into a small set
ℬ ⊆ 𝜚-Cone𝒜. The first ingredient directly implies that if 𝑛′ is small, then the distribution of 𝑋
must be close to the distribution of some random variable 𝑌 =

∑︀
𝑖∈[𝑛′] 𝑌𝑖, where 𝑌𝑖 ∼ ℰ𝑇 (𝑏𝑖),

𝑏𝑖 ∈ ℬ and (𝑌𝑖)𝑖 are independent. In particular, considering some 𝑛′
crit ∈ N which will be specified

later, whenever 𝑛′ ≤ 𝑛′
crit, Theorem 5, applied for 𝜖 ← 𝜖/𝑛′

crit gives some set ℬ ⊆ 𝜚-Cone𝒜 with

|ℬ|1/𝑘 ≤ ̃︀𝑂(
𝑛′

crit·𝜚·
√
Λ

𝜖·𝜃 · log(𝐵)) so that each ℰ𝑇 (𝒜)-SIIRV of order 𝑛′
crit can be 𝜖-approximated by

some ℰ𝑇 (ℬ)-SIIRV of order 𝑛′
crit. Observe that there are only

|ℬ|𝑛
′
crit ≤

(︃̃︀𝑂(︃𝑛′
crit · 𝜚 ·

√
Λ

𝜖 · 𝜃
· log(𝐵)

)︃)︃𝑘·𝑛′
crit

different ℰ𝑇 (ℬ)-SIIRVs of order 𝑛′
crit. The value 𝑛′

crit will be obtained by the upcoming dense case.

Dense Case. The second ingredient is Lemma 19, which indicates that when we have many terms
in the sum, then the distribution of 𝑋 can be accurately represented by its mean and variance alone,
since 𝑋 will be close to a Discretized Gaussian distribution. Therefore, when 𝑛′ ≥ 𝑛′

crit (where 𝑛′
crit

sufficiently large for our purposes), we might try to find some SIIERV 𝑌 that also has sufficiently
many terms (and hence is accurately represented by its mean and variance alone) whose expectation
and variance are close to the expectation and variance of 𝑋 respectively.

In particular, our proof consists of the following parts.

1. We prove that a random variable 𝑍𝑋 that follows the discretized Gaussian distribution with
mean E[𝑋] and variance Var(𝑋) is 𝑂(𝜖)-close in total variation distance to 𝑋 , given that
𝑛′(≥ 𝑛′

crit) is large enough.
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2. We then find some random variables 𝑌 ′ where 𝑌 ′ =
∑︀

𝑖∈[𝑚] 𝑌
′
𝑖 and 𝑌 ′

1 , . . . , 𝑌
′
𝑚 are

i.i.d., each following the distribution ℰ𝑇 (𝑏′) for some 𝑏′ ∈ 𝒜 so that E[𝑌 ′] ≈ E[𝑋]
and Var(𝑌 ′) ≈ Var(𝑋).

3. Next, we show that 𝑌 ′ is 𝑂(𝜖)-close to a discretized Gaussian random variable 𝑍𝑌 ′ with
mean E[𝑌 ′] and variance Var(𝑌 ′), when 𝑛′ is large enough.

4. Afterwards, we show that 𝑍𝑋 and 𝑍𝑌 ′ are 𝑂(𝜖)-close in total variation distance.

5. Finally, we use Theorem 5 for the distribution ℰ𝑇 (𝑏′) in order to discretize the parameter
vector.

In fact, our goal here is to acquire a set of inequalities of the form 𝑛′ ≥ 𝑛𝑖, for 𝑛𝑖 > 0 so that if 𝑛′

satisfies all of them, then each one of the steps presented above corresponds to some 𝑂(𝜖) deviation
in total variation distance.

Step 1: Gaussian Approximation. Let 𝜇 = E[𝑋] =
∑︀

𝑖∈[𝑛′] 𝜇𝑖, where 𝜇𝑖 = E[𝑋𝑖] and 𝜎2 =

Var(𝑋) =
∑︀

𝑖∈[𝑛′] 𝜎
2
𝑖 , where 𝜎2

𝑖 = Var(𝑋𝑖) and consider some random variable 𝑍𝑋 with 𝑍𝑋 ∼
𝒵(𝜇, 𝜎2). Let 𝛽 =

∑︀
𝑖∈[𝑛′] 𝛽𝑖 where 𝛽𝑖 =

∑︀
𝑖∈[𝑛′] E[|𝑋𝑖 −E[𝑋𝑖]|3] and let 𝛿 ∈ [0, 1] such that

𝛿 = max
𝑖∈[𝑛′]

𝑑𝑇𝑉 (𝑋 −𝑋𝑖, 𝑋 −𝑋𝑖 + 1) .

From Lemma 19, we get that

𝑑𝑇𝑉 (𝑋,𝑍𝑋) ≤ 𝑂(1/𝜎) + 𝑂(𝛿) + 𝑂(𝛽/𝜎3) + 𝑂(𝛿 · 𝛽/𝜎2) .

First, we upper bound the quantity 𝛽/𝜎2. Using Lemma 13, we have that

𝛽

𝜎2
≤ max

𝑖∈[𝑛′]

𝛽𝑖

𝜎2
𝑖

≤ 𝐵/𝛾 ,

due to assumptions (4) and (7). Next, we provide a lower bound for 𝜎2. In particular, we get that

𝜎2 ≥ 𝑛′ · 𝛾 ,

due to assumption (7). We now demand that 𝑛′ is large enough so that(︂
1 +

𝛽

𝜎2

)︂
· 1

𝜎
≤ 𝑂(𝜖) ,

thereby concluding to the following demand for the number of summands 𝑛′:

𝑛′ ≥ 𝑛1 , where 𝑛1 = 𝑂

(︂
𝐵2

𝜖2 · 𝛾3

)︂
.

Finally, we calculate 𝛿 and provide another demand of the form 𝑛′ ≥ 𝑛𝑖 for some 𝑛𝑖 > 0. For any
𝑎 ∈ 𝒜 and any 𝑊 ∼ ℰ𝑇 (𝑎), we have that

2𝑑𝑇𝑉 (𝑊,𝑊 + 1) =
1

Z𝑇 (𝑎)

∑︁
𝑥∈Z
|exp(−𝑎 · 𝑇 (𝑥))− exp(−𝑎 · 𝑇 (𝑥 + 1))| .

By using the unimodatily assumption (2), we get that the summation in the right hand side of the
above equation is telescopic on both sides around 𝑀𝑎 and therefore

𝑑𝑇𝑉 (𝑊,𝑊 + 1) = Pr[𝑊 = 𝑀𝑎] .

We now bound Pr[𝑊 = 𝑀𝑎] for any 𝑎 ∈ 𝒜 by using Lemma 35 with 𝜂 = 1/2, 𝑠 = 2 and 𝜅 > 0 to
be decided. Note that by picking smaller 𝜂 we can shrink the order of ℓ but cannot make it smaller
than 𝑂(𝐵5/4). We get some ℓ ≤ 𝑒2𝜅 ·𝑂(𝐵2.5) so that

E[|𝑊 −𝑀𝑎|2] ≤ ℓ2 ·Pr[𝑊 ̸= 𝑀𝑎] + 𝑒−𝜅 ·𝑂(1) .

We pick 𝜅 = ln(𝑂(1/𝛾)) to get

E[|𝑊 −𝑀𝑎|2] ≤ ℓ2 ·Pr[𝑊 ̸= 𝑀𝑎] + 𝛾/2 .
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We also know that E[|𝑊 −𝑀𝑎|2] ≥ Var𝑎(𝑊 ) ≥ 𝛾. Hence, we have

1−Pr[𝑊 = 𝑀𝑎] ≥ Ω(𝐵5/𝛾5) .

Moreover, by using Lemma 18, we get that

𝑑𝑇𝑉 (𝑋,𝑋 −𝑋𝑖 + 1) ≤
√︀

2/𝜋√︁
1
4 + (𝑛′ − 1) inf𝑎∈𝒜(1− 𝑑𝑇𝑉 (𝑊𝑎, 1 + 𝑊𝑎))

,

where 𝑊𝑎 ∼ ℰ𝑇 (𝑎).

We conlcude to the following demand for the number of summands 𝑛′ (so that we have (1 +𝛽/𝜎2) ·
𝛿 ≤ 𝑂(𝜖)):

𝑛′ ≥ 𝑛2 , where 𝑛2 = 𝑂

(︂
𝐵7

𝜖2 · 𝛾7

)︂
.

Step 2: Matching Variances and Expectations. In this step, we will find some random variable
𝑌 ′ that is the sum of a number of i.i.d. random variables within ℰ𝑇 (𝒜) such that the expectation
(resp. variance) of 𝑌 ′ is close to the expectation (resp. variance) of 𝑋 . We will split cases according
to the sign of the expectation E[𝑋].

• If E[𝑋] = 0, then we have
∑︀

𝑖∈[𝑛′] E[𝑋𝑖] = 0, which implies that either E[𝑋𝑗 ] = 0 for
some 𝑗 ∈ [𝑛′] (in which case we may consider 𝑏′ = 𝑎𝑗), or that E[𝑋𝑖] · E[𝑋𝑗 ] < 0, for
some 𝑖, 𝑗 ∈ [𝑛′], which, since E𝑎[𝑊 ] is a continuous function when 𝑎 ∈ 𝒜 (see Lemma
36), gives by intermediate value theorem (and the fact that 𝒜 is connected by assumption
(6)) some 𝑏′ ∈ 𝒜 with E𝑏′ [𝑊 ] = 0.

We now pick

𝑚 =

⌈︂
Var(𝑋)

Var𝑏′(𝑊 )

⌉︂
.

We have that Var(𝑌 ′) = 𝑚 ·Var𝑏′(𝑊 ) ∈ [Var(𝑋),Var(𝑋) + Var𝑏′(𝑊 )] and hence
we get that Var(𝑌 ′) ∈ [Var(𝑋),Var(𝑋) +

√
𝐵], due to assumption (4) and the fact that

𝑏′ ∈ 𝒜. Moreover, we have that E[𝑋] = E[𝑌 ′] = 0.

• If E[𝑋] > 0, then we split 𝑋 =
∑︀

𝑖∈[𝑛′] 𝑋𝑖 into three summations 𝑋 = 𝑋+ +𝑋− +𝑋0,
according to the sign of E[𝑋𝑖] (for example 𝑋+ =

∑︀
𝑖∈𝐼+ 𝑋𝑖, where 𝐼+ is the set of

𝑖 ∈ [𝑛′] so that E[𝑋𝑖] > 0}). We then have that E[𝑋+] > |E[𝑋−]| (since E[𝑋] > 0) and

Var(𝑋)

E[𝑋]
=

Var(𝑋+) + Var(𝑋−) + Var(𝑋0)

E[𝑋+]− |E[𝑋−]|
≥ Var(𝑋+)

E[𝑋+]
.

Moreover, we have that

Var(𝑋+)

E[𝑋+]
=

∑︀
𝑖∈𝐼+ Var(𝑋𝑖)∑︀
𝑖∈𝐼+ E[𝑋𝑖]

≥ min
𝑖∈[𝑛′]

Var(𝑋𝑖)

E[𝑋𝑖]
,

since Var(𝑋𝑖),E[𝑋𝑖] > 0, for any 𝑖 ∈ 𝐼+. Recall that the distribution of 𝑋𝑖 is ℰ𝑇 (𝑎𝑖) for
some 𝑎𝑖 ∈ 𝒜.

Suppose, first that there exists some 𝑗 ∈ [𝑛′] so that E[𝑋𝑗 ] ≤ 0 (i.e., 𝐼0 ∪ 𝐼− ̸= ∅).
Then, there exists some 𝑎𝑗 ∈ 𝒜 such that E𝑎𝑗

[𝑊 ] ≤ 0. Since 𝒜 is connected, there
exists some path connecting 𝑎𝑖 and 𝑎𝑗 . Let 𝑎′ be the first point in the path between 𝑎𝑖

and 𝑎𝑗 (beginning from 𝑎𝑖) so that E𝑎′ [𝑊 ] = 0. We know that there exists such a point
and that when 𝑎 goes from 𝑎𝑖 to 𝑎′ through the path we described, E𝑎[𝑊 ] always remains
positive (since it is a continuous function by Lemma 36). Moreover, as 𝑎 approaches 𝑎′, the
expectation E𝑎[𝑊 ] becomes arbitrarily small, while the variance Var𝑎(𝑊 ) remains lower
bounded by 𝛾 (due to assumption (7)). Let 𝑃 denote the path from 𝑎𝑖 to 𝑎′, excluding 𝑎′.
Then the quantity Var𝑎(𝑊 )/E𝑎[𝑊 ] is a continuous function of 𝑎 when 𝑎 ∈ 𝑃 , due to
Lemma 36 and the fact that E𝑎[𝑊 ] > 0 for any 𝑎 ∈ 𝑃 . Also, we have that as 𝑎 → 𝑎′
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(through the path 𝑃 ), Var𝑎(𝑊 )/E𝑎[𝑊 ] → ∞ and therefore, due to the intermediate
value theorem, there exists some 𝑏′ ∈ 𝑃 ⊆ 𝒜 so that

Var𝑏′(𝑊 )

E𝑏′ [𝑊 ]
=

Var(𝑋)

E[𝑋]
∈
[︂
Var𝑎𝑖(𝑊 )

E𝑎𝑖
[𝑊 ]

,∞
)︂

.

When E[𝑋𝑖] > 0 for any 𝑖 ∈ [𝑛′], we have that

Var(𝑋)

E[𝑋]
=

Var(𝑋+)

E[𝑋+]
∈
[︂

min
𝑖∈[𝑛′]

Var(𝑋𝑖)

E[𝑋𝑖]
, max
𝑖∈[𝑛′]

Var(𝑋𝑖)

E[𝑋𝑖]

]︂
,

since all terms are positive. By a similar continuity argument we get once again that there
exists some 𝑏′ ∈ 𝒜 so that

Var𝑏′(𝑊 )

E𝑏′ [𝑊 ]
=

Var(𝑋)

E[𝑋]
.

We may pick

𝑚 =

⌈︂
Var(𝑋)

Var𝑏′(𝑊 )

⌉︂
.

We have that Var(𝑌 ′) = 𝑚 ·Var𝑏′(𝑊 ) ∈ [Var(𝑋),Var(𝑋) + Var𝑏′(𝑊 )] and hence
we get that Var(𝑌 ′) ∈ [Var(𝑋),Var(𝑋) +

√
𝐵], due to assumption (4) and the fact that

𝑏′ ∈ 𝒜. Moreover, due to the selection of 𝑏′ we have that

𝑚 =

⌈︂
E(𝑋)

E𝑏′ [𝑊 ]

⌉︂
.

Hence, we get the following bound for the expectation of 𝑌 ′ with respect to the expectation
of 𝑋

E[𝑌 ′] = 𝑚 ·E
𝑏′

[𝑊 ] ∈
[︂
E[𝑋],E[𝑋] + E

𝑏′
[𝑊 ]

]︂
• If E[𝑋] < 0, then we may use an analogous reasoning as for the case that E[𝑋] > 0 to

prove the existence of some 𝑏′ ∈ 𝒜 so that E[𝑌 ′] ∈ [E[𝑋],E[𝑋] + E𝑏′ [𝑊 ]] and also
Var(𝑌 ′) ∈ [Var(𝑋),Var(𝑋) +

√
𝐵].

Therefore, in any case, we have proven that for some 𝑏′ ∈ 𝒜, the random variable 𝑌 ′ =
∑︀

𝑖∈[𝑚] 𝑌
′
𝑖

where 𝑌 ′
𝑖 are i.i.d. random variables following the distribution ℰ𝑇 (𝑏′) has

E[𝑋] ≤ E[𝑌 ′] ≤ E[𝑋] + E
𝑏′

[𝑊 ] and Var(𝑋) ≤ Var(𝑌 ′) ≤ Var(𝑋) +
√
𝐵 .

One merit of the result presented above is that the difference between the variances (resp. expec-
tations) of 𝑋 and 𝑌 ′ does not depend on the number of terms 𝑛′ of 𝑋 . This is crucial in order to
be able to apply Lemma 17 to show that whenever 𝑛′ is large enough, 𝑋 is close to some 𝑌 ′ as
described above.

Step 3: 𝑌 ′ is similar to a Gaussian. In this step, we use the same arguments as in Step 1 to
find a sufficient condition for 𝑛′ so that 𝑌 ′ is 𝑂(𝜖)-close in total variation distance to some 𝑍𝑌 ′ ∼
𝒵(E[𝑌 ′],Var(𝑌 ′)). In particular, the quantities of interest are three. First, the ratio of the sum of
the third centralized moments of 𝑌 ′

𝑖 to the variance of 𝑌 ′, for which the upper bound we provided
in Step 1 continues to hold. Second, the lower bound for the variance of 𝑌 ′, which is 𝑚 · 𝛾. Third,
the shift distance 𝛿𝑌 ′ in which, 𝑚 will appear in the denominator in the position of 𝑛′.

We have that 𝑚 ≥ Var(𝑋)
Var𝑏′ (𝑊 ) ≥ 𝑛′ · 𝛾/

√
𝐵. Therefore, applying the similar demands for the shift

distance as in Step 1, we get the following sufficient demand for 𝑛′

𝑛′ ≥ 𝑛3, where 𝑛3 = 𝑂

(︂
𝐵7.5

𝜖2 · 𝛾8

)︂
.
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Step 4: The Gaussian approximations are close. In this step, we make use of Lemma 17 in order
to find sufficient conditions for 𝑛′ so that 𝑋 and 𝑌 ′ are 𝑂(𝜖) close in total variation distance. We
have that |E[𝑋]−E[𝑌 ′]| ≤ |E𝑏′ [𝑊 ]| ≤ E𝑏′ [|𝑊 −𝑀𝑏′ |]+ |𝑀𝑏′ | ≤ 𝐵1/4 +𝐿 (due to assumptions
(4) and (3)) and |Var(𝑋)−Var(𝑌 ′)| ≤

√
𝐵 and also Var(𝑋) ≤ Var(𝑌 ′). Hence, by Lemma 17,

which bounds the total variation distance between two discretized Gaussians using the differences
of their parameters, we get that it is sufficient that

Var(𝑋) ≥ (𝐵1/4 + 𝐿)2/𝜖2 and Var(𝑋) ≥
√
𝐵/𝜖 .

We know that Var(𝑋) ≥ 𝑛′ · 𝛾 (by assumption (7)). We arrive to the following sufficient condition
for 𝑛′.

𝑛′ ≥ 𝑛4, where 𝑛4 = 𝑂

(︃
𝐿2 +

√
𝐵

𝜖2 · 𝛾2

)︃
.

Gathering all of the conditions for 𝑛′, we get that 𝑛′
crit = 1

𝜖2 · poly(𝐵,𝐿, 1/𝛾).

Step 5: Discretization. Finally, we make use of Theorem 5 in order to discretize the space of
possible parameter vectors. In particular, we find a sparse set (subset of 𝒜𝜚) that contains (for any
input distribution of 𝑋) some 𝑏 so that if 𝑌 =

∑︀
𝑖∈[𝑚] 𝑌𝑖 with (𝑌𝑖)𝑖 i.i.d. with distribution ℰ𝑇 (𝑏),

then 𝑌, 𝑌 ′ are 𝑂(𝜖/𝑚) close in total variation distance. We apply Theorem 5 with error margin
𝜖/𝑚, using the fact that 𝑚 ≤ 𝑛′ ·

√
𝐵/𝛾 to quantify our results.

We get that 𝑋 is 𝑂(𝜖) close to 𝑌 in total variation distance.

E Bounding the Parameter Space (Theorem 6)

E.1 The Proof of Theorem 6 (Bounding the Parameter Space)

We restate the theorem we are going to prove for readers’ convenience.
Theorem. Under assumptions (1), (2), (3) and (4), there exists some value 𝜃 = 𝜃(𝒜,𝑇 ) > 0
depending on the geometric properties of 𝒜 and 𝑇 , such that for any 𝜖 ∈ (0, 1) and any 𝑎 ∈ 𝒜,
there exists some 𝑏 ∈ 𝜚-Cone𝒜 with ‖𝑏‖ ≤ (𝜚 + 1

𝜃 ) · ln(1/𝜖) + 1
2𝜃 · ln(𝐵) + 𝑂(𝜚 + 1

𝜃 ) such that

𝑑𝑇𝑉 (ℰ𝑇 (𝑎), ℰ𝑇 (𝑏)) ≤ 𝜖 .

In order to show this result, we make use of Lemma 7.

Proof. Let 𝑎 ∈ 𝜚-Cone𝒜 with ‖𝑎‖2 ≥ 𝑟crit with 𝑟crit ≥ 𝜚 to be decided. Our goal is to provide a
parameter vector 𝑏 so that ‖𝑏‖2 = 𝑟crit and 𝑑𝑇𝑉 (ℰ𝑇 (𝑎), ℰ𝑇 (𝑏)) = 𝑂(𝜖).

Let 𝑊 ∼ ℰ𝑇 (𝑎) and 𝑊 ′ ∼ ℰ𝑇 (𝑏) (at first, 𝑎 and 𝑏 are unspecified). We have that

𝑑𝑇𝑉 (𝑊,𝑊 ′) =
1

2

∑︁
𝑥∈Z

⃒⃒⃒⃒
⃒ exp(−𝑎 · 𝑇 (𝑥))∑︀

𝑦∈Z exp(−𝑎 · 𝑇 (𝑦))
− exp(−𝑏 · 𝑇 (𝑥))∑︀

𝑦∈Z exp(−𝑏 · 𝑇 (𝑦))

⃒⃒⃒⃒
⃒ .

Consider some mode 𝑀𝑎 of ℰ𝑇 (𝑎) and some mode 𝑀𝑏 of ℰ𝑇 (𝑏). Note that Z𝑇 (𝑎),Z𝑇 (𝑏) ≥ 1.
Then, we have that

𝑑𝑇𝑉 (𝑊,𝑊 ′) =
1

2Z𝑇 (𝑎)Z𝑇 (𝑏)

∑︁
𝑥∈Z

⃒⃒⃒⃒
⃒⃒∑︁
𝑦∈Z

𝑒−𝑎·𝑇 (𝑥)−𝑏·𝑇 (𝑦) − 𝑒−𝑏·𝑇 (𝑥)−𝑎·𝑇 (𝑦)

⃒⃒⃒⃒
⃒⃒ .

By moving the absolute value inside the sum over 𝑦 ∈ Z, the total variation distance is

𝑑𝑇𝑉 (𝑊,𝑊 ′) ≤ 1

2Z𝑇 (𝑎)Z𝑇 (𝑏)

∑︁
(𝑥,𝑦)∈Z2

⃒⃒⃒
𝑒−𝑎·𝑇 (𝑥)−𝑏·𝑇 (𝑦) − 𝑒−𝑏·𝑇 (𝑥)−𝑎·𝑇 (𝑦)

⃒⃒⃒
.

We will apply Lemma 35 with 𝜂 = 1/2, 𝑠 = 0 and 𝑘 = 1 and get ℓ ≤ 𝑂(𝐵1/2). This motivates us
to partition Z into two sets

𝑍1 = {𝑥 ∈ Z : |𝑥−𝑀𝑎| > ℓ} and 𝑍2 = Z ∖ 𝑍1 .
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Based on 𝑍1, 𝑍2, we can decompose Z2 into four sets: 𝑁1 = 𝑍1 × 𝑍1, 𝑁2 = 𝑍1 × 𝑍2, 𝑁3 =
𝑍2 × 𝑍1, 𝑁4 = 𝑍2 × 𝑍2.

Set ∆𝑒𝑎,𝑏 := 𝑒−𝑎·𝑇 (𝑥)−𝑏·𝑇 (𝑦)−𝑒−𝑏·𝑇 (𝑥)−𝑎·𝑇 (𝑦)

Z𝑇 (𝑎)Z𝑇 (𝑏) and 𝑆 :=
∑︀

(𝑥,𝑦)∈Z2 |∆𝑒𝑎,𝑏|. We have that

𝑆 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 ,

where 𝑆𝑖 =
∑︀

(𝑥,𝑦)∈𝑁𝑖
|∆𝑒𝑎,𝑏| and observe that an upper bound on 𝑆 would control the total

variation distance.

Let us choose 𝑏. In what follows, we consider 𝑏 to be the parameter vector given by Lemma 7, for
𝑟 = 𝑟crit and 𝑎 ∈ 𝜚-Cone𝒜 with ‖𝑎‖ ≥ 𝑟crit. We also consider 𝑀𝑎 = 𝑀𝑏. We next upper bound
each term 𝑆𝑖 separately.

Term 𝑆1: For the term 𝑆1, we use the fact that if 𝑄ℓ = 1{|𝑊 −𝑀𝑎| ≤ ℓ}, we get

Pr
𝑎

[|𝑊 −𝑀𝑎| > ℓ] = E[|𝑊 −𝑀𝑎|0 · (1−𝑄ℓ)] ≤ 𝑒−‖𝑎‖/𝜚 ·𝑂(1) ,

and similarly for Pr𝑏[|𝑊−𝑀𝑏| > ℓ], since 𝑎 and 𝑏 belong to 𝜚-Cone𝒜 and ℓ is selected accordingly,
as Lemma 35 suggests.

Moreover, we have that |∆𝑒𝑎,𝑏| ≤ 𝑒−𝑎·𝑇 (𝑥)−𝑏·𝑇 (𝑦)+𝑒−𝑏·𝑇 (𝑥)−𝑎·𝑇 (𝑦)

Z𝑇 (𝑎)Z𝑇 (𝑏) and therefore

𝑆1 ≤ 2 ·Pr
𝑎

[𝑊 ∈ 𝑍1] ·Pr
𝑏

[𝑊 ∈ 𝑍1]

= 2 ·Pr
𝑎

[|𝑊 −𝑀𝑎| > ℓ] ·Pr
𝑏

[|𝑊 −𝑀𝑏| > ℓ]

≤ 𝑒−2𝑟crit/𝜚 ·𝑂(1) .

Terms 𝑆2, 𝑆3: For 𝑆2 and 𝑆3, we have for similar reasons that

𝑆2, 𝑆3 ≤ Pr
𝑎

[𝑊 ∈ 𝑍1] ·Pr
𝑏

[𝑊 ∈ 𝑍2] + Pr
𝑏

[𝑊 ∈ 𝑍1] ·Pr
𝑎

[𝑊 ∈ 𝑍2]

≤ Pr
𝑎

[|𝑊 −𝑀𝑎| > ℓ] + Pr
𝑏

[|𝑊 −𝑀𝑏| > ℓ]

≤ 𝑒−𝑟crit/𝜚 ·𝑂(1) .

Term 𝑆4: For the term 𝑆4, we split 𝑁4 to 𝑁
(1)
4 , 𝑁

(2)
4 , 𝑁

(3)
4 , 𝑁

(4)
4 and form the four sums 𝑆

(1)
4 ,

𝑆
(2)
4 , 𝑆

(3)
4 , 𝑆

(4)
4 (which sum to 𝑆4), similarly to how we split Z2 into 𝑁1, 𝑁2, 𝑁3, 𝑁4. In this case,

we consider 𝑍 ′
1 = {𝑥 ∈ 𝑍2 : Pr𝑎[𝑊 = 𝑥] ≤ 𝑒−𝜃𝑟crit Pr𝑎[𝑊 = 𝑀 ]} and 𝑍 ′

2 = 𝑍2 ∖ 𝑍 ′
1.

We know that |𝑍2| ≤ 2ℓ and therefore Pr𝑎[𝑊 ∈ 𝑍 ′
1] ≤ 2ℓ · 𝑒−𝜃𝑟crit and, due to the selection of

𝑏 (according to Lemma 7), we also have that Pr𝑏[𝑊 ∈ 𝑍 ′
1] ≤ 2ℓ · 𝑒−𝜃𝑟crit . Hence, with a similar

reasoning as the one used for 𝑆1, 𝑆2, 𝑆3 and since ℓ = 𝑂(𝐵1/2) we have

𝑆
(1)
4 ≤ 𝑒−2𝜃𝑟crit ·𝑂(𝐵) ,

𝑆
(2)
4 , 𝑆

(3)
4 ≤ 𝑒−𝜃𝑟crit ·𝑂(𝐵1/2) .

It remains to bound 𝑆
(4)
4 . We have

𝑆
(4)
4 =

∑︁
(𝑥,𝑦)∈𝑍′

2×𝑍′
2

|∆𝑒𝑎,𝑏|

=
∑︁

(𝑥,𝑦)∈𝑁
(4)
4

⃒⃒⃒
Pr𝑎[𝑊=𝑥]

Pr𝑎[𝑊=𝑀𝑎]
· Pr𝑏[𝑊=𝑦]
Pr𝑏[𝑊=𝑀𝑏]

− Pr𝑏[𝑊=𝑥]
Pr𝑏[𝑊=𝑀𝑏]

· Pr𝑎[𝑊=𝑦]
Pr𝑎[𝑊=𝑀𝑎]

⃒⃒⃒
𝑒𝑎·𝑇 (𝑀𝑎) · Z𝑇 (𝑎) · 𝑒𝑏·𝑇 (𝑀𝑏) · Z𝑇 (𝑏)

= 0 ,

due to the selection of 𝑏 according to Lemma 7. Therefore, in total, we pick

𝑟crit = 𝜚 · ln(1/𝜖) +
1

2𝜃
· ln(𝐵) +

1

𝜃
· ln(1/𝜖) + 𝑂(𝜚 + 1/𝜃) ,

and get that 𝑑𝑇𝑉 (𝑊,𝑊 ′) ≤ 𝜖.
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E.2 The Proof of Lemma 7 (Structural Distance & Bounding Norms)

In order to show Lemma 7, we will rely on the geometry induced by the exponential family distri-
butions. Let us restate this result.
Lemma (Structural Distance & Bounding Norms). Under assumptions (1), (2) and (3), there exists
some constant 𝜃 > 0 such that for any 𝑟 ≥ 𝜚 and any 𝑎 ∈ 𝒜 with ‖𝑎‖ ≥ 𝑟, there exists some
𝑏 ∈ 𝒜𝜚 and ‖𝑏‖ = 𝑟 so that 𝑑ST(ℰ𝑇 (𝑎), ℰ𝑇 (𝑏)) ≤ 𝑒−𝜃·𝑟, i.e., for any 𝑥 ∈ Z, at least one of the
following should hold:

• Either 𝑥 satisfies Pr𝑎(𝑥) ≤ 𝑒−𝜃·𝑟 ·Pr𝑎(𝑀𝑎) and Pr𝑏(𝑥) ≤ 𝑒−𝜃·𝑟 ·Pr𝑏(𝑀𝑏),

• or 𝑥 satisfies Pr𝑎(𝑥)/Pr𝑎(𝑀𝑎) = Pr𝑏(𝑥)/Pr𝑏(𝑀𝑏).

Proof of Lemma 7. We decompose the proof into a number of steps.

Alternative form of Lemma 7. We can formulate a geometric framework through the observation
that Pr𝑎[𝑊 = 𝑥] ∝ exp(−𝑎 · 𝑇 (𝑥)) for any 𝑎 ∈ 𝒜𝜚. In particular, we have that

Pr
𝑎

[𝑊 = 𝑥] ≥ Pr
𝑎

[𝑊 = 𝑦] is equivalent with 𝑎 · (𝑇 (𝑦)− 𝑇 (𝑥)) ≥ 0 . (6)

Using relation (6), we arrive to the following equivalent formulation for Lemma 7. In particular,
the structural distance states that there exists some 𝜃 > 0 such that for any 𝑟 ≥ 𝜚 (𝜚 is defined in
Assumption 2) and any 𝑎 ∈ 𝒜 with ‖𝑎‖ ≥ 𝑟 there exists some 𝑏 ∈ 𝒜𝜚 (recall that for 𝜚 > 0,
𝒜𝜚 = 𝜚-Cone𝒜, i.e., the superset of 𝒜 that also contains every vector in the conical hull of 𝒜 that
has norm at least 𝜚) with ‖𝑏‖ = 𝑟 such that Z = 𝒳1 ∪ 𝒳2 where 𝒳1 and 𝒳2 are defined as follows

1. 𝒳1 ⊆ Z so that for any 𝑥 ∈ 𝒳1 we have

𝑎 · (𝑇 (𝑥)− 𝑇 (𝑀𝑎)) ≥ 𝜃𝑟 and 𝑏 · (𝑇 (𝑥)− 𝑇 (𝑀𝑏)) ≥ 𝜃𝑟 ,

2. 𝒳2 ⊆ Z so that for any 𝑥 ∈ 𝒳2 we have

𝑎 · (𝑇 (𝑥)− 𝑇 (𝑀𝑎)) = 𝑏 · (𝑇 (𝑥)− 𝑇 (𝑀𝑏)) ,

where 𝑀𝑎 (resp. 𝑀𝑏) is any mode of ℰ𝑇 (𝑎) (resp. ℰ𝑇 (𝑏)).

Our goal is to select the parameter 𝜃 > 0 appropriately so that for any given 𝑎 ∈ 𝒜, we can find
𝑏 ∈ 𝒜𝜚 with ‖𝑏‖ = 𝑟 such that any 𝑥 ∈ Z either belongs in 𝒳1 or 𝒳2.

Step 1. First, note that any mode (global maximum point of the probability mass function) of the
distribution ℰ𝑇 (𝑎) cannot be in 𝒳1 (since 𝜃, 𝑟 > 0 and 𝑎 · 𝑇 (𝑦) = 𝑎 · 𝑇 (𝑦′) whenever 𝑦, 𝑦′ are
modes). Therefore we get that ℰ𝑇 (𝑎) and ℰ𝑇 (𝑏) must have the same set of modes. We define
the regions ℛ𝑀 of the parameter vectors that correspond to distributions with 𝑀 as a mode. In
particular, such regions are defined by the property that for any 𝑢 ∈ ℛ𝑀 it holds that Pr𝑢[𝑊 =
𝑀 ] ≥ Pr𝑢[𝑊 = 𝑥], for any 𝑥 ∈ Z (if ℰ𝑇 (𝑢) is well defined), or using relation (6), more generally
as follows

ℛ𝑀 = {𝑢 ∈ R𝑘 : 𝑢 · (𝑇 (𝑥)− 𝑇 (𝑀)) ≥ 0, for any 𝑥 ∈ Z} . (7)
Note that the sets ℛ𝑀 are convex cones that could be polyhedral cones in the case that a finite
number of points 𝑥 ∈ Z correspond to a set of restrictions that implies the remaining ones. We also
define, for anyℳ⊆ Z, intersections of such sets as follows:

ℛℳ =
⋂︁

𝑀∈ℳ
ℛ𝑀 . (8)

For the demand thatℳ𝑎 =ℳ𝑏 to be satisfied we must (at least) pick 𝑏 so that

𝑏 ∈ ℛℳ𝑎 . (9)

In order to develop some intuition about the regions of the form ℛℳ, one might consider ℳ =
{𝑀,𝑀 ′} ⊆ Z. In this case

ℛℳ = ℛ𝑀 ∩ℛ𝑀 ′

= {𝑢 : 𝑢 · (𝑇 (𝑥)− 𝑇 (𝑀)) ≥ 0 and 𝑢 · (𝑇 (𝑥)− 𝑇 (𝑀 ′)) ≥ 0, for any 𝑥 ∈ Z}
= ℛ𝑀 ∩ {𝑢 : 𝑢 · (𝑇 (𝑀)− 𝑇 (𝑀 ′)) = 0} .
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Therefore, if 𝑇 (𝑀) ̸= 𝑇 (𝑀 ′), then the dimension of ℛℳ is at most 𝑘 − 1 (and this can be
generalized for larger sets ℳ by using the notion of affine independence). For any 𝑀 ∈ Z, the
set ℛ𝑀 is a countable intersection of halfspaces of the form ℋ = {𝑢 ∈ R𝑘 : 𝑢 · ℎ ≥ 0}. If
𝑀 ∈ ℳ ⊆ Z, then ℛℳ is a subset of the boundary of ℛ𝑀 , since for any 𝑀 ′ ∈ ℳ, the vector
𝑇 (𝑀 ′)− 𝑇 (𝑀) corresponds to some of the halfspaces that defineℛ𝑀 .

Step 2. Our goal is to pick 𝑏 so that any 𝑥 ∈ Z lies in either 𝒳1 or 𝒳2. En route, we will use
Assumption 2. In this step we will get rid of 𝑥 ∈ Z for which we get for free that 𝑥 ∈ 𝒳1, due to the
fact that 𝑎, 𝑏 ∈ 𝒜𝜚 anyway. We will use the following assumption.

Let 𝑀𝑎 be any mode of ℰ𝑇 (𝑎). Then, we may define the sequence of vectors (𝑣𝑥)𝑥∈Z by 𝑣𝑥 =
𝑇 (𝑥)−𝑇 (𝑀𝑎) and reformulate 𝒳1 = {𝑥 ∈ Z : 𝑎 ·𝑣𝑥 ≥ 𝜃𝑟, 𝑏 ·𝑣𝑥 ≥ 𝜃𝑟} as well as 𝒳2 = {𝑥 ∈ Z :
𝑎 · 𝑣𝑥 = 𝑏 · 𝑣𝑥} . We are allowed to use 𝑣𝑥 for both 𝑎 and 𝑏 in the definitions of 𝒳1 and 𝒳2, since,
according to Step 1, vector 𝑏 has to be selected withinℛℳ𝑎 anyway.

We will first classify (to 𝒳1) the points 𝑥 ∈ Z for which the hyperplane defined by 𝑣𝑥 does not
correspond to any boundary ofℛℳ𝑎 . That is to say, 𝑣𝑥 ·𝑢 > 0 for any 𝑢 ∈ ℛℳ𝑎 ∩𝒜𝜚 with 𝑢 ̸= 0.
In particular, we define for anyℳ⊆ℳ𝒜, the following set of points

𝒴ℳ = {𝑥 ∈ Z : 𝑢 · (𝑇 (𝑥)− 𝑇 (𝑀)) > 0, for any 𝑢 ∈ ℛℳ ∩ 𝒜𝜚 with 𝑢 ̸= 0 and 𝑀 ∈ℳ} .
Our goal here will be to show that there exists some constant 𝜃1 > 0 such that for any 𝑢 ∈ 𝒜𝜚 and
any 𝑦 ∈ 𝒴ℳ𝑢 we have that 𝑢 · (𝑇 (𝑦)− 𝑇 (𝑀𝑢)) ≥ 𝜃1‖𝑢‖.
To this end, observe, first, that due to assumption (3), the number of different possibleℳ ⊆ ℳ𝒜
must be finite. Therefore, if we show that for every fixedℳ⊆ℳ𝒜 there exists some constant that
satisfies the desired property for any 𝑢 ∈ ℛℳ ∩𝒜𝜚, then by taking the minimum over the selection
ofℳ, we can find the target 𝜃1 (swap of logical quantifiers).

For a fixedℳ ⊆ ℳ𝒜, we consider any vector 𝑢 ∈ ℛℳ ∩ 𝒜𝜚. Note that the only guarantee we
have is that ℳ ⊆ ℳ𝑢 ⊆ ℳ𝒜. Let 𝑥1, 𝑥2 ∈ ℳ𝑢 be the smallest and largest elements of ℳ𝑢,
respectively (i.e., 𝑥1 ≤ 𝑥 ≤ 𝑥2 for any 𝑥 ∈ ℳ𝑢). Note that 𝒴ℳ ∩ℳ𝑢 = ∅ by construction since
𝑢 ∈ ℛℳ∩𝒜𝜚 , 𝑢 ̸= 0 and therefore 𝑥1, 𝑥2 ̸∈ 𝒴ℳ. Consider 𝑦1, 𝑦2 ∈ 𝒴ℳ with 𝑦1 ≤ 𝑥1 and largest
possible and 𝑦2 ≥ 𝑥2 and smallest possible. Then, due to unimodality (assumption (2)), we have
that 𝑢 ·𝑇 (𝑦) ≥ min{𝑢 ·𝑇 (𝑦1),𝑢 ·𝑇 (𝑦2)} for any 𝑦 ∈ 𝒴ℳ. Sinceℳ𝑢 ⊆ℳ𝒜, the possible values
for (𝑥1, 𝑥2) are finite and therefore the possible values for (𝑦1, 𝑦2) are also finite (since givenℳ,
there is a 1-1 correspondence between (𝑥1, 𝑥2) and (𝑦1, 𝑦2)). We may, therefore splitℛℳ∩𝒜𝜚 into
a finite number of equivalence classes with respect to the minimum and maximum point (𝑥1, 𝑥2) of
the set of modes corresponding to the vector 𝑢. It is sufficient to find for any equivalence class a
(possibly different) constant that satisfies the desired property for any 𝑢 in the class. Then we could
minimize over the equivalence classes to find 𝜃1 > 0 as desired.

Consider now the equivalence class C corresponding to some fixed pair (𝑥1, 𝑥2) (which gives
(𝑦1, 𝑦2)). Then, for any 𝑢 ∈ C, we have 𝑢 ·𝑇 (𝑦) ≥ min{𝑢 ·𝑇 (𝑦1),𝑢 ·𝑇 (𝑦2)} or equivalently, that
𝑢𝜚 · (𝑇 (𝑦)− 𝑇 (𝑀𝑢)) ≥ min{𝑢𝜚 · (𝑇 (𝑦1)− 𝑇 (𝑀𝑢)),𝑢𝜚 · (𝑇 (𝑦2)− 𝑇 (𝑀𝑢))} for any 𝑦 ∈ 𝒴ℳ,
where 𝑢𝜚 = 𝜚 · 𝑢/‖𝑢‖. Also, C ⊆ ℛℳ ∩𝒜𝜚 andℛℳ ∩ Cone𝒜 is a cone and thereforeℛℳ ∩𝒜𝜚

contains all vectors 𝑢𝜚 where 𝑢 ∈ C. Moreover, ℛ′ := ℛℳ ∩ 𝒜𝜚 ∩ {𝑢′ : ‖𝑢′‖ = 𝜚} is closed
(since 𝒜 is closed by assumption (1)). Therefore, for any 𝑢 ∈ C and any 𝑦 ∈ 𝒴ℳ:

𝑢𝜚 · (𝑇 (𝑦)− 𝑇 (𝑀𝑢)) ≥ min

{︂
inf

𝑢′∈ℛ′
𝑢′ · (𝑇 (𝑦1)− 𝑇 (𝑀𝑢)), inf

𝑢′∈ℛ′
𝑢′ · (𝑇 (𝑦2)− 𝑇 (𝑀𝑢))

}︂
.

We know that 𝑢′ · (𝑇 (𝑦1) − 𝑇 (𝑀𝑢)),𝑢′ · (𝑇 (𝑦2) − 𝑇 (𝑀𝑢)) > 0 for any 𝑢′ ∈ ℛℳ ∩ 𝒜𝜚, since
𝑦1, 𝑦2 ∈ 𝒴ℳ. Since, additionally ℛ′ is closed, the infima in the above inequality are attained for
some vectors 𝑢′

1,𝑢
′
2 ∈ ℛ′ and correspond to positive values 𝜃′11, 𝜃

′
12 > 0.

We have proven that there exists some 𝜃1 > 0 so that for any 𝑢 ∈ 𝒜𝜚 and any 𝑦 ∈ 𝒴ℳ𝑢 we have
that 𝑢 · (𝑇 (𝑦) − 𝑇 (𝑀𝑢)) ≥ 𝜃1‖𝑢‖. As a consequence, returning to our vectors 𝑎 (given vector)
and the desired 𝑏, since 𝑎, 𝑏 ∈ 𝒜𝜚, we have that if we pick 𝜃 ≤ 𝜃1, then 𝒴ℳ𝑎 ⊆ 𝒳1.

Step 3. It remains to account for the points 𝑥 ∈ Z ∖ 𝒴ℳ𝑎 (i.e., find conditions for the selection
of 𝑏 so that any such 𝑥 is classified either in 𝒳1 or 𝒳2). The first crucial observation is that the set
Z ∖ 𝒴ℳ𝑎 must be finite. In particular, Z ∖ 𝒴ℳ𝑎 consists of points 𝑥 such that the boundary of the
halfspace defined by 𝑣𝑥 intersects the setℛℳ𝑎 ∩𝒜𝜚, due to the definition of 𝒴ℳ𝑎 . Consider some
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vector 𝑢 ∈ ℛℳ𝑎 ∩ 𝒜𝜚 with 𝑢 · 𝑣𝑥 = 0. The vector 𝑢 corresponds to some distribution in ℰ𝑇 (𝒜𝜚)
and 𝑥 is a mode of 𝑢 since 𝑢 · (𝑇 (𝑥) − 𝑇 (𝑀𝑎)) = 0 and 𝑢 ∈ ℛℳ𝑎 . Hence Z ∖ 𝒴ℳ𝑎 ⊆ ℳ𝒜𝜚 .
Due to assumption (3), |ℳ𝒜𝜚

| is finite and so does |Z ∖ 𝒴ℳ𝑎 |.
The next observation we will use is that ℛℳ𝑎 ∩ Cone𝒜 is a polyhedral cone, due to assumption
(1), and for any 𝑥 ∈ Z ∖ 𝒴ℳ𝑎 , 𝑣𝑥 · 𝑢 ≥ 0 for any 𝑢 ∈ ℛℳ𝑎 ∩ 𝒜𝜚, while Z ∖ 𝒴ℳ𝑎 is finite.
In particular, we consider the matrix 𝐻 ∈ R𝑘×𝑡, where 𝑡 ∈ N and 𝐻 contains as columns all the
vectors of the form 𝑣𝑥 for 𝑥 ∈ Z ∖ 𝒴ℳ𝑎 . However, 𝐻 could have some additional columns so that
ℛℳ𝑎 ∩ 𝒜𝜚 = {𝑢 ∈ R𝑘 : 𝐻𝑇𝑢 ≥ 0}. We may apply Theorem 8 accordingly to get a bound for 𝜃
and a way to pick 𝑏 that imply the desired result (with appropriate rescaling). Note that the bound
we get for 𝜃 can be considered independent from 𝑎, since there is only a finite number of possible
selections ofℳ𝑎 and we may minimize over them to get a global bound.

We now briefly discuss the intuition behind Theorem 8. In particular, since for any 𝑥 ∈ 𝒳1 we must
have that 𝑎 · 𝑣𝑥 is large enough, there should be some threshold for 𝑎 · 𝑣𝑥 below which we know
that 𝑥 has to be classified in 𝒳2. One idea would be to decide the set in which 𝑥 should be classified
by considering 𝑥 ∈ 𝒳2 exactly when 𝑎 · 𝑣𝑥 is below some threshold (of the form 𝜃 · 𝑟). Then, if we
want to classify 𝑥 to 𝒳1, we could pick any 𝑏 so that ‖𝑏‖ = 𝑟 and cos(𝑏,𝑣𝑥) is large enough. To
this end, we may only perturb the direction of 𝑏, since its norm is restricted a priori. Consequently,
(recall that 𝑏 · 𝑣𝑥 = ‖𝑏‖ · cos(𝑏,𝑣𝑥) · ‖𝑣𝑥‖) 𝑏 · 𝑣𝑥 is also at least equal to the threshold. If 𝑥 should
be classified to 𝒳2, then we should pick 𝑏 = 𝑎 + 𝑢, where 𝑢 · 𝑣𝑥 = 0. The main complication here
is that we are not interested in classifying only a single point 𝑥, but, rather, any point 𝑥 ∈ Z ∖ 𝒴ℳ𝑎 .
For different points in Z ∖ 𝒴ℳ𝑎 we would then have different restrictions for 𝑏, which could be
mutually exclusive. Theorem 8 states that, due to the structure of polyhedral cones, there is a way
to satisfy all such restrictions simultaneously.

E.3 The Proof of Theorem 8 (Geometric Result for Polyhedral Cones)

Let us restate the theorem for reader’s convinience.
Theorem. Consider any polyhedral cone 𝒞 ⊆ R𝑘, 𝑘 ∈ N, where 𝒞 = {𝑢 : 𝐻𝑇𝑢 ≥ 0} for some
matrix 𝐻 ∈ R𝑘×𝑡, 𝑡 ∈ N is a description of 𝒞 as an intersection of halfspaces. Then there exists
some 𝜃 > 0 such that for any 𝑢 ∈ 𝒞 with ‖𝑢‖ ≥ 1, there exists 𝑢′ ∈ 𝒞 with ‖𝑢′‖ = 1 so that for
any column ℎ of 𝐻 at least one of the following is true:

1. Either ℎ · 𝑢 ≥ 𝜃 and ℎ · 𝑢′ ≥ 𝜃,

2. or ℎ · 𝑢 = ℎ · 𝑢′.

Proof. Due to Minkowski-Weyl theorem (Proposition 11), there exists some 𝑠 ∈ Z and some matrix
𝑍 ∈ R𝑘×𝑠 so that 𝒞 = {𝑢 ∈ R𝑘 : 𝑢 = 𝑍𝑥,𝑥 ≥ 0}. Let (ℎ𝑖)𝑖∈[𝑡] be the columns of 𝐻 and (𝑧𝑖)𝑖∈[𝑠]

the columns of 𝑍. Suppose without loss of generality that ‖𝑧𝑗‖ = 1 for any 𝑗 ∈ [𝑠].

Step 1. In this step, we will find some bound for 𝜃 which implies the existence of a vector 𝑤 which
has some useful properties for the next step. We will use 𝑤 as a point of reference for moving 𝑢 to
get 𝑢′. We consider the quantity

𝜃1 := min
𝑖,𝑗
{ℎ𝑖 · 𝑧𝑗 | 𝑖 ∈ [𝑡], 𝑗 ∈ [𝑠] : ℎ𝑖 · 𝑧𝑗 > 0} .

Note that since 𝑠, 𝑡 < ∞, the quantity 𝜃1 (when it is well defined) is positive (and only depends on
the columns of 𝐻 and the geometry of 𝒞).

In case ℎ𝑖 · 𝑧𝑗 = 0 for any 𝑖, 𝑗, we have that for any 𝑢 ∈ 𝒞, ℎ𝑖 · 𝑢 = 0 for any 𝑖 ∈ [𝑡] (since 𝒞 is
generated by the columns of 𝑍) and therefore we may consider 𝑢′ = 𝑢/‖𝑢‖, which satisfies all the
required properties.

Next, we observe that there must exist some vector 𝑥 ∈ R𝑠 with 𝑥 ≥ 1 (component-wise) and
𝑍𝑥 =

∑︀
𝑗∈[𝑠] 𝑥𝑗𝑧𝑗 ̸= 0. Otherwise, 𝑍 would have zero rank (its null space would be of full

dimension) and 𝒞 = {0} (our statement would then be trivially satisfied). Hence, we have 𝑍𝑥 ̸= 0.
Consider the value 𝑁 = 2 ·max𝒥⊆[𝑠]

⃦⃦⃦∑︀
𝑗∈𝒥 𝑥𝑗𝑧𝑗

⃦⃦⃦
(> 0) and the vector 𝑤 with

𝑤 = 𝑍𝑥/𝑁 .
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We have that for any 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑠] with 𝑖, 𝑗 such that ℎ𝑖 · 𝑧𝑗 > 0 it holds
𝑥𝑗

𝑁
· ℎ𝑖 · 𝑧𝑗 ≥

𝑥𝑗

𝑁
· 𝜃1 ,

and therefore, for any 𝑖 ∈ [𝑡] such that there exists 𝑗 ∈ [𝑠] with ℎ𝑖 · 𝑧𝑗 > 0, ℎ𝑖 ·𝑤 ≥ 𝜃1/𝑁 (since
𝑥𝑗 ≥ 1). Consider the following quantity

𝜃2 := 𝜃1/𝑁 .

Note that again, 𝜃2 > 0 and only depends on the geometry of 𝒞. We demand that 𝜃 ≤ 𝜃2 . Then,
𝑤 ∈ 𝒞, ‖𝑤‖ ≤ 1/2 (and the norm bound also holds for any part of 𝑤 of the form

∑︀
𝑗∈𝒥 𝑤𝑗𝑧𝑗 , for

𝒥 ⊆ [𝑠]) and ℎ𝑖 ·𝑤 ≥ 𝜃 for any interesting ℎ𝑖 (i.e., for any ℎ𝑖 that is not orthogonal to every point
in 𝒞).

Step 2. Consider, now, any 𝑢 ∈ 𝒞. We will find 𝑢′ ∈ 𝒞 with the desired properties. We have that

𝑢 =
∑︁
𝑗∈[𝑠]

𝑢𝑗𝑧𝑗 , where 𝑢𝑗 ≥ 0 .

Consider the set ℐ ⊆ [𝑡] as follows

ℐ ⊆ [𝑡] : ℎ𝑖 · 𝑢 < 𝜃 for 𝑖 ∈ ℐ &

ℎ𝑖 · 𝑢 ≥ 𝜃 for 𝑖 ̸∈ ℐ .

The set ℐ includes the columns on 𝐻 that correspond to halfspaces with boundaries to which 𝑢 is
close. Moreover, we define for any ℐ ⊆ [𝑡] the set 𝒥ℐ as follows

𝒥ℐ = {𝑗 ∈ [𝑠] : ℎ𝑖 · 𝑧𝑗 = 0 for all 𝑖 ∈ ℐ} .

The set 𝒥ℐ corresponds to the generating vectors that lie within the nullspace of the set of columns
of ℋ corresponding to ℐ. The vectors corresponding to 𝒥ℐ control the part of 𝑢 that is parallel to
the boundaries to which 𝑢 is close.

We use the notation 𝑢ℐ (resp. 𝑤ℐ) to refer to the vector 𝑢ℐ =
∑︀

𝑗∈𝒥ℐ
𝑢𝑗𝑧𝑗 , i.e., the part of 𝑢 that

corresponds to nearby boundaries. We let

𝑢′ = 𝑢− 𝑐(𝑢ℐ −𝑤ℐ) ,

for some 𝑐 ∈ [0, 1] to be disclosed. We show that 𝑢′ (for appropriate 𝑐 and possibly some additional
bounds on 𝜃) has all the desired properties.

1. Consider any 𝑖 ∈ ℐ. We have that ℎ𝑖 · 𝑢ℐ = 0 = ℎ𝑖 · 𝑤ℐ , due to the definition of 𝒥ℐ .
Therefore ℎ𝑖 · 𝑢 = ℎ𝑖 · 𝑢′.

2. For 𝑖 ∈ [𝑡] ∖ ℐ, we have that: ℎ𝑖 · 𝑢′ = ℎ𝑖 · 𝑢− 𝑐ℎ𝑖 · 𝑢ℐ + 𝑐ℎ𝑖 ·𝑤ℐ , where if ℎ𝑖 · 𝑧𝑗 = 0
for every 𝑗 ∈ 𝒥ℐ , we have ℎ𝑖 · 𝑢′ = ℎ𝑖 · 𝑢 ≥ 𝜃, since 𝑖 ̸∈ ℐ. Otherwise, ℎ𝑖 ·𝑤ℐ ≥ 𝜃 (due
to Step 1) and we get

ℎ𝑖 · 𝑢′ ≥ (1− 𝑐)ℎ𝑖 · 𝑢 + 𝑐ℎ𝑖 ·𝑤ℐ ≥ (1− 𝑐)𝜃 + 𝑐𝜃 = 𝜃 .

3. We have that 𝑢′ =
∑︀

𝑗∈[𝑠] 𝑢
′
𝑗𝑧𝑗 , where 𝑢′

𝑗 ≥ 0 since 𝑐 ≤ 1. Therefore 𝑢′ ∈ 𝒞. It remains
to show that for some selection of 𝑐 ∈ [0, 1], we achieve ‖𝑢′‖ = 1. Consider, temporarily
the case 𝑐 = 1. If we show that for this value of 𝑐, 𝑢′ is within the unitary ball, then, since
𝑢 is outside (and corresponds to 𝑐 = 0), there must exist some 𝑐 ∈ [0, 1] (i.e., a point on
the line segment connecting 𝑢 and 𝑢− 𝑢ℐ + 𝑤ℐ) for which ‖𝑢′‖ = 1.

For 𝑐 = 1 we have that

‖𝑢′‖ = ‖𝑢− 𝑢ℐ + 𝑤ℐ‖ ≤ ‖𝑢− 𝑢ℐ‖+ ‖𝑤ℐ‖ .

Observe, now that, ‖𝑤ℐ‖ ≤ 1/2 (due to the definition of 𝑁 in Step 1) and that as 𝜃
decreases, ‖𝑢 − 𝑢ℐ‖ tends to become zero for fixed ℐ, independently from the selection
of 𝑢 given that 𝑢 corresponds to ℐ (we may minimize over finitely many possible ℐ).
Therefore, for small enough 𝜃 > 0, we have that ‖𝑢′‖ ≤ 1 (for 𝑐 = 1, which implies that
‖𝑢′‖ = 1 for some appropriate selection of 𝑐 ∈ [0, 1]).
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More specifically, we have that

‖𝑢− 𝑢ℐ‖2 =
∑︁

𝑗,𝑗′ ̸∈𝒥ℐ

𝑢𝑗𝑢𝑗′(𝑧𝑗 · 𝑧𝑗′) ≤

⎛⎝∑︁
𝑗 ̸∈𝒥ℐ

𝑢𝑗

⎞⎠2

.

For each 𝑗 ̸∈ 𝒥ℐ , there must exist some 𝑖𝑗 ∈ ℐ so that ℎ𝑖𝑗 · 𝑧𝑗 > 0 (otherwise, 𝑗 ∈ 𝒥ℐ).
Recall that due to the definition of 𝜃1, we have ℎ𝑖𝑗 · 𝑧𝑗 ≥ 𝜃1. Moreover, we have

ℎ𝑖𝑗 · 𝑢 < 𝜃 ,

since 𝑖𝑗 ∈ ℐ. Hence, since 𝑢 =
∑︀

𝑗′∈[𝑠] 𝑢𝑗′𝑧𝑗′ and ℎ𝑖𝑗 · 𝑧𝑗′ ≥ 0 by the fact that 𝑧𝑗′ ∈ 𝒞,
we get that

𝑢𝑗(ℎ𝑖𝑗 · 𝑧𝑗) < 𝜃 , or 𝑢𝑗 < 𝜃/𝜃1 , for any 𝑗 ̸∈ 𝒥ℐ .

Therefore (
∑︀

𝑗 ̸∈𝒥ℐ
𝑢𝑗) ≤ 𝜃 · 𝑠/𝜃1 . We demand that

𝜃 ≤ 𝜃1
2 · 𝑠

(and 𝜃 ≤ 𝜃2 from Step 1) ,

which concludes our proof.

F The Proof of Theorem 5 (Sparsifying the Parameter Space)

We restate the result for convenience.
Theorem. Under assumptions (1), (2), (3), (4) and (5), there exists some value 𝜃 = 𝜃(𝒜,𝑇 ) > 0
depending on the geometric properties of 𝒜 and 𝑇 , such that for any 𝜖 ∈ (0, 1), there exists a set

ℬ ⊆ 𝜚-Cone𝒜 with |ℬ| ≤
(︁ ̃︀𝑂 (︁√

Λ·𝜚
𝜖 +

√
Λ

𝜖·𝜃

)︁
+ 𝑂

(︁√
Λ

𝜖·𝜃 · log(𝐵)
)︁)︁𝑘

such that, for any 𝑎 ∈ 𝒜, it
holds that

𝑑𝑇𝑉 (ℰ𝑇 (𝑎), ℰ𝑇 (𝑏)) ≤ 𝜖 , for some 𝑏 ∈ ℬ .

Proof. According to Theorem 6, if we consider 𝒜′ = 𝜚-Cone𝒜 ∩ {𝑎 : ‖𝑎‖ ≤ 𝑟crit} for some
sufficiently large 𝑟crit ≤ (𝜚 + 1

𝜃 ) · ln(1/𝜖) + 1
2𝜃 · ln(𝐵) + 𝑂(𝜚 + 1

𝜃 ), then the exponential family
ℰ𝑇 (𝒜′) 𝜖-covers the family ℰ𝑇 (𝒜). However, ℰ𝑇 (𝒜′) might contain infinitely many elements.

In order to sparsify ℰ𝑇 (𝒜′), we make use of Lemma 14 (applied to Conv𝒜′), combined with as-
sumption (5). In particular, we get that for any 𝑎, 𝑏 ∈ 𝒜′(⊆ Conv𝒜′) it holds

𝑑𝑇𝑉 (ℰ𝑇 (𝑎), ℰ𝑇 (𝑏)) ≤ ‖𝑎− 𝑏‖ ·
√︀

Λ/2 ,

by making use of Pinsker’s inequality. Therefore, the problem of sparsely covering ℰ𝑇 (𝒜′) in total
variation distance is reduced to sparsely covering 𝒜′ in Euclidean distance.

The cover in Euclidean distance is given by Proposition 33 and we get that ℰ𝑇 (𝒜′) is 𝜖-covered by
ℰ𝑇 (ℬ) for some ℬ ⊆ 𝒜′ where |ℬ| ≤ (1 + 𝑟crit ·

√
2Λ/𝜖)𝑘.

Proposition 33. For any 𝜖 > 0, any 𝑘 ∈ N, any 𝑟 > 0 and any subset ℬ of R𝑘 with sup𝑏∈ℬ ‖𝑏‖ ≤ 𝑟,
there exists an 𝜖-cover of ℬ with respect to the Euclidean distance with size at most (1 + 2𝑟/𝜖)𝑘.

Proof. We use a simple greedy algorithm: We create the cover incrementally by adding in each
step an arbitrary point 𝑏 of the remaining set (initially, the remaining set is ℬ) and remove from the
remaining set the ball B𝜖[𝑏].

Let (𝑏𝑖)𝑖∈[𝑁 ] be the points of the cover. Note that it might be possible that 𝑁 =∞. However, as we
will show, this is not the case.

First, note that ‖𝑏𝑖−𝑏𝑗‖ > 𝜖, whenever 𝑖 ̸= 𝑗, since (assuming wlog 𝑗 > 𝑖) 𝑏𝑗 ̸∈ B𝜖[𝑏𝑖]. Therefore,
B𝜖/2[𝑏𝑖] ∩ B𝜖/2[𝑏𝑗 ] = ∅ whenever 𝑖 ̸= 𝑗. Note that 𝑁 must be finite.

Let Vol(·) denote the volume measure that inputs a set and outputs its volume. Since Vol(·) is a
measure and (B𝜖/2[𝑏𝑖])𝑖 are disjoint, we have

Vol

⎛⎝ ⋃︁
𝑖∈[𝑁 ]

B𝜖/2[𝑏𝑖]

⎞⎠ =
∑︁
𝑖∈[𝑁 ]

Vol
(︀
B𝜖/2[𝑏𝑖]

)︀
= 𝑁 ·

(︁ 𝜖
2

)︁𝑘
· Vol (B1[0𝑘]) .
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Also, ∪𝑖∈[𝑁 ]B𝜖/2[𝑏𝑖] has to be a subset of B𝑟+𝜖/2[0𝑘], since ℬ is a subset of B𝑟[0𝑘]. Therefore

Vol

⎛⎝ ⋃︁
𝑖∈[𝑁 ]

B𝜖/2[𝑏𝑖]

⎞⎠ ≤ (︁𝑟 +
𝜖

2

)︁𝑘
· Vol(B1[0𝑘]) .

We get that 𝑁 ≤ (1 + 2𝑟/𝜖)𝑘.

G Technical Lemmata for the Proof of Theorem 3

This lemma shows that for any 𝑎 in the 𝜚-Cone𝒜, the partition function is bounded under the uni-
modality and the bounded central fourth moment conditions.
Lemma 34 (Bounded Partition Function). Consider parameter space 𝒜 and sufficient statistics
vector 𝑇 . Under assumptions (2) and (4), we have that

Z𝑇 (𝑎) :=
∑︁
𝑥∈Z

exp(−𝑎 · 𝑇 (𝑥)) ≤ exp(−𝑎 · 𝑇 (𝑀𝑎)) ·𝑂(𝐵1/4) ,

for any 𝑎 ∈ 𝜚-Cone𝒜.

Proof. From assumption (4) and the fact that (E[|𝑊 − E[𝑊 ]|2])2 ≤ E[|𝑊 − E[𝑊 ]|4], we get the
following inequality

Var
𝑎

(𝑊 ) ≤ 𝑂(
√
𝐵) .

We also know that E𝑎[|𝑊 −𝑀𝑎|2] ≤ 4Var𝑎(𝑊 ), due to unimodality of the random variable 𝑊

(which implies that |E𝑎[𝑊 ]−𝑀𝑎| ≤
√︀

3Var𝑎(𝑊 ) as shown by Johnson and Rogers [1951]).

Therefore, E[|𝑊 −𝑀𝑎|2] ≤ 𝑂(
√
𝐵). Consider the random variable 𝑈 := |𝑊 −𝑀𝑎|. We have

that Var𝑎(𝑈) ≥ 0 and hence E𝑎[𝑈2] ≥ (E𝑎[𝑈 ])2. Therefore

E
𝑎

[|𝑊 −𝑀𝑎|] ≤ 𝑂(𝐵1/4) .

We have

E
𝑎

[|𝑊 −𝑀𝑎|] =

∑︀
𝑥∈Z |𝑥−𝑀𝑎| · exp(−𝑎 · 𝑇 (𝑥))∑︀

𝑥∈Z exp(−𝑎 · 𝑇 (𝑥))

=

∑︀∞
𝑥=0 𝑥(𝑒−𝑎·𝑇 (𝑥+𝑀𝑎) + 𝑒−𝑎·𝑇 (𝑀𝑎−𝑥))∑︀

𝑥∈Z 𝑒
−𝑎·𝑇 (𝑥)

=

∑︀∞
𝑦=1

∑︀∞
𝑥=𝑦(𝑒−𝑎·𝑇 (𝑥+𝑀𝑎) + 𝑒−𝑎·𝑇 (𝑀𝑎−𝑥))

𝑒−𝑎·𝑇 (𝑀𝑎) +
∑︀∞

𝑥=1(𝑒−𝑎·𝑇 (𝑥+𝑀𝑎) + 𝑒−𝑎·𝑇 (𝑀𝑎−𝑥))

=

∞∑︁
𝑦=1

(︃
1−

𝑒−𝑎·𝑇 (𝑀𝑎) +
∑︀𝑦−1

𝑥=1(𝑒−𝑎·𝑇 (𝑥+𝑀𝑎) + 𝑒−𝑎·𝑇 (𝑀𝑎−𝑥))

𝑒−𝑎·𝑇 (𝑀𝑎) +
∑︀∞

𝑥=1(𝑒−𝑎·𝑇 (𝑥+𝑀𝑎) + 𝑒−𝑎·𝑇 (𝑀𝑎−𝑥))

)︃

=

∞∑︁
𝑦=1

(︃
1−

1 +
∑︀𝑦−1

𝑥=1(𝑒−𝑎·(𝑇 (𝑥+𝑀𝑎)−𝑇 (𝑀𝑎)) + 𝑒−𝑎·(𝑇 (𝑀𝑎−𝑥)−𝑇 (𝑀𝑎)))

𝑒𝑎·𝑇 (𝑀𝑎) · Z𝑇 (𝑎)

)︃

≥
𝑡∑︁

𝑦=1

(︃
1−

1 +
∑︀𝑦−1

𝑥=1(𝑒−𝑎·(𝑇 (𝑥+𝑀𝑎)−𝑇 (𝑀𝑎)) + 𝑒−𝑎·(𝑇 (𝑀𝑎−𝑥)−𝑇 (𝑀𝑎)))

𝑒𝑎·𝑇 (𝑀𝑎) · Z𝑇 (𝑎)

)︃

≥
𝑡∑︁

𝑦=1

(︂
1− 1 + 2(𝑦 − 1)

𝑒𝑎·𝑇 (𝑀𝑎) · Z𝑇 (𝑎)

)︂
= 𝑡− 𝑡2

𝑒𝑎·𝑇 (𝑀𝑎) · Z𝑇 (𝑎)
,

where 𝑡 ∈ N is arbitrary and the last inequality follows from the fact that 𝑀𝑎 is a mode (which
implies that 𝑎 · (𝑇 (𝑥)− 𝑇 (𝑀𝑎)) ≥ 0 for any 𝑥 ∈ Z).

We can pick 𝑡 = 1
2 · exp(𝑎 · 𝑇 (𝑀𝑎)) · Z𝑇 (𝑎)±𝑂(1) in order to get the following bound

exp(𝑎 · 𝑇 (𝑀𝑎)) · Z𝑇 (𝑎) ≤ 4E
𝑎

[|𝑊 −𝑀𝑎|]±𝑂(1) ,

which concludes the proof since, as we have shown, E𝑎[|𝑊 −𝑀𝑎|] ≤ 𝑂(𝐵1/4).
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The next key lemma shows that, under unimodality and bounded fourth central moment, the mass of
points that are sufficiently far from the modes of the distribution decays exponentially. Moreover, the
centered moments of order at most 2 can be roughly controlled by points that lie only in a bounded
interval around the mode.

Lemma 35. Under assumptions (2) and (4), for any 𝜅 > 0, any 𝜂 > 0 and any 𝑠 ∈ {0, 1, 2} there
exists some ℓ = 𝑒𝜅/(3−𝜂−𝑠) · 𝑂(𝐵

5
4·(3−𝜂−𝑠) ) such that for any 𝑎 ∈ 𝜚-Cone𝒜 and any mode 𝑀𝑎 of

the corresponding distribution we have

1. Pr𝑎[𝑊 = 𝑥] ≤ 𝑒
−𝜅·max{1, ‖𝑎‖

𝜚 }
|𝑥−𝑀𝑎|1+𝜂+𝑠 ·Pr𝑎[𝑊 = 𝑀𝑎], for any 𝑥 ∈ Z with |𝑥−𝑀𝑎| ≥ ℓ.

2. If 𝑄ℓ = 1{|𝑊 −𝑀𝑎| ≤ ℓ} then

E
𝑎

[|𝑊 −𝑀𝑎|𝑠] ≤ E
𝑎

[|𝑊 −𝑀𝑎|𝑠 ·𝑄ℓ

]︀
+ 𝑒−𝜅·max{1, ‖𝑎‖

𝜚 } ·𝑂(1/𝜂) .

In particular, for 𝑠 = 0, we use the convention E[𝑊 0] = Pr[𝑊 ̸= 0], for any random variable 𝑊 .

Proof. From assumption (4), we get the following inequality for any 𝑎 ∈ 𝜚-Cone𝒜

Var
𝑎

(𝑊 ) ≤ 𝑂(
√
𝐵) .

We also know that E𝑎[|𝑊 −𝑀𝑎|2] ≤ 4Var𝑎(𝑊 ), due to unimodality of the random variable 𝑊

(which implies that |E𝑎[𝑊 ] −𝑀𝑎| ≤
√︀

3Var𝑎(𝑊 ) as shown by Johnson and Rogers [1951]).
Therefore E𝑎[|𝑊 −𝑀𝑎|2] ≤ 𝑂(

√
𝐵) and similarly E𝑎[|𝑊 −𝑀𝑎|4] ≤ 𝑂(𝐵).

Proof of Part (1). For any parameter vector 𝑎 ∈ 𝜚-Cone𝒜 (and some fixed corresponding mode
𝑀𝑎), we have that E𝑎[|𝑊 −𝑀𝑎|4] = 𝑂(𝐵) (since E𝑎[|𝑊 −E𝑎[𝑊 ]|4] = 𝑂(𝐵) and Var𝑎(𝑊 ) =

𝑂(
√
𝐵)).

Let 𝑏 ∈ 𝜚-Cone𝒜. Suppose that for some 𝑥 ∈ Z with 𝑥 ̸= 𝑀𝑏, we have that

𝑏 · (𝑇 (𝑥)− 𝑇 (𝑀𝑏)) < (1 + 𝜂 + 𝑠) · ln(|𝑥−𝑀𝑏|) + 𝜅 .

Then, we have that

E
𝑏

[|𝑊 −𝑀𝑏|4] · 𝑒𝑏·𝑇 (𝑀𝑏) · Z𝑇 (𝑏) > |𝑥−𝑀𝑏|4 · 𝑒−(1+𝜂+𝑠) ln(|𝑥−𝑀𝑏|)−𝜅 = 𝑒−𝜅 · |𝑥−𝑀𝑏|3−𝜂−𝑠 .

Since, additionally, E𝑏[|𝑊 −𝑀𝑏|4] = 𝑂(𝐵), and using Lemma 34, it must be that |𝑥 −𝑀𝑏| < ℓ,
for some ℓ with ℓ ≤ 𝑒

𝜅
3−𝜂−𝑠 ·𝑂

(︁
𝐵

5
4·(3−𝜂−𝑠)

)︁
.

For 𝑥 ∈ Z with |𝑥−𝑀𝑏| ≥ ℓ we therefore get that

𝑏 · 𝑇 (𝑥) ≥ 𝑏 · 𝑇 (𝑀𝑏) + (1 + 𝜂 + 𝑠) ln(|𝑥−𝑀𝑏|) + 𝜅 . (10)

Consider now any 𝑎 ∈ 𝜚-Cone𝒜with ‖𝑎‖ ≥ 𝜚. Then, there exists some 𝑏 ∈ 𝜚-Cone𝒜with ‖𝑏‖ = 𝜚
so that 𝑏 = 𝜚𝑎/‖𝑎‖. We multiply both sides of Equation (10) with ‖𝑎‖/𝜚 ≥ 1 and use the fact that
rescaling the parameter vector does not change the set of modes to get

𝑎 · 𝑇 (𝑥) ≥ 𝑎 · 𝑇 (𝑀𝑎) + (1 + 𝜂 + 𝑠) ln(|𝑥−𝑀𝑏|) + 𝜅‖𝑎‖/𝜚, or

Pr
𝑎

[𝑊 = 𝑥] ≤ exp(−𝜅‖𝑎‖/𝜚) · 1

|𝑥−𝑀𝑏|(1+𝜂+𝑠)
·Pr

𝑎
[𝑊 = 𝑀𝑎] ,

for any 𝑥 ∈ Z with |𝑥 −𝑀𝑎| ≥ ℓ. Note that in the above we did not multiply (1 + 𝜂 + 𝑠) ln(|𝑥 −
𝑀𝑏|) with ‖𝑎‖/𝜚 ≥ 1 since it only helps the inequality. Since 𝑀𝑎 = 𝑀𝑏 due to the choice of 𝑏, we
accomplish our goal for the case ‖𝑎‖ ≥ 𝜚.

On the other side, if ‖𝑎‖ < 𝜚, then 𝜅 ≥ 𝜅 · ‖𝑎‖/𝜚 and we may pick 𝑏 = 𝑎, concluding the proof of
the first part of the Lemma.
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Proof of Part (2). Let us set 𝑠 ∈ {0, 1, 2}. We have that

E
𝑎

[|𝑊 −𝑀𝑎|𝑠] =

∑︀
𝑥∈Z |𝑥−𝑀𝑎|𝑠 · exp(−𝑎 · (𝑇 (𝑥)− 𝑇 (𝑀𝑎)))

exp(𝑎 · 𝑇 (𝑀𝑎)) · Z𝑇 (𝑎)

=E
𝑎

[|𝑊 −𝑀𝑎|𝑠 ·𝑄ℓ] +
∑︁

𝑥:|𝑥−𝑀𝑎|>ℓ

|𝑥−𝑀𝑎|𝑠 · exp(−𝑎 · (𝑇 (𝑥)− 𝑇 (𝑀𝑎)))

exp(𝑎 · 𝑇 (𝑀𝑎)) · Z𝑇 (𝑎)

≤E
𝑎

[|𝑊 −𝑀𝑎|𝑠 ·𝑄ℓ] +
∑︁

𝑥:|𝑥−𝑀𝑎|>ℓ

|𝑥−𝑀𝑎|𝑠 · exp(−𝑎 · (𝑇 (𝑥)− 𝑇 (𝑀𝑎)))

≤E
𝑎

[|𝑊 −𝑀𝑎|2 ·𝑄ℓ] + 𝑒−𝜅·max{‖𝑎‖/𝜚,1} · 2𝜁(1 + 𝜂)

≤E
𝑎

[|𝑊 −𝑀𝑎|2 ·𝑄ℓ] + 𝑒−𝜅·max{‖𝑎‖/𝜚,1} ·𝑂(1/𝜂) ,

where the first inequality follows from the fact that exp(𝑎 · 𝑇 (𝑀𝑎)) · Z𝑇 (𝑎) =
∑︀

𝑥∈Z exp(−𝑎 ·
(𝑇 (𝑥)−𝑇 (𝑀𝑎))) ≥ exp(−𝑎·(𝑇 (𝑀𝑎)−𝑇 (𝑀𝑎))) = 1. The second inequality follows by applying
Part (1) and noting that

∑︀
𝑥:|𝑥−𝑀𝑎|>ℓ

1
|𝑥−𝑀𝑎|1+𝜂 ≤ 2𝜁(1 + 𝜂), where 𝜁(·) denotes the Riemann

zeta function and 𝜁(1 + 𝜂) = Θ(1/𝜂) as 𝜂 → 0.

We next show that the expectation and the variance for parameters inside 𝜚-Cone𝒜 are continuous
functions with respect to the parameter vectors.
Lemma 36. Under assumptions (2) and (4), the expectation E𝑎[𝑊 ] and variance Var𝑎(𝑊 ) are
continuous functions of 𝑎 on 𝜚-Cone𝒜.

Proof. We will prove that sums of the form
∑︀

𝑥∈Z exp(−𝑎 · 𝑇 (𝑥)) and
∑︀

𝑥∈Z 𝑥
𝑠 · exp(−𝑎 · 𝑇 ),

where 𝑠 = 1, 2, are continuous functions of 𝑎 on 𝒜. Then, E𝑎[𝑊 ] and Var𝑎(𝑊 ) have to be
continuous.

We proceed with the proof for 𝑆 :=
∑︀

𝑥∈Z 𝑥
2 · exp(−𝑎 · 𝑇 (𝑥), since the other cases can be proven

similarly.

Fix some 𝑎 ∈ 𝒜, some 𝜖 > 0 and consider any 𝛿𝑎 ∈ R𝑘 so that 𝑎′ := 𝑎 + 𝛿𝑎 ∈ 𝒜 and ‖𝛿𝑎‖ ≤ 𝛿,
where 𝛿 > 0 to be decided (possibly dependent on 𝜖 and 𝑎). We may apply Lemma 35 to ℰ𝑇 (𝒜),
with 𝑠 = 2, 𝜂 = 1/2 and 𝜅 ∈ (0,∞) to be decided. Therefore, we get some ℓ = ℓ(𝜅) such that for
any 𝑏 ∈ 𝒜′ and any 𝑥 ∈ Z with |𝑥−𝑀𝑏| > ℓ we have

exp(−𝑏 · 𝑇 (𝑥)) ≤ 𝑒−𝜅‖𝑏‖/𝜚 · 1

|𝑥−𝑀𝑏|3.5
· exp(−𝑏 · 𝑇 (𝑀𝑏)) .

Hence we have that∑︁
𝑥:|𝑥−𝑀𝑏|>ℓ

𝑥2 · exp(−𝑏 · 𝑇 (𝑥)) ≤ 𝑒−𝜅‖𝑏‖/𝜚 · 𝑥2

|𝑥−𝑀𝑏|3.5
· exp(−𝑏 · 𝑇 (𝑀𝑏))

= 𝑒−𝜅‖𝑏‖/𝜚 · exp(−𝑏 · 𝑇 (𝑀𝑏)) ·
∑︁

𝑦:|𝑦|>ℓ

|𝑦 + 𝑀𝑏|2

|𝑦4|
.

We have that ‖𝑎‖, ‖𝑎′‖ > 0, since otherwise ℰ𝑇 (𝒜) would not be well defined. Let 𝑓(𝑏) =

exp(−𝑏 · 𝑇 (𝑀𝑏)) ·
∑︀

𝑦:|𝑦|>ℓ
|𝑦+𝑀𝑏|2

|𝑦4| . Therefore, we can pick 𝜅 as a function of the quantities
1/𝜖, max{‖𝑎‖−1, ‖𝑎′‖−1}, 𝜚 and max{𝑓(𝑎), 𝑓(𝑎′)}, which are all finite, for any 𝑎 and 𝑎′ as
hypothesised, so that

∑︀
𝑥:|𝑥−𝑀𝑏|>ℓ 𝑥

2 · exp(−𝑏 · 𝑇 (𝑥)) ≤ 𝜖/4. Hence, if we consider 𝑁 = {𝑥 ∈
Z : |𝑥−𝑀𝑎| ≤ ℓ or |𝑥−𝑀𝑎′ | ≤ ℓ}, we have that∑︁

𝑥∈Z
𝑥2 · exp(−𝑎 · 𝑇 (𝑥)) =

∑︁
𝑥∈𝑁

𝑥2 · exp(−𝑎 · 𝑇 (𝑥))± 𝜖/4 ,

and similarly for
∑︀

𝑥∈Z 𝑥
2 · exp(−𝑎′ · 𝑇 (𝑥)). Therefore⃒⃒⃒⃒

⃒∑︁
𝑥∈Z

𝑥2 · 𝑒−𝑎·𝑇 (𝑥) −
∑︁
𝑥∈Z

𝑥2 · 𝑒−𝑎′·𝑇 (𝑥)

⃒⃒⃒⃒
⃒ ≤∑︁

𝑥∈𝑁

𝑥2 · 𝑒−𝑎·𝑇 (𝑥) ·
⃒⃒⃒
1− 𝑒−𝛿𝑎·𝑇 (𝑥)

⃒⃒⃒
+ 𝜖/2 .

We have that 𝑁 is finite and we can pick 𝛿 so that since ‖𝛿𝑎‖ ≤ 𝛿, the distance is at most 𝜖 (by
upper bounding the sum of the right hand side with |𝑁 | times the maximum term).
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H Applications and Examples

H.1 Examples of Distributions that we capture

Our assumptions for proper learning and covering of SIIERVs (see Assumption 2), capture a wide
variety of families of discrete distributions, including discretized versions of many fundamental
distributions, like Gaussian, Laplacian, etc. Although we focus on the case where the family ℰ𝑇 (𝒜)
includes distributions supported on Z, our results (and our assumptions) naturally extend to the
cases where the support is some subset of Z, like N0. In some cases, for example for distributions
with finite support, our assumptions can be relaxed. In the following table, we represent examples
of distributions with infinite support that our results capture.

Table 1: A collection of pairs (𝑇 ,𝒜) on which our results on learning and covering apply.

Sufficient Statistic 𝑇 Support Extended Parameter Space 𝒜𝜚 Distribution

𝑇 (𝑥) = ln(𝑥) 𝑥 ∈ N [5 + 𝜂,∞), 𝜂 > 0 Zeta
𝑇 (𝑥) = 𝑥 𝑥 ∈ N0 [𝜂,∞), 𝜂 > 0 Geometric
𝑇 (𝑥) = |𝑥| 𝑥 ∈ Z [𝜂,∞), 𝜂 > 0 Discrete Laplacian

𝑇 (𝑥) = (𝑥, 𝑥2) 𝑥 ∈ Z {𝑎 : 𝑎2 ≥ |𝑎1|/𝐿} ∖ B𝜂(0), 𝐿 > 0 Discrete Gaussian
𝑇 (𝑥) = (|𝑥|, 𝑥, 𝑥2) 𝑥 ∈ Z {𝑎 : 𝑎3 ≥ |𝑎2|/𝐿, 𝑎1 ≥ 0} ∖ B𝜂(0) Gaussian-Laplacian

Interpolation

H.2 Parametric Application: Proper Covers for PNBDs

In this section, we provide a parametric application that is captured by our techniques. We study the
class of Poisson Negative Binomial random variables, i.e., sums of independent but not necessarily
identically distributed Geometric random variables. We provide the following structural result.

Theorem 37 (Proper Cover of Poisson Negative Binomials). Let 𝑝low ∈ (0, 1). For any 𝜖 > 0, the
family of Poisson Negative Binomial distributions (i.e., sums of Geometric random variables with
success probability at least 𝑝low) of order 𝑛 admits an 𝜖-proper cover of size 𝑂(𝑛2/poly(𝑝low)) +
2poly(1/𝜖,1/𝑝low). Moreover, for any PNBD 𝑋 , there exists 𝑌 so that 𝑑𝑇𝑉 (𝑋,𝑌 ) ≤ 𝜖 and (i) either
𝑌 is a PNBD of order 𝑂(poly(1/𝜖, 1/𝑝low)) among 2poly(1/𝜖,1/𝑝low) candidates (sparse form) or (ii)
𝑌 is a Negative Binomial random variable of order 𝑂(𝑛) · poly(1/𝑝low) (dense form).

The essentially important part of the proof is that we do not need to assume a variance lower bound
(as we did in assumption (7)), since this is assured using the so-called Massage step of Daskalakis
and Papadimitriou [2015]. The main tool of this trick is the Poisson approximation technique.
Hence, in the proof of the above theorem, we solely focus on this massage procedure and we omit the
details on how to handle the sparse and the dense case since they follow by adapting the techniques
of our main results.

H.3 The proof of Theorem 37

Proof. Let 𝜖 > 0. Consider 𝑋 =
∑︀

𝑖∈[𝑛] 𝑋𝑖, where 𝑋1, ..., 𝑋𝑛 are independent and for and 𝑖 ∈ [𝑛],
𝑋𝑖 ∼ Geo(𝑝𝑖) with 𝑝𝑖 ∈ [𝑝low, 1]. Our proof involves three main parts. First, we perform a massage
step to discard the terms with low variance from the sum. Then, we split two cases according to
the number of terms that have survived. If the number of surviving terms is smaller than some
(appropriately selected) 𝑛′

crit, then it is sufficient to approximate each term with accuracy 𝑂(𝜖/𝑛′
crit).

If the number of surviving terms is higher than 𝑛′
crit, then we prove that 𝑋 is close to some discretized

Gaussian and from that we find a Negative Binomial random variable that matches the first two
moments of the sum and so is close to the Gaussian. The proximity follows by the triangle inequality
of the TV distance. For the following, consider 𝜅 > 1 where 1/𝜅 = 𝑂(𝜖).
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Massage Step. Consider the index set 𝐼 = {𝑖 ∈ [𝑛] : 𝑝𝑖 > 1 − 1/𝜅}. For any 𝑖 /∈ 𝐼 , we let
𝑋 ′

𝑖 ∼ Geo(𝑝𝑖) and, using Lemma 15, we get that

𝑑𝑇𝑉

⎛⎝∑︁
𝑖∈[𝑛]

𝑋𝑖,
∑︁
𝑖∈[𝑛]

𝑋 ′
𝑖

⎞⎠ ≤ 𝑑𝑇𝑉

(︃∑︁
𝑖∈𝐼

𝑋𝑖,
∑︁
𝑖∈𝐼

𝑋 ′
𝑖

)︃
.

For any 𝑖 ∈ 𝐼 , we either set 𝑋 ′
𝑖 ∼ Geo(𝑝′𝑖) with 𝑝′𝑖 = 1 − 1/𝜅. or we set 𝑋 ′

𝑖 = 0 almost
surely. Since 𝑋1, . . . , 𝑋𝑛 are independent geometric random variables, we can apply the following
technical lemma:

Lemma 38 (Corollary 2.5 of Barbour [1987]). Consider 𝑛 independent random variables
𝑋1, ..., 𝑋𝑛 that are geometrically distributed with success probabilities 𝑝1, ..., 𝑝𝑛 respectively. Let
𝜆 =

∑︀
𝑖∈[𝑛]

1−𝑝𝑖

𝑝𝑖
. Then, it holds that

𝑑𝑇𝑉

⎛⎝∑︁
𝑖∈[𝑛]

𝑋𝑖,Poi(𝜆)

⎞⎠ ≤ 𝜆−1(1− 𝑒−𝜆) ·
∑︁
𝑖∈[𝑛]

(︂
1− 𝑝𝑖
𝑝𝑖

)︂2

.

Note that 𝜆−1(1− 𝑒−𝜆) ≤ min{1, 𝜆−1). We make use of the above Poisson approximation lemma
on the set of indices 𝐼 and get that the random variable

∑︀
𝑖∈𝐼 𝑋𝑖 can be approximated by a Poisson

random variable with distribution Poi
(︀∑︀

𝑖∈𝐼 E[𝑋𝑖]
)︀
. Specifically, we get that

𝑑𝑇𝑉

(︃∑︁
𝑖∈𝐼

𝑋𝑖,Poi

(︃∑︁
𝑖∈𝐼

E[𝑋𝑖]

)︃)︃
≤
∑︀

𝑖∈𝐼 E[𝑋𝑖]
2∑︀

𝑖∈𝐼 E[𝑋𝑖]
≤ max

𝑖∈𝐼
E[𝑋𝑖] ,

where we applied Lemma 13 to the sequences of non-negative real numbers (E[𝑋𝑖]
2)𝑖∈𝐼 and

(E[𝑋𝑖])𝑖∈𝐼 . Hence, we have that

𝑑𝑇𝑉

(︃∑︁
𝑖∈𝐼

𝑋𝑖,Poi

(︃∑︁
𝑖∈𝐼

E[𝑋𝑖]

)︃)︃
≤ max

𝑖∈𝐼

{︂
1− 𝑝𝑖
𝑝𝑖

}︂
=

1

𝜅− 1
. (11)

We get the same upper bound for the total variation distance between 𝑋 ′
𝐼 :=

∑︀
𝑖∈𝐼 𝑋

′
𝑖 and

Poi(E[𝑋 ′
𝐼 ]), similarly. We continue with the following claim.

Claim 39 (Correct Rounding). We can partition the set 𝐼 ⊆ [𝑛] into two sets 𝐼⋆, 𝐼0 and set 𝑋 ′
𝑖 ∼

Geo(𝑝′𝑖) with 𝑝′𝑖 = 1− 1/𝜅, for any 𝑖 ∈ 𝐼⋆ and 𝑋 ′
𝑖 = 0 almost surely for any 𝑖 ∈ 𝐼0 so that⃒⃒⃒⃒

⃒∑︁
𝑖∈𝐼

E[𝑋𝑖]−
∑︁
𝑖∈𝐼

E[𝑋 ′
𝑖]

⃒⃒⃒⃒
⃒ ≤ 1

𝜅− 1
.

Proof. If 𝑖 ∈ 𝐼⋆, we have that E[𝑋 ′
𝑖] ≤ 1/(𝜅 − 1), whereas E[𝑋 ′

𝑖] = 0 if 𝑖 ∈ 𝐼0. In the extreme
case where 𝐼⋆ = 𝐼 , note that the expectation of the Geometric is non-increasing and so we have that
E[𝑋 ′

𝑖] ≥ E[𝑋𝑖] for any 𝑖 ∈ 𝐼 and, so, we have that∑︁
𝑖∈𝐼

E
𝑋′

𝑖∼Geo(𝑝′
𝑖)

[𝑋 ′
𝑖] ≥

∑︁
𝑖∈𝐼

E[𝑋𝑖] .

Hence, we can pick 𝐼⋆ to be any minimal subset of 𝐼 so that∑︁
𝑖∈𝐼⋆

E
𝑋′

𝑖∼Geo(𝑝′
𝑖)

[𝑋 ′
𝑖] ≥

∑︁
𝑖∈𝐼

E
𝑋𝑖∼Geo(𝑝𝑖)

[𝑋𝑖] .

This choice of 𝐼⋆ yields ⃒⃒⃒⃒
⃒∑︁
𝑖∈𝐼⋆

E[𝑋 ′
𝑖]−

∑︁
𝑖∈𝐼

E[𝑋𝑖]

⃒⃒⃒⃒
⃒ ≤ 1/(𝜅− 1) ,

and this provides Claim 39.
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By Lemma 15, we conclude that

𝑑𝑇𝑉

(︃∑︁
𝑖∈𝐼

𝑋𝑖,
∑︁
𝑖∈𝐼

𝑋 ′
𝑖

)︃
≤ 3

𝜅− 1
,

using Poisson approximation for (𝑋𝑖)𝑖∈𝐼 and (𝑋 ′
𝑖)𝑖∈𝐼 and combining the upper bound for the total

variation distance of two Poisson distributions (see Lemma 16) with Claim 39.

Without loss of generality, we consider 𝑛′ = |𝐼⋆|, rearrange the terms and discard the trivial ones so
that 𝑋 ′ =

∑︀
𝑖∈[𝑛′] 𝑋

′
𝑖 , with 𝑑𝑇𝑉 (𝑋,𝑋 ′) ≤ 3/(𝜅−1) and 𝑋 ′

𝑖 ∼ Geo(𝑝′𝑖), with 𝑝′𝑖 ∈ [𝑝low, 1−1/𝜅].

The next steps are similar to the general case. Using Gaussian approximation, we compute 𝑛′
crit.

In particular, we can get that 𝑛′
crit = poly(𝜅/𝑝low) = poly(1/(𝜖 · 𝑝low)). If 𝑛′ ≤ 𝑛′

crit, the PNBD
is close to a sparse form that is a sum of Geometric random variables consisting of at most 𝑛′

crit
terms. In this case, it is sufficient to approximate each term 𝑋𝑖 separately using a random variable
𝑌𝑖 ∼ Geo(𝑞𝑖). Due to sub-additivity of the statistical distance, it suffices to control the TV distance
between 𝑋𝑖 and 𝑌𝑖 by 𝜖/𝑛′

crit. Then, it will hold that 𝑑𝑇𝑉 (
∑︀

𝑖∈[𝑛′] 𝑋𝑖,
∑︀

𝑖∈[𝑛′] 𝑌𝑖) ≤ 𝜖 for 𝑛′ ≤ 𝑛′
crit.

We have to discretize the interval [𝑝low, 1−1/𝜅] with appropriate accuracy in order to get the result.
The discretization depends on the TV distance between two Geometric random variables that can be
easily computed.

Otherwise, we first approximate it using a discretized Gaussian random variable and then match the
expectation and the variance in order to find a Negative Binomial that is close to the input PNBD.
This gives the bounds presented in the statement but we omit the details.

H.4 Verification of Assumptions

Although Assumption 2 might not be efficiently verifiiable for every selection of the sufficient statis-
tics, assuming a simple given description of the sufficient statistics vector, analytic methods can
potentially reduce the assumptions to restrictions on the space of parameters. In particular, we have
the following.

• For conditions 2 and 3 (unimodality and localization of modes) we have already identified
an algebraic condition in terms of an appropriate set of linear inequalities (see Appendix
E.2).

• Condition 4 (bounded central moments) is linked to a lower bound on the minimum norm of
the parameter space. For instance, if the sufficient statistics is a scalar logarithmic function
(corresponding to Zeta distribution), the fourth moment is bounded when the parameter
takes values bounded away above 5, according to the convergence of the zeta function (see
Appendix H.1).

• For condition 5 (spectral bound on the covariance matrix), it is sufficient to show an upper
bound on the expected value of the squared norm of the sufficient statistics vector, i.e.,
E[‖𝑇 (𝑊 )‖2]. Such an upper bound may correspond to the exclusion of some parameter
values when different coordinates of the sufficient statistics have different behavior in the
limit 𝑥 → ∞. For example, if one coordinate is polynomial, while another one is loga-
rithmic, we would like to ensure that when the parameter corresponding to the polynomial
statistic is zero, the other parameter will be bounded away above a value that depends on
the degree of the polynomial statistic, i.e., if 𝑇 (𝑥) = (𝑥𝑟, log 𝑥), then (0, 𝑎2) ∈ 𝒜 implies
𝑎2 ≥ 𝑓(𝑟), where 𝑓 is some appropriate (increasing) function.

• Finally, for condition 7 (variance lower bound), consider the simple example of the Geo-
metric distributions, where the sufficient statistics is a scalar linear function over N (i.e.,
𝑇 (𝑥) = 𝑥). Then, the variance lower bound is equivalent to an upper bound on the param-
eter space (i.e., 𝑎 ∈ 𝒜 implies 𝑎 ≤ 𝑎max). We note, however, that the variance lower bound
does not always imply that the parameter space is bounded. In particular, when a distribu-
tion has two or more subsequent modes, then, as the norm of the parameter increases to the
limit, the variance remains bounded away above zero. Therefore, the variance lower bound
may correspond to a different upper bound on the norm for each direction of the parameter
space (since the parameter vector’s direction defines the set of modes; see Appendix E.2).
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