Under review as a conference paper at ICLR 2024

A SUPPLEMENTS FOR SECTION

The following are general assumptions across our theories:

Assumption A.1. The problem domain 2 is an open, bounded, and nonempty subset of R, where
d € N7 is the spatial(-temporal) dimensionality. And

Assumption A.2. The boundary value problem (BVP) considered in Eq. is well-posed, which
means the solution exists and is unique, and F —1 is well-defined.

Assumption A.3. |ul| # 0 and || f|| # 0.

Remark. This assumption assures that the relative conditional number is well-defined. If it is not
satisfied, we could define the absolute conditional number by removing the zero terms.

Assumption A.4. For any continuous function v defined on 2 (i.e., v € C(Q)), it holds that
infgee ||7.L9 - ’UH = 0.

Remark. We assume that the neural network has sufficient approximation capability and ignore the
corresponding error.

A.1 PROOF FOR THEOREM[3.2]

Under Assumption [A.T|—[A.4] the proof of Theorem [3.2]is given as follows.

Proof. According to the local Lipschitz continuity of 71, there exists 7 > 0 such that:
[F7 wn) = F~ o] || < Kfwy — wall, (15)
holds for any w1, ws € W which satisfy that ||w; — f|| < r and ||ws — f]| < r.

Taking an € < r, we can derive that:

[[6ul| /]l

sup —t—

o<lisfli<e I6F11/11£]
_ e luo — ull

lull o< Flue)—fli<e IF [uo] — £l
B |F'f +n] = F L
D

— (let Flug] — f = h) (16)

llull o<ny<e 172

I, KAl

~ lull o<pnj<e N2l

LAl

|
Finally, let ¢ — 0T, we can prove the theorem:

]
cond(P) = i sup Lo/l all/llell _ 1A e 17)

0% ocfari<e I6FIN/IIFI— Mull

A.2 THE EXISTENCE OF CONDITION NUMBER IN SPECIAL CASES
Proposition A.5. Considering a well-posed P : {Flu] = f in Q,u = g in 9Q}, we assert that:

1. If F is linear (i.e., a linear PDE) and g = 0 (homogeneous BC), then F~' is a bounded
linear operator and cond(P) = % [F7H < oo

2. Define Py : {Flu] = 0in Q,u = gin 0Q}. If F is linear and P, is well-posed, then
cond(P) < oc.

13

Under review as a conference paper at ICLR 2024

3. If F~V is Fréchet differentiable at f, then cond(P) = MLIDF-1f]| < oo, where

fll

DF7Y[f]: S — V is a bounded linear operator, the Fréchet derivative of F~* at f.

We divide the Proposition[AZ3]into the following theorems and prove them one by one.

Theorem A.6. If F is linear and g = 0, then F ' is a bounded linear operator and:

cond(P) = :'i:h H]:_lH < 0. (18)

Proof. Firstly, it is easy to show the linearity. Considering k1, ko € K, w1, ws € S, there exists
u1,us € V such that Flu1] = wy A u1]|sq = 0 and Flug] = wa A uz|sq = 0. Then, we have:
F kw4 kaws) = kiuy + kaus = ki F 1 wi] + ko F ™ wa), (19)

where the first equation holds because F[kyuy + kaus] = k1 Flui] + kaF[us] = kywy + kows and
kiuy + kaug = 01n ON).

Secondly, according to the well-posedness, F~! is continuous and thus bounded.

Finally, we have:

oy 10l
o<tiafi<e IS£I1/1LFI
I el

lull o< Fluo]—si<e IF[ue] — £l

W WE R - F)
lull o<ine IR

_lIfl [l
lull o<injj<e [Pl

it

]

(let Flug] — f = h) (20)

Therefore, let e — 0T, cond(P) = 171 H]:_lH < oo.

[u]]

O

Theorem A.7. Define P; : {Flu] = 0inQ,u = gin OQ}. If F is linear and P, is well-posed,
then:
cond(P) < oo. (21)

Proof. Since P; is well-posed, there exists a unique solution u; € V toit. We define G : S — V as
Glw] = F~1[w] — u1. Then we show that G is linear. Consider k1, ks € K, wy,wy € S,

Glkiw + kows] = F kywy + kows] — uy,

(22)
k1Glw1] + kaGlwa] = ky (F~Hwi] — wa) + ko (F~ wa] — uq) -
We have to show that:
.7:_1[]6111}1 + kgwg] —u =k (]:_1[11}1] - U1> + ko (]:_1[1112] - u1> 23)

<~ .7:_1[]61’(1}1 + kgwg] =k (F_l[wl] — U1> + ko (]:_l[wg] — U1> + up.
Apply F on both sides:

kiwy + kawy = F (ffl[klwl + kzgwg})
=F (kl (]:71[’&11] — Ul) + kg (]:71[1112] — Ul) + ul) (24)

= k1w + kows.

14

Under review as a conference paper at ICLR 2024

And consider the value on the boundary:

(F krwy + kaws)))an
= (ki (F7 w] — u1) + ko (F~ wa] — w1) + ui) ‘m (25)
k(g —)+k2(g 9N+9=9.

Then, according to the well-defineness of F~!, we can prove that Eq. (. 23)) holds and thus G is linear.
Besides, since F~! is continuous, G is a bounded linear operator.

Finally, we have:

p 1031/101
o<tiafii<e I6£I1/1]
_ ISl o |ueg — ul|

m 0<||Flue]—f||<e | Flue] — [

_ Hﬂ sup H]:_l[f"_ h] _f_l[f]” (let]:[Ue] o f _ h)

lull o<nj<e 2| 26)
sl IGLf + k] — GLA|
= sup

lull o<pnf<e [|A]]
A 1GIR]|

lull o<ni<e T2l

=i

Therefore, let ¢ — 07, cond(P) = % 1G]] < oc.

Theorem A.8. If F ' is Fréchet differentiable at f, we have that:

WA
[lull

where DF~Y[f]: S — V is a bounded linear operator, the Fréchet derivative of F~* at f.

ond(P) = = | DF]| < o0, (27)

Proof. Since F —1 is Fréchet differentiable at f, it is true that:

i |1 [f + 1) = F'[f] = DFF)[A]|
m sup
€e=0% o< ||h||<e ||hH

~ lm | F=1f + h] — F~1f) — DFfR]||
[-0+ [|A]]

(28)
=0.

We can find that W # {0} since u € V, Flu] = f € W, and || f|| # 0. Therefore, we have that:

lim sup —HD]:_I[f] [h]H
=0+ 0<||h||<e Al

pFf] [”Z”] H = |pF1).

which holds due to the fact that DF ~*[f] is a bounded linear operator.

(29)

= lim sup
0% o<lnf<e

15

Under review as a conference paper at ICLR 2024

Then, we have that:

llgull /Nl
0<H6f\|<e IS £I/11£11
_ Al - ug — ul|
= p

lull o< Flugl-si1<e [|Flus] = £l
_ s AR = FA

(let Flug] — f = h) (30)

]l o<|in)j<e [|A]]
Ay 17 H = F - D)|
= Jll o, Il
W IPFABIL L I e
Tl o™ ™ Tl * g 197N

when € — 0.
As for the left-hand side, it follows that:
UL g MFMLE o h = PR
l[ull o<inli<e ([
A | DF A1
ZWMQJQ< 0]
CFM R - f[ﬁ%ﬁ*mwg
17|
i wa*mWH
= Jlull o<k <e 17l
I it m—DFﬂmww
0<||h||<e 2l
wl o Eam
lull o<inf<e ([~
I, IF R - F - D)
llull o<in)<e [

_ Al
7 ll

€2y

IDF=H A -0,

when e — 0.

According to the squeeze theorem, we have proven the theorem:

cond(P) = lim lowll /Nl |71 IDF

< 00. 32
R B TR T 2

A.3 PROOF FOR THEOREM [3.3]

Firstly, we define the inner product in L2((0,27/P)) as
2m

() =5 [fagta)da. ()

With the inner product defined above, L?((0,27/P)) forms a Hilbert space. As f € L?, we can
have a Fourier series representation of f:

f=2c+ Z ay sin(kPx) + Z by, cos(kPx). (34)
k>1 E>1

16

Under review as a conference paper at ICLR 2024

It is then easy to obtain u = F~1[f] from the series:

b
u=cx(x —2n/P) — Z k2a]lc32 sin(kPx) — Z kZ;DZ (cos(kPzx) —1). (35)
E>1 k>1
By definition, || F~"|| can be rewrite as || F~'|| = sup sy [F'[f]|l. Therefore, the original
problem is equivalent to the following constrained optimizing problem:
max ||ul?
st fI2 =1
1 1
2 _ 4.2 2 2
where || f]|* = 4¢” + §Zak+ §Zbk
k>1 E>1
1 8rt 4r? 1 a b2 bk o
2 _ 2 k
lull® = 5z(F5¢" = ¢ Z 5D ity kaZ 3)%).
k>1 k>1 k>1 k>1

(36)
We then prove the following lemma.

Lemma A.9. When ||u||? reaches its maximum, we have aj, = 0,Vk > 1.

2
Proof. Firstly, it is obvious that a;, = 0,Vk > 2. This is because the only term for ay is > k>1 —’z
Thus, when 3k > 2, ay, # 0, then it is better to move the value from ay, to a;.

Now we suppose a1 # 0. Since || || = 4¢* + 13, ~, a7 + 3 >4, b = 1, we can replace a? by
2 — Y1 bi — 8¢2. So we get the following problem:

R R Y Zfﬂ Zb S ()

k>1 k>1 k>1
1
S ST
k>1
(37
To s1mphfy the expression, we define B = k>1 . When ||u|? reaches its maximum, it must
satisfy =2 [|u|? = 0:

0 2 4 471'2 1 1 bk
=P (——(c5 —dey b+ QB 0. 38
il = P e o 2B) = 68)

When j = 1, we get B = 2¢(1 + ’i) When j > 2, we can solve b; from the equation that

3
b =

ar® 240 02Bj?
Zme Hem2BiT Therefore, we can solve by = B — 3, ., 25 = 2¢(1 + 7 coth(m)).

17.]‘4 _1+2

Now we define d, = by/c, which are constants satisfying d; = 2(1 + 7coth(n)) and d; =

1+J2 ,Vj > 2. Then ||u|? can be reformulized as:

8t 472 dp dp 1 1 d? d,
2 p—4 2] o 2: 2 Z % Z)
HUH n (1+C(ﬁ_4_? ﬁ_ll F_i dk+§ ﬁ (k2) >)
k>1 k>1 k>1 k>1 k>1

=P (1 +29).
(39)
Where S > 0. From the constraint that 1 — 3 D k> b —4c? =1-c(3 dok>1 d? +4) > 0, we can

get the feasible interval of ¢: ¢ € (—\/1/(% ks 4 +4), \/1/(% > ks1dz +4)). In this way,

||u]|? has no maximum, leading to a contradiction. Therefore, we proved that a; should be zero. []

17

Under review as a conference paper at ICLR 2024

Finally, we provide a proof for Theorem [3.3]

Proof. Given the conclusion in the Lemma[A.9] we will focus on by, and ¢ only. Now assume ¢ # 0
and replace by, by dy, = b /c.

1717 = 4+ 5 >) =

k>1

_ 8rt 4x? dy, d? di
Jull® = P42(15—?Zk + Z k+z —=)%).

k>1 k>1 k>1 k>1

(40)

By doing this, we can remove the constraint ||f||* = 1 by replacing ¢* = 2/(8 + >_,-, €7 +
> 4>1d2). Now our objective is simply maximizing:

Tr . d;
15 7Zk>1 %2 4Zk21%’5+%2k21?’5+(2k21 %)2
PA8+ 351 d7)

[Jul|* = (41)

To simplify the long expression, we define B = >, ., %’5, C=3451d.D =%, i—’; and
E=%,-, Z—E in the following proof.

When [|u||? reaches its maximum, it must satisfy 52-|u[|> = 0. Thus we can get the following
J
equation:

(42)
From the equation we can solve for dj:
2B —)2 —)8+ C
dy = ()k? —4)(8+ C))

(6 8 p 8D+E+2B2)k4—8 c

Now we learn that dj, can be determined by B, C, D, E. We denote dj, = gi(B,C, D, E) and we
can now solve B, C, D, E from the 4 equations below:

B D, FE
B:ng< 7C,))

k2 ’
k>1
C=> 4i(B,C,D,E),
k>1
5 _ N~ 9:(B,C, D, E) @
- Z L4 ’
k>1
2
_ gk(B7 C) D) E)
b= Z !
k>1
2(—720+6072+7%) 8(—2160+2107 +7r4)
Where we get B = -8,0=m2-8,D = I E = =
Thus, we get d, = — 77— and [|u||* = 16 P~ for maximum value. So || F 1| = ||ul| = 4P~2
O
A.4 PROOF FOR COROLLARY [3.4]
Proof. Since cond(P) < oo, we arbitrarily take M > 0, then there exists £ > 0 such that:
oull/||u
Joul/ Il _ ool < ar)

sup
o<liafii<e 10£11/ 11l

18

Under review as a conference paper at ICLR 2024

which holds for any € € (0, §).
Thus, we can defined a: (0,£) — R as:

oull /|
o=, n_ (i~ “
which satisfies that lim,_,q+ a(z) = 0.
It follows that:
Iull/llu] = cond(P) + a(e), Ve e (0,¢), 47

sup — Lt —— =
o<piafli<e [0£1/1£1
which is equivalent to the statement that for any € € (0,&), when 0 < \/£(0) < e

— v/ L(0
|“"|”“” < (cond(P) + afe)) ”f(”) veceo. 48)
U
If \/£(0) = 0, then ug = u since the BVP is well-posed, and thus Eq. l) still holds. O

A.5 PROOF FOR THEOREM[3.3]

Firstly, we state the following assumptions.
Assumption A.10. Let B(6*,7) = {0 |0 € O A ||@ — 0|1 < r},7 > 0, where || - ||1 is the L*
vector norm. We assume that %) ¢ B(6*,r),Vk > 0 and that & > 1.

Remark. We posit that the loss function can be optimized to a relatively small value (7 is typically a
small constant), allowing concentrating on the subsequent optimization starting from a point near the
minimum. Empirically, optimizing the loss function near the minimum constitutes a significant por-
tion of the entire process, lending credence to the relevance and practical utility of our assumption.

Besides, we additionally assume that £ > 1 to make (1/+/k) well-defined.

Assumption A.11. £(0) € C?*(B(6*,r)), and 6* is the (unique and correct) local minimum of
L(0) (thus, £L(6*) ~ 0). Moreover, in B(0*, 1), £(0) is convex and L-smooth with constant > 0,
ie., ||Vg£(01) - VQ[,(HQ)H < LHGI - 02” for any 01, 02 S B(G*,T‘).

Remark. We reasonably assume the convexity of £(8), as it can be well approximated by a truncated
local Taylor expansion that is convex within B(6*,r). We refer readers to Appendix for a
detailed discussion on the approximation error of the local Taylor expansion.

Assumption A.12. The learning rate 7 is sufficiently small, i.e., n < 1/L.

Secondly, we introduce two lemmas as follows.
Lemma A.13. If f: X — R is L-smooth with constant L > 0 then:

(- 795 - 1) < =5 IV @R)
holds for all x € X C R™.

Proof. We refer readers to |(Gower.| (2018). O

Lemma A.14. Suppose f: X — R is convex, differentiable, and is L-smooth with constant L > 0.
Then if we run gradient descent for k iterations with a fixed step size n < 1/L, given an initial z(0),

it will yield a sequence zV | . .., £®). Assuming that (Y € X,0 < i < k, we have that:
0) _ ,.*||2
(k)y _) < |2 z|| 50
fa) = flat) < (50)
where ©* € X and f(x*) is the optimal value.
Proof. We refer readers to Ryan Tibshirani| (2013). O

19

Under review as a conference paper at ICLR 2024

Finally, we provide proof for Theorem [3.5|under Assumption[A.T0| [A.TT] [A.12] and[A.T]-[A.4]

Proof. Starting from 09, we run gradient descent until k steps. Based on Lemma|A.14] we have
that:

16 — 6~|*
S B L

18 —e~|?
2nk '

L£(0%) + L(6%) ~ ok (51)

According to Corollary (where we let ¢ = |0 — 0*|//2nk), there exists a function
a':(0,&) = R, & > 0 with lim,_,g+ &/ (z) = 0, such that:

|ug — ull (, <||9(°) - 9*||>> L(6W)
——— — < (cond(P) +« , (52)
ol) Vo]
which can be rewritten as:
ugr — ull < < 1)) L(6™)
————— < (cond(P)+a|— — (53)
Tl Pyve\ %))

where a: (0,£) — R, ¢ > 0and a(z) = o/ ((|0© — 6*||/v/2n)x).
Plugging Eq. into the above equation, we can conclude the following:

[uga) — ull ((1)> 10 — 67|
———— S |condP)+a | —=)) ———F, (54
[l Vk/) 20k f]]
which is our target in this proof. O

A.6 DISCUSSION ON APPROXIMATION ERROR OF THE TRUNCATED TAYLOR EXPANSION

In this subsection, we will analyze the approximation error of the second-order local Taylor expan-
sion £(0) w.r.t. £(0) in B(6*,), which is given by:

£(0) = £(07) + VoL (69T (0 — 67) + %(0 — 01 TV3L(0°)(0 — 6%), (55)

where the Hessian matrix V3 £(6*) is symmetric positive semidefinite since 8* is a local minimum
and £ € C?(B(6*,r)) (under Assumption and|A.11), and thus £(6) is convex.

Theorem A.15. Suppose S O B(0*,r) is an open convex set where L is of class C® in S and all
of its third-order partial derivatives can be bounded by M > 0, i.e., |0“L(0)| < M forany 8 € S
and any multi-index o with || = 3, it follows that:

c(8) — £(0) < M, (56)

which holds for any @ € B(0*,r).

Proof. According to Taylor’s theorem, we have that:

~ M .
£(6) ~ £0)] < 20— 0|
i 57)
S 57’ .
O

Remark. This theorem unveils that the approximation error bound is proportional to the third power
of the radius ». When our optimization is pushed really close to the minimum, such an error is
completely negligible.

20

Under review as a conference paper at ICLR 2024

A.7 PROOF FOR THEOREM[3.6

We discretize the loss function £(8) on a set of collocation points {x(} N
L£(6) X L(6) = %H}'[UG](X) - fX)I7, (58)
where X € RV*? = [g(1) . g(]T,
The NTK K (t) € RV*Y of PINNG is defined to be:
OF [ugw)(@?) OF[ug)(@)
00 00 ’
From Jacot et al.| (2018)); Wang et al.| (2022c)), we can obtain that:

w = —K(1)(Flue)(X) — f(X)), (©0)

According to NTK’s conclusion (Jacot et al., 2018}, \Wang et al.,[2022c), K (t) nearly stays invariant
during the training process (in the infinite-width limit):

Kj(t) = 1<i,j <N,te[0,+00). (59)

K(t)~ K>, Vte]l0,+00), (61)
where K is a fixed kernel. Therefore, Eq. @]) can be further rewritten as:
Flug)(X) ~ (I - e_K(t)t) F(X). (62)

Since K (t) is positive semi-definite (Wang et al.|2022c) and is nearly time-invariant, we can take its
spectral decomposition and make the orthogonal part time-invariant: K (t) ~ Q" A(t)Q, where Q
is a time-invariant orthogonal matrix and A(t) is a diagonal matrix with entries being the eigenvalues
Ai(t) > 0 of K(t). Consequently, we can further derive that:

Fluow)(X) = f(X) = -QTe MQf(X), (63)
which is equivalent to:

Q (Fluo)(X) — f(X)) ~ —e M'Qf(X). (64)
The equation suggests that the i-th element of the left-hand side will diminish approximately at the
rate of e~ ()t Put differently, the eigenvalues of the kernel serve as critical indicators, characteriz-

ing the rate at which the training loss declines. This motivates us to define the average convergence
rate c(t) as in|Wang et al|(2022c):

e(t) = Z Ai(t) = %tr(K). (65)

Let fo = F|ug]. Delving into the expression of ¢(t), we have that:

N 2
1 OF[uow)], .
o =5 2| =)
=1
Z 8.7: U/G(t) 0U0(t) (w(z)) 2
N 00

OF] o 2
|Q| H ug(,)] o 1(;99“’) ‘ (L? function norm)

10 2
=07 o e T2 .
1/|Q| aue(t) ? fD‘F71

= D7 o T2 | 0 (operator norm o [for)])
_ LI/l 1€2]) Haue(t) ‘

(cond(P))* + a(ll fory — f1I?)
_ A1/ (el *[€2]) Qug(||

(cond(P))2 + a(L(O(1))) || 06 |’

where DF ! [w]: F(U) — V is the Fréchet derivative of 7! at w.

21

Under review as a conference paper at ICLR 2024

B SUPPLEMENTS FOR SECTION [4]

B.1 DETAILED DERIVATION FOR EQ. (T3]

Lemma B.1. Supposing that A € RN*N s invertible, we have:

lim sup = ||A]|. (67)
=0+ o< |lvj<e V]l
veRN
Proof. For any € > 0, we firstly prove that:
A A
{| T O<||v||<e/\ve]RN} {”” 1|’|” o] £ 0 A v ERN} (68)
We only need to prove that:
A A
{I ’|’ 0<||v||<e/\v€RN} {”” 1|’|” |v7£0/\v€RN}7 (69)

because the other direction is obvious. For any a € {||Av||/||v|: |v]| # 0 A v € RV}, there exists
v with ||v|| # 0 such that a = || Av||/||v||. We consider v' = ev/||v]|. It is clear that ||v’|| = € and

that: ,
[AV[| _ e/[lv][[[Av]] _ [[Av] _
lcdl e/ |lvll[v]l]|
Then, we have that a € {||Av||/[|v[|: 0 < |[v]| < eAwveRN}. Therefore, Eq. (68) holds and
thus:

Av
sup {20 < ol < enve) —sup {28l o) 20nv e ¥} <y o)

(70)

Let € — 07, we finally prove that this lemma.
O

We now start our derviation. Let ug denote the predictions of the neural network at the mesh
locations: ug = (ug(z))N,. From Deﬁnition we have:

l[ull/llull
cond(P) = lim sup
=0+ 0<|orse 161/l

— LfH li ug — ul|

sup —_
[ul] e=0% o< Flug)— £l <e | F[ua] — £l
0co

(72)
L2 Jug — ull
sup
[ull e=0% o< Aue—b)<e [Aug — b
60co

_ el sup |uo — ul
[l e=0+ o< A(up—u)|<e [|A(ue —)|’
6coO

where the approximate equality holds because we discretize the BVP. Because of the assumption
that the neural network has sufficient approximation capability (see Assumption[A.4) and the fact
that || Av|| < ||Al|||v], Vv € RY, Eq. (72) can be further rewritten as:
1ol . loll - _ ol
[l =0+ o<fwf<e [[Av] — [lull
veRN
where the equality holds according to Lemma

A=), (73)

When we apply the precondition number P satisfying that P ~ A (P~! ~ A~!, also), the linear
system transfers from Au = bto P~'Au = P~'b. Equivalently, we have A — P~'A and
b — P~'b. Then, Eq. (73) becomes:

b 1P|
Tl A= T

[A”"s]

lA=I P ~ Tl

AT Al =1. (74)

22

Under review as a conference paper at ICLR 2024

B.2 ENFORCING BOUNDARY CONDITIONS VIA DISCRETIZED LOSSES

In this subsection, we will introduce how to enforce the boundary conditions (BCs) by our dis-
cretized loss function.

Dirichlet BCs. We consider the following 1D Poisson equation:

Au(z) =0, z€Q=(0,1),

75
u(z)=¢, xe€dQ=/{0,1}, (75
where u = wu(x) is the unknown and ¢ € R. We discretize the interval [0, 1] into five points
{0,0.25,0.5,0.75, 1} and construct the following discretized equation by the FDM:
h)—2 —h
weth) = 2u(@) ful@=h) _, {0.25,0.5,0.75}, (76)

hQ

where h = 0.25 and «(0) = u(1) = c¢. This can be reformulated as the following linear system:

2 1 07 [u(0.75)] [—¢
[1 —2 1] [U(O.E))][O]. (77)
0 1 =2 [u(0.25) —c

Now, we can see that the BC is enforced by substituting its values into the equation. Similar strate-
gies can also be applied to other numerical schemes such as the FEM.

Neumann BCs and Robin BCs. Such types of BCs are typically enforced via the weak form of
the PDEs. We consider the following Poisson equation with a Robin BC:

—Au(x) = f(x), xe€Q,

0 (78)
au(@) + 55 (@) = g(@), @I,
on
where o, 5 € R, (%() is the normal derivative. The weak form is derived as:
—/ vAudx = / fuda, (79)
Q Q
where v € H' is the test function. Then, we perform integration by parts:
/Vu-Vvdzc—/ —vdm—/fvd:c (80)
Q oq On
We plug in the Robin BC to obtain:
/Vu Vvda:+6 uvda:f/fvda:+ﬁ gvde. &1

Finally, we assemble the above equation by the FEM and can obtain the loss that incorporates the
BC. For other numerical schemes like FDM, we can plug in the finite difference formula of the
derivative term to enforce the BC, which is similar to the cases of Dirichlet BCs.

Other BCs. For other forms of BCs, enforcement is usually implemented by substitution. For ex-
ample, when dealing with left-right periodic BCs, we often substitute the values in the left boundary
with the values in the right boundary. Or equivalently, we reduce the degrees of freedom of the left
and right boundaries by half.

B.3 HANDLING TIME-DEPENDENT & NONLINEAR PROBLEMS

We now introduce our strategies to handle time-dependent and nonlinear problems.

23

Under review as a conference paper at ICLR 2024

Algorithm 2 Preconditoning PINNs for time-dependent problems (sequential)

1: Input: number of iterations K, mesh size N, learning rate 7, time steps {¢;}?_,, initial condi-
tion ug(a), and initial parameters 0(°)

2: Output: solutions at each time steps u;(x),i = 1,...,n

3: fori=1,...,ndo

4: Generate a mesh {z())} é\r:l for current time step

5: Evaluate u;_1 (x) on the mesh to obtain u;_1

6: Assemble the linear system A’ = (I + A(t;)),b’ = (b(t;) + u;_1) according to Eq.

7. Compute the preconditioner for A’: P = LU via ILU

8: fork=1,...,Kdo ‘

9: Evaluate the neural network ug(x-1y on mesh points: ug-1) = (Ugw-1) (:c(-”));»v:l
10: Compute the loss function £T(8(*~1)) by:

Li(0) = ||P (A'ug — b')|° (82)

11: Update the parameters via gradient descent: %) <— §(-=1) — v, LT (9(F—1))
12: end for

13: Letu;(x) < ugos ()
14: Let 80 «—) (transfer learning)
15: end for
Note:
(a) If the mesh {:c(-j) }j»V:l, the matrix A, and the bias b do not vary with time, we can only
generate them once at the beginning instead of regeneration at each time step.
(b) We use transfer learning to migrate the neural network from the previous time step
to the next time step since the solution varies little for most physical problems (if the
number of time steps n is sufficiently large).

Time-Dependent Problems. For problems with time dependencies, one straightforward approach
is to treat time as an additional spatial dimension, resulting in a unified spatial-temporal equation.
For instance, supposing that we are dealing with a problem defined in a 2D square [0, 1]? and a time
interval [0, 1], we can consider it as a problem defined in a 3D cube [0, 1]3, where we build the mesh
and assemble the equation system. However, this approach can necessitate extremely fine meshing
to ensure adequate accuracy, particularly for problems with high temporal frequencies.

An alternative approach involves discretizing the time dimension into specific time steps and subse-
quently solving the spatial equation iteratively for each step. For example, we consider the following
abstraction of time-dependent PDEs:

du
ot

with the initial condition of u(x,0) = h(z),Vax € and proper boundary conditions, where ¢
denotes the time coordinate, T € R*, and u is the unknown. We now discretize the time interval
into n time tg, t1, . ..,t, (to = 0,¢, = T). Let u;(«) denote u(x, t;). Starting from ug(x) = h(x),

(z,t) + Flul(z, t) = f(x,t), VxeQ,te(0,T], (84)

we can construct the following iterative systems (z = 1,2,3,...,):
wi (@) + (6 — tim1) Fluil (@, t;) = (b — tica) f(@,) +uima(x), YV e Q. (85)
Then, we perform discretization in the spatial dimension with a mesh {x(}¥ -
(I + A(ti))ui = b(ti) + w1, (86)
where A(t;),b(t;) are matrices at time ¢; and u; = (ui(ac(j)));\':l. It is noted that the specific

form of Eq. (86) depends on the numerical schemes employed. For example, when using the FEM,
Eq. should become:
(K + A(ti))u; = b(ti) + Ku;1, (87)

where K is the mass matrix which simply integrates the trial and test functions.

Now, we can iteratively solve Eq. (86) with a PINN to obtain the solution at each time step. Specifi-
cally, we can sequentially solve each time step at one time, as described by Algorithm[2] or divide the
time interval into several sub-intervals and train in parallel within sub-intervals (see Algorithm 3).

24

Under review as a conference paper at ICLR 2024

Algorithm 3 Preconditoning PINNs for time-dependent problems (parallelized)

1: Input: number of iterations K, mesh size N, learning rate 7, time steps for m sub-intervals

Sy={t: ..., Sm = {t"}", (each sub-interval has n steps), initial condition uo(x), and
initial parameters Bio i=1,...,n
2: Output: solutions at each time steps within each sub-interval uf(x),i = 1,...,n,s =
1,....m
3: Inmitialize: u}(x) < uo(x)
4: fors=1,...,mdo
5. Generate a mesh {x()} L, for current time step
6: Evaluate uf(x) on the mesh to obtain u)
7: Assemble the matrix A, = (I + A(t5)),i=1,...,n
8: Compute the preconditioner for A}: P, = L;U; viaIlLU,i=1,...,n
9: fork=1,...,Kdo _
10 Evaluate the neural network g1 on mesh points: wgx-1) = (uge-1) (ac(J)))jA;l, i =
1,...,n L ' '
11: Assemble the bias by = (b(}) + uj) and b = (b(t]) + uyx-1)), wherei =2,...,n
i—1
12: Compute the loss function U(ngfl), c 95[971)) by:
- _ 2
L£1(6,...,0,) :Zwi | Pt (Afue, — b)), (83)
i=1
where w; is the reweighting parameters of causality (Wang et al.| |2022a)), satisfying that
D wi =1
13: Update the parameters via gradient descent:
0% 0" _ v £tV oY) i=1,...n
14: end for
15: Letuf(z) < uguo,i=1,...,n
16: if s < mthen
17: Let uj™ (x) < ul, ()
18: endif X
19: Let 01(0) — 95) (transfer learning), i = 1,...,n
20: end for
Note:
(a) In our approach, we employ multiple neural networks, denoted as ug,,? = 1,...,n,to

predict the solution at each time step. During implementation, these networks share all
their weights except for the final linear layer. This design choice ensures efficient mem-
ory usage without compromising the distinctiveness of each network’s predictions.

Nonlinear Problems. In the context of nonlinear problems, a strategy is to transfer the nonlin-
ear components to the right-hand side and only precondition the linear portion. For example, we
consider the following equation:

Au(x) +sinu(x) = f(x), VYo e . (89)
We can simply move the nonlinear term sin «() to the right-hand-side and assemble:
Au =b—sinu. (90)

Then, we can compute the preconditioner for the linear part A and the loss function becomes
LT(@) = |P~1(Aug — b + sinug)||?>. Nonetheless, this might lead to convergence issues in
cases of highly nonlinearity.

To address this, we employ the Newton-Raphson method, allowing us to linearize the problem and
then solve the associated linear tangent equation during each Newton iteration. Specifically, assem-
bling a nonlinear problem results in a system of nonlinear equations:

F(u)=0, F(u)=(F(u),...,F,(u)), 91)

25

Under review as a conference paper at ICLR 2024

Algorithm 4 Preconditoning PINNs for non-linear problems

1: Input: number of iterations K, number of newton iteration 7', mesh size N, learning rate 7,
initial guess uo(x), and initial parameters ()
Output: solution ur(x)
Generate a mesh {xU)};V:l for the problem domain §2
Assemble the nonlinear system F’
fori=1,...,Tdo

Evaluate u;_1 («) on the mesh to obtain u;_1

Compute the Jacobian matrix Jg (w;—1)

Compute the preconditioner for Jp(u;_): P = LU via ILU

fork=1,..., K do

Evaluate the neural network uge:—1 on mesh points: wgu-1, = (uge-1 ()N,

Compute the loss function £T(8~1)) by:

_.
TP ®R ke

Ju—

L£1(0) = P~ (Jr(wi—1)ue — Jr(wi—1)wi—1 + F(Uiq))HQ (33)

12: Update the parameters via gradient descent: (%) <— 9(-=1) — v, £T(9(F—1))

13: end for

14: Letu;(x) + ugus (x)

15 Let 8 « 05 (transfer learning)

16: end for

Note:
(a) Here, we only present the vanilla Newton method, while a lot of advanced techniques

could be applied, which include line search, relaxation, specific stopping criteria, and
SO on.

where m is the number of nonlinear equations. The Newton-Raphson method solves the above
equation with the following iterations (z = 1,2,3...)):

wi =ui—y — Jp(ui_1) P (uiy), 92)

where Jg(u;_1)~! the Jacobian matrix of F at u;_;. Now, we can use the neural network to solve
the linear equation Jg (u;—1)u; = Jp(u;—1)u;—1 — F(u;_1) for u; and proceed the iteration. We
provide a detailed description in Algorithm 4]

C SUPPLEMENTS FOR SECTION[3.2]

C.1 ENVIRONMENT AND GLOBAL SETTINGS

Environment. We employ PyTorch (Paszke et al., 2019) as our deep-learning backend and base
our physics-informed learning experiment on DeepXDE (Lu et al.,2021a). All models are trained on
an NVIDIA TITAN Xp 12GB GPU in the operating system of Ubuntu 18.04.5 LTS. When analytical
solutions are not available, we utilize the Finite Difference Method (FDM) to produce ground truth
solutions for the PDEs.

Global Settings. Unless otherwise stated, all the neural networks used are MLP of 5 hidden layers
with 100 neurons in each layer. Besides, tanh is used for the activation function and Glorot normal
(Glorot & Bengiol 2010) is used for trainable parameter initialization. The networks are all trained
with an Adam optimizer (Kingma & Ba, 2014) (where the learning rate is 10~2 and 3; = B2 = 0.99)
for 20000 iterations.

C.2 DETAILS OF WAVE, BURGERS’, AND HELMHOLTZ EQUATIONS

The specific definitions of the PDEs are shown below.

26

Under review as a conference paper at ICLR 2024

Wave Equation. The governing PDE is:

U — C?upy = (g)Q (02 —1)sin (gx) cos (gt) , (93)

with the boundary condition:
u(0,t) = u(8,t) =0, (94)
and initial condition:

5 ¢ (95)

defined on the domain x T = [0, 8] x [0, 8], where u = u(z,t) is the unknown.

The reference solution is:
u(z,t) = sin (Ex) cos (Et) + 1sin (Ea:> cos (C7Tt> . (96)
8 8 2 2 2

In the experiment, we uniformly sample the value of parameter C' with a step of 0.1 within the range
[1.1,5].
Helmbholtz Equation. The governing PDE is:

Au+u = (1 — 2n%A?) sin(Anzy) sin(Anzy), o7
with the boundary condition:

w(zy,0) = u(xy, 1) = u(0,z2) = u(l,22) =0, (98)
defined on 2 = [0, 1], where u = u(zx) = u(x1, z2) is the unknown.

The reference solution is:
u(x,y) = sin(Arz) sin(Anrzs). (99)

In the experiment, we vary A as integers between 1 and 20.

Burgers’ Equation. The governing PDE on domain Q x T = [—1,1] x [0, 1] is:

Ut + ULy — VUgy = sSin(mz), (100)
with the boundary condition:
u(=1,t) = u(l,t) =0, (101)
and initial condition:
u(0,) = —sin(mwz), (102)

where © = u(z, t) is the unknown.

In the experiment, we uniformly sample 21 values of v on a logarithmic scale (base 10) ranging
from 1072 to 1. The reference solution is generated by the FDW with a mesh of 501 x 21, where
the nonlinear algebra equation is solved by 10-step Newton iterations.

C.3 EXPERIMENTAL DETAILS

Implementation Details. Firstly, we introduce how we numerically estimate the condition num-
ber:

1. FDM Approach: We assemble the matrix A with a specified uniform mesh. For linear
PDEs, according to Eq. , we have that cond(P) ~ MHA*IH. Therefore, we could

el
approximate the condition number by calculating the norm of A~!. For nonlinear PDEs,
in light of Proposition , we have cond(P) = 7] |DF~1[f]|| by assuming its Fréchet

=l
differentiablity. Then, we could approximate the condition number by the norm of the

inverse of the Jacobian matrix of the discretized nonlinear equations.

27

Under review as a conference paper at ICLR 2024

2. Neural Network Approach: According to the definition of the condition number, we can
directly train a neural network to maximize:

5/l o
I8£11 /171l
where ||d f|| are confined to a small value. For linear PDEs, we can simplify the problem to
be computing this equation: || F 1| = supy s ‘lf\I.;l[\f]l‘ = Sup|f|=1 % Since the op-
erator is linear, we can further remove the constraint || f|| = 1 and optimize H‘m‘“ =7 ﬁﬁ‘f{l‘) i

over the parameter space to find the maximum, which will be minimizing its reciprocal or
its opposite.

Hyper-parameters. Secondly, we introduce the hyper-parameters of computing solution or the
condition number for each problem:

* 1D Poisson Equation: We employ a mesh of the size 100 for FDM. The hard-constraint
ansatz for the PINN is: z(27/P — x)/(7/P)?ug. We use 2048 collocation points and 128
boundary points to train the PINN for 5000 epochs to compute the condition number.

* Wave Equation: We employ a mesh of the size 50 x 50 for FDM. The hard-constraint
ansatz for the PINN is: ug + (8 —) /16 - (¢(12 — t))? /256 - ug, where ¢ is time and uy is
the initial condition. We use 8192 collocation points and 2048 boundary points to train the
PINN with the learning rate of 10™4.

* Helmholtz Equation: We employ a mesh of the size 50 x 50 for FDM. The hard-constraint
ansatz for the PINN is: aug + (1 —) sin(Anx) sin(Any), where o = 16z(1 —2)y(1 —y).
We use 8192 collocation points and 2048 boundary points to train the PINN.

* Burgers’ Equation: We employ a mesh of the size 500 x 20 for FDM. The hard-constraint
ansatz for the PINN is: «(1 —)ug — B sin(nz), where « = (1+z)(1—=x), 8 = exp (—t).
We use 8192 collocation points and 2048 boundary points to train the PINN.

Nomralization of the Condition Number. For Burgers equation and Wave equation, we set:

normalized cond(P) = MinMax(log(cond(P) + ¢)) (104)
where ¢ = 0 for Wave equation. For the Helmholtz equation, we select
normalized cond(P) = MinMax(1/cond(P)) (105)

as the normalizer. Here, MinMax(-) denotes a min-max normalization for the given sequence to
ensure the final values living in [0, 1].

C.4 PHYSICAL INTERPRETATION FOR CORRELATION BETWEEN PINN ERROR AND
CONDITION NUMBER

Figure 2bunveils a robust linear association between the normalized condition number and the log-
scaled L2 relative error (L2RE). This correlation can be expressed as:

log(L2RE) X normalized cond(P),
where, for simplicity, we omit the bias term (similarly in subsequent derivations).

To demystify this pronounced correlation, we first investigate the spectral behaviors of PINNs in
approximating functions. When a neural network mimics the solutions of PDEs, it might exhibit
a spectral bias. This implies that networks are more adept at capturing low-frequency components
than their high-frequency counterparts (Rahaman et al.| 2019). Recent studies have empirically
demonstrated an exponential preference of neural networks towards frequency Xu et al.|(2019). This
leads to the inference that the error could be exponentially influenced by the system’s frequency.
Hence, it is plausible to represent this relationship as:

log(L2RE) X Frequency.

In what follows, we explore how Frequency correlates with cond(P). Using Frequency as a bridge,
we will model the relationship between log(L2RE) and cond(P).

28

Under review as a conference paper at ICLR 2024

 Helmholtz Equation: Here, 7! remains constant with the parameter A. This implies
that cond(P) o Il = |1 — 272 A2|. Given that A determines the solution’s frequency,

flull
we infer that y/cond(P) X Frequency. This leads to the conclusion that log(L2RE) X
cond(P), aligning with our experimental findings.

* Wave & Burgers’ Equation: For these equations, the parameters C' and v influence the
frequency of both the solution and the operator F. Given their similar roles, we use the
wave equation to elucidate the relationship between the condition number and the param-
eter. This relationship is found to be ar least exponential. Based on Proposition [A.5] we

define P; as:

Ut — C2Umm = 07 (106)
maintaining the initial and boundary conditions. Assuming P; is well-posed, we introduce
Glw] = F~[w] — uy for every w in S, where u; is the solution to P;. Chossing a

particular fo(z,t) = C4(—eC (1 + Kz) + ¢“*(1 + C%t)) with K = 6808_1, we derive

Glfol(z,t) = ("t —1 — C2t)(eC" — 1 — Kx). Consequently, we obtain:

kC
cond(P) = M g/ > |I£|: ||i%(i|]|| o 607”,

]
where k,n are constants independent of C. In summary, we deduce log(cond(P)) X
Frequency, leading to log(L2RE) X log(cond(P)).

(107)

D SUPPLEMENTS FOR SECTION[3.3]

D.1 ENVIRONMENT AND GLOBAL SETTINGS

Environment. The environment settings are basically consistent with that in Appendix|[C.1] except
that:

* The model in NS2d-CG is trained on an Tesla V100-PCIE 16GB GPU. If you want to
in a GPU with lower memory, you can specify Use Sparse Solver = True in the
configuration to save memory.

* The reference data are generated by the work of |Hao et al.| (2023)).

* We employ the finite element method (FEM) for discretization, utilizing FEniCS (Alnzs
et al.l 2015)) as the platform.

Global Settings. Unless otherwise stated, we adopt the following settings:

* For 2D problems (including the time dimension), we employ the MLP of 3 hidden layers
with 64 neurons in each layer. For 3D problems (including the time dimension), we employ
the MLP of 5 hidden layers with 128 neurons in each layer. Besides, S1LU is used for the
activation function. The initialization method is the default one in PyTorch. And we employ
10-dimensional Fourier features, as detailed in (Tancik et al., [2020), uniformly sampled on
a logarithmic scale (base 2) spanning 27 x [27°,2°].

* The networks are all trained with an Adam optimizer (Kingma & Bal [2014) (where the
learning rate is 1072 and 8, = 0.9, 32 = 0.99) for 20000 iterations.

* The results of baselines are from the paper (Hao et al., 2023), except the computation time
results, which are re-evaluated in the same environment as our method.

Baselines Introduction. We redirect readers to the Section 3.3.1 in the paper (Hao et al., 2023).

D.2 PDE PROBLEMS’ INTRODUCTION AND IMPLEMENTATION DETAILS

In this section, we briefly describe PDE problems considered in PINNacle Hao et al.| (2023) used
in our experiment, as well as the implementation and hyper-parameters for our method. We refer to
the original paper (Hao et al.l [2023)) for the problem details such as initial conditions and boundary
conditions.

29

Under review as a conference paper at ICLR 2024

Burgersld-C. The equation is given by:

0
8—1: + Uty = Vg, (108)
define on Q@ x T = [—1,1] x [0, 1], where w = u(x,t) is the unknown, €2 is the spatial domain

whereas T is the temporal domain (the same below). In this and subsequent PDE problems, initial
conditions and boundary conditions are omitted for clarity unless specified otherwise. Let)’ =
QO x T,2' = (x,t). The weak form is expressed as:

%.vdx'Jr/ (uur).vdx/qtu/ Uy - vy da’ =0, (109)
Q/ at ’ ’

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
500 x 20. Given that the matrix size remains within the memory constraints, we utilize a dense
matrix implementation for faster matrix computations. The drop tolerance of the ILU is 104, We
solve the problem with 10-step Newton iterations (see Algorithm [and train the neural model for
2000 iterations in each Newton step.

Burgers2d-C. The equation is given by:

0

8—7:+u~Vu—uAu:0, (110)
defined on Q x T' = [0,4]? x [0, 1], where w = (u1(x,t), uz(x, t)) is the unknown. We solve this
problem by an (implicit) time-stepping scheme (see Algorithm[3)). The number of sub-time intervals
is 50, with each interval having 10 steps. The weak form is expressed as:

/ Uy -vdm+§tu/ Vu, -Vvdw+§t/(u1 -Vuqp)-vde = / up - vde, (111)
Q Q Q Q

where ug = uo () is the solution at the previous time step, uq = w1 () is the solution at current
time step, v = wv(x) is the test function, and 6t = 1/500 is the time step length. We employ
the FEniCS to discretize the problem with an external mesh including 12657 nodes generated by
COMSOL Multiphysics (commercial software for FEM (COMSOL AB| 2022)). It is noted that
we do not employ a Newton method to solve the discretized nonlinear equations since the time
overhead is too high. Instead, we only precondition the linear portion (see Appendix and let
the neural model find the correct solution by gradient descent. Besides, we utilize a sparse matrix
implementation since the matrix size exceeds the memory constraint. The drop tolerance of the ILU
is 1071, We train the model for 2000 iterations in each sub-time interval while 40000 iterations in
the first interval (i.e., cold-start training). Finally, in this problem, we employ an MLP of 5 layers
with 128 neurons in each layer as our neural model.

Poisson2d-C. The equation is given by:

—Au =0, (112)
defined on a 2D irregular domain €2, a rectangular domain [—0.5,0.5]? with four circular voids of
the same size, where u = u(x) is the unknown. The weak form is expressed as:

/ Vu-Vuvdx =0, (113)
Q

where v is the test function. We employ the FEniCS to discretize the problem with an external mesh
including 10602 nodes generated by the Gmsh (Geuzaine & Remacle, [2009). Given that the matrix
size remains within the memory constraints, we utilize a dense matrix implementation for faster
matrix computations. The drop tolerance of the ILU is 103,

Poisson2d-CG. The equation is given by:
—Au+ K=, (114)

defined on a 2D irregular domain 2, a rectangular domain [—1, 1]? with four circular voids of dif-
ferent sizes, where u = u(x) is the unknown, k = 8, and f = f(x) is given. The weak form is

expressed as:
/Vu-Vvdw+k2/u-vdac:/f-vdcc, (115)
Q Q Q

30

Under review as a conference paper at ICLR 2024

where v is the test function. We employ the FEniCS to discretize the problem with an external
mesh including 9382 nodes generated by the Gmsh. Given that the matrix size remains within the
memory constraints, we utilize a dense matrix implementation for faster matrix computations. The
drop tolerance of the ILU is 1073,

Poisson3d-CG. The equation is given by:
—piAu+ku=f inQ; i=1,2, (116)

defined on a 3D irregular domain 2, a cubic domain [0, 1]* with four spherical voids of different
sizes, where u = u(x) is the unknown, Q1 = QN {x = (1,22, 23) | 3 < 0.5}, Q2 = QN {zx =
(1,22, 23) | 3 > 0.5}, up = pa =1, k1 = 8, k2 = 10, and f = f(x) is given. The weak form is
expressed as:

151 Vu-Vvda:—i—k%/ u-vde + o Vu-Vvd:c—&—k%/
Q1 4 Qo Q2

u~vd:c:/f~vdw, (117)
Q

where v is the test function. We employ the FEniCS to discretize the problem with an external
mesh including 13680 nodes generated by the Gmsh. Given that the matrix size remains within the
memory constraints, we utilize a dense matrix implementation for faster matrix computations. The
drop tolerance of the ILU is 1073,

Poisson2d-MS. The equation is given by:
—V(aVu) = f inQ,

(118)
% +u=0 1in0f,
on
defined on 2 = [—10,10]?, where u = u(x) is the unknown and a = a(z) denotes a predefined

function. Notably, 2 is partitioned into a 5 x 5 grid of uniform cells. Within each cell, a takes a
piecewise linear form, introducing discontinuities at the cell boundaries. We define the weak form
to be:

/a(VU‘V’U)d:B+/ a(u~v)da::/f~vda:, (119)
Q a9 Q

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of
size 100 x 100. Given that the matrix size remains within the memory constraints, we utilize a
dense matrix implementation for faster matrix computations. The drop tolerance of the ILU is 10~3.
Finally, in this problem, we employ a Fourier MLP of 5 layers with 128 neurons in each layer as our
neural model, where the Fourier features have a dimension of 128 and are sampled in A/(0,).

Heat2d-VC. The equation is given by:

0
a—? ~ V(aVu) = f, (120)
define on Q x T = [0,1]? x [0,5], where u = u(z,t) is the unknown and a = a(x) denotes a

predefined function with multi-scale frequencies. Let Q' = Q x T, &’ = (x,t). We define the weak

form to be:
ou

— -vdw’—i—/ a(Vu-Vov)de' = [f-vda, (121)
Q/ at ’ QI

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
20 x 100 x 100. Besides, we utilize a sparse matrix implementation since the matrix size exceeds
the memory constraint. The drop tolerance of the ILU is 10~!. Finally, in this problem, we employ
a Fourier MLP of 5 layers with 128 neurons in each layer as our neural model, where the Fourier
features have a dimension of 128 and are sampled in N (0,).

Heat2d-MS. The equation is given by:

ou 1 1
3~ 7 (o) ©¥4) =0 (122

31

Under review as a conference paper at ICLR 2024

define on Q x T' = [0, 1]% x [0, 5], where u = u(zx, t) is the unknown and ® denotes an element-wise
multiplication. Let Q' = Q x T, x’ = (., t). We define the weak form to be:

ou , 1 1 ;o
Q/E vdx —1—/9/ (((5007r)2’(7r)2> @Vu) Voudx' =0, (123)

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
500 x 20 x 20. Besides, we utilize a sparse matrix implementation since the matrix size exceeds
the memory constraint. The drop tolerance of the ILU is 10!, Finally, in this problem, we employ
an MLP of 5 layers with 128 neurons in each layer as our neural model. The model is trained for
50000 iterations.

Heat2d-CG. The equation is given by:

ou _ Au =0 inQxT,

ot
% =5—u in anargc x T,
82 (124)
% =1—u in 8Qsmall X T?
@ =0.1—u 1in 8Qoutcr X Tv
on

define on 2 x T, where T' = [0, 3], Q is a rectangular domain [—8, 8] x [—12,12] with eleven

large circular voids and six small circular voids, and u = u(x,t) is the unknown. Here, 0Qarge
denotes the inner large circular boundary, 02sman the inner small circular boundary, 0Qqyter the
outer rectangular boundary, and 9Qjarge U 0Qsman U 0Qouter = 0€2. We let:

Q' =QxT,
O 1o = Oarge X T, 123,
8Qimall == aQsde X 7-‘7

aQ:)uter = agouter X T,
and ' = (x,t). We define the weak form to be:
0
2 ovda + Vu~Vvd:c’—/ (5-u) vdx

QO 8t QO BQ{arge (126)

—/ (1—u)~vda:'—/ (0.1 —u)-vda' =0,
09! 09!

small outer

where v is the test function. We employ the FEniCS to discretize the problem with an external mesh
including 255946 nodes generated by the Gmsh. Besides, we utilize a sparse matrix implementation
since the matrix size exceeds the memory constraint. The drop tolerance of the ILU is 101

Heat2d-LT. The equation is given by:

0

8—1; = 0.001Au + 5sin (u2) f, (127)
define on Q x T = [0,1]? x [0, 100], where u = u(z, t) is the unknown and f = f(z,t) is given.
We solve this problem by an (implicit) time-stepping scheme (see Algorithm [3). The number of
sub-time intervals is 2000, with each interval having 1 step. We define the weak form to be:

/ up -vda + 0.001§t/ Vuy - Vode — 5t/ (5sin (uf)f) - vda' = / uo-vda, (128)
Q Q Q Q

where ug = ug(x) is the solution at the previous time step, u; = u1 () is the solution at current time
step, v = v(x) is the test function, and ¢t = 1/2000 is the time step length. We employ the FEniCS
to discretize the problem with a mesh of size 20 x 20. It is noted that we do not employ a Newton
method to solve the discretized nonlinear equations since the time overhead is too high. Instead, we

32

Under review as a conference paper at ICLR 2024

only precondition the linear portion (see Appendix [B.3) and let the neural model find the correct
solution by gradient descent. Given that the matrix size remains within the memory constraints, we
utilize a dense matrix implementation for faster matrix computations. The drop tolerance of the ILU
is 10~%. We train the model for 1000 iterations in each sub-time interval while 100000 iterations in
the first interval (i.e., cold-start training). Finally, in this problem, we employ an MLP of 5 layers
with 128 neurons in each layer as our neural model.

NS2d-C. The equation is given by:
1
—Au =0,

Re (129)
V-u=0,

u-Vu+ Vp —

defined on 2 = [0, 1]2, where w = (uy(x), u2(x)) and p are the unknown velocity and pressure,
respectively, and Re is the Reynolds number. The weak form is expressed as:

1
—/Vu-Vvda:+/(u-Vu)-'ud:c—/pv'vdw—/und:c:O, (130)
Re Jq 0 Q Q

where v = v(x) and ¢ = ¢(x) are, respectively, the test functions corresponding to w and p. We
employ the FEniCS to discretize the problem with a mesh of size 50 x 50. Given that the matrix size
remains within the memory constraints, we utilize a dense matrix implementation for faster matrix
computations. The drop tolerance of the ILU is 10~4. We solve the problem with 20-step Newton
iterations (see Algorithm) and train the neural model for 1000 iterations in each Newton step.

NS2d-CG. The equation is given by:

1
~ Au =
Reov=0 (131)

V-u=0,

defined on 2 = [0,4] x [0,2] \ ([0,2] x [1,2]), where w = (u;(x), uz(x)) and p are the unknown
velocity and pressure, respectively, and Re is the Reynolds number. The weak form is expressed as:

u-Vu+ Vp—

1 Vu'Vvder/(u'Vu)-vdccf/pV'vda:f/undac:O, (132)

Re Jq Q Q Q
where v = v(x) and ¢ = ¢(x) are, respectively, the test functions corresponding to w and p. We
employ the FEniCS to discretize the problem with an external mesh including 2907 nodes generated
by the Gmsh. Given that the matrix size remains within the memory constraints, we utilize a dense
matrix implementation for faster matrix computations. The drop tolerance of the ILU is 10~%. We
solve the problem with 20-step Newton iterations (see Algorithm [and train the neural model for
1000 iterations in each Newton step.

NS2d-LT. The equation is given by:

B 1
T YVt Vp— —Au =],
Re

ot
V-u=0,
defined on 2 x T = ([0,2] x [0,1]) x [0, 5], where © = (u1(x),u2(x)) and p are the unknown
velocity and pressure, respectively, Re is the Reynolds number, and f = f(a,t) is predefined.

We solve this problem by an (implicit) time-stepping scheme (see Algorithm [3). The number of
sub-time intervals is 50, with each interval having 1 step. The weak form is expressed as:

(133)

1
/ul-vdm—l—ét—/Vu1~V'udz—|—6t/(u1-Vu1)~'uda:
Q Re Jq Q

—6t/p1Vvdx—6t/un1dw:/uo-'ud:c,
Q Q Q

where ug = uo(x) is the velocity at the previous time step, u; = w;(x) and p; = p;(x) are the
velocity and pressure at current time step, v = v(x), g = q() are the test functions corresponding

(134)

33

Under review as a conference paper at ICLR 2024

to velocity and pressure, and 6t = 1/50 is the time step length. We employ the FEniCS to discretize
the problem with a mesh of size 60 x 30. It is noted that we do not employ a Newton method
to solve the discretized nonlinear equations since the time overhead is too high. Instead, we only
precondition the linear portion (see Appendix [B.3) and let the neural model find the correct solution
by gradient descent. Given that the matrix size remains within the memory constraints, we utilize a
dense matrix implementation for faster matrix computations. The drop tolerance of the ILU is 10~*.
We train the model for 1000 iterations in each sub-time interval while 100000 iterations in the first
interval (i.e., cold-start training).

Waveld-C. The equation is given by:
ot? 0x?

defined on Q x T' = [0,1] x [0, 1], where u = u(z, t) is the unknown. Let Q' = Q x T, 2’ = (z,t).
The weak form is expressed as:

=0, (135)

Jdu Ov Jdu Ov
- = - —dd'+4 | — —d’=0 136
Q/ ot ot Q/ 31: 81‘ ’ ()
where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
100 x 100. Given that the matrix size remains within the memory constraints, we utilize a dense
matrix implementation for faster matrix computations. The drop tolerance of the ILU is 1073,

Wave2d-CG. The equation is given by:

16%u

22 Au=o0, 137

c Ot? “ (137)
define on Q x T = [—1,1]% x [0, 5], where u = u(x, t) is the unknown and ¢ = ¢(z) is a parameter

function with high frequencies, generated by the Gaussian random field. We solve this problem by
an (implicit) time-stepping scheme (see Algorithm [3). The number of sub-time intervals is 50, with
each interval having 5 steps. We define the weak form to be:

/ uy -vde + 6752/ ¢(Vuy - Vo)de = / (2ug —u_1) - vdea, (138)
Q Q Q

where u_; = u_1(x) is the solution at the time step before the previous time step, ug = ug(x) is
the solution at the previous time step, u; = wuq () is the solution at current time step, v = v(x)
is the test function, and 6t = 1/250 is the time step length. We employ the FEniCS to discretize
the problem with a mesh of size 40 x 40. Given that the matrix size remains within the memory
constraints, we utilize a dense matrix implementation for faster matrix computations. The drop
tolerance of the ILU is 10~%. We train the model for 1000 iterations in each sub-time interval while
500000 iterations in the first interval (i.e., cold-start training).

Wave2d-MS. The equation is given by:
0%u
ot?

defined on Q x T = [0, 1]? x [0, 100], where u = u(z, t) is the unknown and a is a given parameter.
Let O = Q x T,x’ = (x,t). The weak form is expressed as:

ou Ov | , 2 r_
[S +//((1,a) @ V) - Voda' = 0, (140)

+V-((1,6®) ®Vu) =0, (139)

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
10 x 10 x 1000. Besides, we utilize a sparse matrix implementation since the matrix size exceeds
the memory constraint. The drop tolerance of the ILU is 10~L. Finally, in this problem, we employ
a Fourier MLP of 5 layers with 128 neurons in each layer as our neural model, where the Fourier
features have a dimension of 128 and are sampled in N (0,).

34

Under review as a conference paper at ICLR 2024

GS. The equation is given by:

0

% =g Aug +b(1 —uy) — ulug,

aJ (141)
87252 = e9Aus — dusg + ulug,

defined on OxT = [—1,1]? %[0, 200], where w = (u1(x,t), uz(x,t)) is the unknown and b, d, €1, €2
are given. We solve this problem by an (implicit) time-stepping scheme (see Algorithm [3). The
number of sub-time intervals is 200, with each interval having 1 step. The weak form is expressed
as:

/ u; -vdx + 5t/ (e1Vuq,1 - Vv + €2Vug o - Vug) de
Q Q

+5t/ ((U171U%72) U1 — (ul,lufg) "UQ)) dx (142)
Q

Jr515/ (=b(1 —u11) - v1 +durg-va))de = / wg - vde,
Q Q

where ug = ug(x) is the solution at the previous time step, w1 = w1 (x) = (u1,1(x), w1 2(x)) is
the solution at current time step, v = wv(x) is the test function, and ¢ = 1/200 is the time step
length. We employ the FEniCS to discretize the problem with a mesh of size 128 x 128. It is noted
that we do not employ a Newton method to solve the discretized nonlinear equations since the time
overhead is too high. Instead, we only precondition the linear portion (see Appendix and let
the neural model find the correct solution by gradient descent. Besides, we utilize a sparse matrix
implementation since the matrix size exceeds the memory constraint. The drop tolerance of the ILU
is 1071, We train the model for 1000 iterations in each sub-time interval while 20000 iterations in
the first interval (i.e., cold-start training). Finally, in this problem, we employ an MLP of 5 layers
with 128 neurons in each layer as our neural model.

KS. The equation is given by:
ou 0%u n 0*u
ot ar2 " ozt
define on Q x T' = [0, 27] x [0, 1], where u = u(x, t) is the unknown and «, 3, are multi-scale
co-efficients. We solve this problem by an (implicit) time-stepping scheme (see Algorithm [3)). The

number of sub-time intervals is 1, with each interval having 250 steps. We define the weak form to
be:

+au@+5 =0, (143)
Ox

3
/uwdx—&-aét/ul%vdm—ﬁat %@dx_wt 0uy 9v
@ 0 q 023 Oz

Q x q Ox Ox

where ug = wuo(x) is the solution at the previous time step, u1 = u1 () is the solution at current time
step, v = v(a) is the test function, and d¢ = 1/250 is the time step length. We employ the FEniCS
to discretize the problem with a mesh of size 500. It is noted that we do not employ a Newton
method to solve the discretized nonlinear equations since the time overhead is too high. Instead, we
only precondition the linear portion (see Appendix and let the neural model find the correct
solution by gradient descent. Given that the matrix size remains within the memory constraints, we
utilize a dense matrix implementation for faster matrix computations. The drop tolerance of the ILU
is 104, We train the model for 15000 iterations in each sub-time interval. Finally, in this problem,
we employ an MLP of 5 layers with 128 neurons in each layer as our neural model.

dx:/uovdx, (144)
Q

Poisson Inverse Problem (PInv). The equation is given by:
—V(aVu) = f, (145)

define on 2 = [0, 1], where u = u(z) is the unknown solution, a = a(x) denotes the unknown pa-
rameter function, and f = f () is predefined. Given 2500 uniformly distributed samples {u (")}
with Gaussian noise of A'(0,0.1), our target is to reconstruct the unknown solution « and infer the
unknown parameter function a. We define the weak form to be:

/a(Vu-Vv)dm:/f-vd:c, (146)
Q Q

35

Under review as a conference paper at ICLR 2024

Table 3: Comparison between our method, SOTA PINN baseline, and the adjoint method over 5
trials. The best results are in bold.

Problem L2RE (mean =+ std) Average Running Time (s)
Ours SOTA Adjoint Ours SOTA Adjoint

PInv 1.80e-2 +£ 9.30e-3 | 2.45¢-2 +£1.03e-2 | 7.82e+2 +£0.00e+0 | 1.87e+2 | 4.90e+2 | 1.40e+0

HInv 9.04e-3 + 2.34e-3 | 5.09¢-2 + 4.34e-3 | 1.50e+3 £0.00e+0 | 3.21e+2 | 3.39¢+3 | 1.07e+1

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
100 x 100. Besides, we utilize a sparse matrix implementation. For fast speed, we employ the Jacobi
preconditioner since the preconditioner needs updating every iteration. Finally, in this problem, we
employ an MLP of 3 layers with 64 neurons in each layer for « and an MLP of 5 layers with 128
neurons in each layer for a. The models are trained for 11000 iterations, where 10000 iterations are
warm-up iterations. In warm-up iterations, only data loss is involved while physics loss is included
in the rest of iterations.

Heat Inverse Problem (HInv). The equation is given by:

0
8—1; — V(aVu) = f, (147)
define on Q x T' = [—1,1]? x [0, 1], where u = u(z, t) is the unknown solution, a = a(z) denotes

the unknown parameter function, and f = f(x,t) is predefined. Given 2500 uniformly distributed
samples {u(x®, (")} with Gaussian noise of A/(0,0.1), our target is to reconstruct the unknown
solution u and infer the unknown parameter function a. Let Q' = Q x T, ' = (x, t). We define the
weak form to be:

Ou., vdx' + / a(Vu-Vov)dz' = [f-vda, (148)

Q/ 6t ’ QI

where v is the test function. We employ the FEniCS to discretize the problem with a mesh of size
40 x 40 x 10. Besides, we utilize a sparse matrix implementation. For fast speed, we employ
the Jacobi preconditioner since the preconditioner needs updating every iteration. Finally, in this
problem, we employ an MLP of 3 layers with 64 neurons in each layer for 4 and an MLP of 3
layers with 64 neurons in each layer for a. The models are trained for 5000 iterations, where 4000
iterations are warm-up iterations. In warm-up iterations, only data loss is involved while physics
loss is included in the rest of iterations.

D.3 BENCHMARK OF INVERSE PROBLEMS

Here, we consider two inverse problems, the Poisson Inverse Problem (PInv) and Heat Inverse Prob-
lem (HInv), from the benchmark [Hao et al.|(2022)). In such problems, our target is to reconstruct the
unknown solution from 2500 noisy samples and infer the unknown parameter function. We compare
our method with the SOTA PINN baseline in |Hao et al.| (2022)) and the traditional adjoint method
designed for PDE-constrained optimization. We report the results in Table 3]

From the results, we can conclude that our method achieves state-of-the-art performance in both
accuracy and running time. Although the adjoint method converges very fast, it fails to approach the
correct solution. This is because the numerical method does not impose any continuous prior on the
ansatz and can overfit the noise in the solution samples.

D.4 EXPERIMENTAL RESULTS OF ABLATION STUDY

We provide the comprehensive results of the four Poisson problems in this subsection. Table [
presents the convergence results of L2RE as well as some metrics to measure the precision of the
preconditioner for different cases. For example, “P~!f Error” measures the L2RE between the
P~ and the A~'f. Besides, Figure 4| shows the convergence history of different cases. We can
find that although preconditioning (ILU) cannot ensure that the condition number decreases, it can
often promote convergence.

36

Under review as a conference paper at ICLR 2024

Table 4: Comprehensive results of the ablation study.

Poisson Drop Tolerance ..
No Preconditioner
1.00e-4 1.00e-3 1.00e-2 1.00e-1

L2RE 1.70e-3 2.74e-3 4.07e-3 2.18e-3 3.54e-2

2d-C Cond 1.10e+0 2.82e+0 1.52e+1 6.03e+1 1.13e+2
P~ 1fError | 2.04e-2 2.08e-1 5.51e-1 7.67e-1 -
L2RE 5.38e-3 7.87e-3 4.27e-3 4.36e-3 3.86e-3

2d-CG Cond 1.0le+0 1.19e+0 2.55e+0 7.22e+0 1.27e+1
P~ lfErmror | 2.84e-3 4.05¢-2 3.50e-1 7.00e-1 | —
L2RE 4.18e-2 4.11e-2 4.11e-2 4.23e-2 4.19e-2

3d-CG Cond 6.77e+0 1.17e+0 1.38e+0 1.77e+0 | 2.20e+0
P~ 1fFError | 4.63e-1 2.05e-1 5.84e-1 8.73e-1 -
L2RE 6.48e-2 6.38e-2 6.37e-1 7.06e-1 8.55e-1

2d-MS Cond 323e+0 3.25e+1 2.47e+2 3.42e+2 | 3.39e+0
P~ fError | 3.74e-1 6.42e-1 8.13e-1 9.58e-1 -

Cond . Cond
10'fy 10" 10 10°]
A
~N “\ = =
9 \\\ 3 o -1
10° \Qé\,»\:_y%[: 10" T 10 S
0 10000 20000 10000 20000 0 10000 20000
Iterations Iterations Iterations

(a) Poisson2d-CG

(b) Poisson2d-MS

(c) Poisson3d-CG

Figure 4: The training L2 relative error (L2RE) in ablation study. The dashed line marks the trajec-
tory corresponding to the one without the preconditioner.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

In the next few pages, we display the detailed experiment results in different metrics, including
L2RE, L1RE, MSE, and the standard deviation of these metrics over 5 runs.

37

Table 5: Mean (std) of L2RE for main experiments.

L2RE

Name

Ours

Vanilla

Loss Reweighting/Sampling

Optimizer

Loss functions

Architecture

PINN

PINN-w

LRA

NTK

RAR

MultiAdam

gPINN

vPINN

LAAF

GAAF

FBPINN

Burgers

1d-C
2d-C

1.42E-2(1.62E-4)
5.23E-1(7.52E-2)

1.45E-2(1.59E-3)
3.24E-1(7.54E-4)

2.63E-2(4.68E-3)
2.70E-1(3.93E-3)

2.61E-2(1.18E-2)
2.60E-1(5.78E-3)

1.84E-2(3.66E-3)
2.75E-1(4.78E-3)

3.32E-2(2.14E-2)
3.45E-1(4.56E-5)

4.85E-2(1.61E-2)
3.33E-1(8.65E-3)

2.16E-1(3.34E-2)
3.27E-1(1.25E-4)

3.47E-1(3.49E-2)
6.38E-1(1.47E-2)

1.43E-2(1.44E-3)
2.77E-1(1.39E-2)

5.20E-2(2.08E-2)
2.95E-1(1.17E-2)

2.32E-1(9.14E-2)

Poisson

2d-C
2d-CG
3d-CG
2d-MS

3.98E-3(3.70E-3)
5.07E-3(1.93E-3)
4.16E-2(7.53E-4)
6.40E-2(1.12E-3)

6.94E-1(8.78E-3)
6.36E-1(2.57E-3)
5.60E-1(2.84E-2)
6.30E-1(1.07E-2)

3.49E-2(6.91E-3)
6.08E-2(4.88E-3)
3.74E-1(3.23E-2)
7.60E-1(6.96E-3)

1.17E-1(1.26E-1)
4.34E-2(7.95E-3)
1.02E-1(3.16E-2)
7.94E-1(6.51E-2)

1.23E-2(7.37E-3)
1.43E-2(4.31E-3)
9.47E-1(4.94E-4)
7.48E-1(9.94E-3)

6.99E-1(7.46E-3)
6.48E-1(7.87E-3)
5.76E-1(5.40E-2)
6.44E-1(2.13E-2)

2.63E-2(6.57E-3)
2.76E-1(1.03E-1)
3.63E-1(7.81E-2)
5.90E-1(4.06E-2)

6.87E-1(1.87E-2)
7.92E-1(4.56E-3)
4.85E-1(5.70E-2)
6.16E-1(1.74E-2)

4.91E-1(1.55E-2)
2.86E-1(2.00E-3)
7.38E-1(6.47E-4)
9.72E-1(2.23E-2)

7.68E-1(4.70E-2)
4.80E-1(1.43E-2)
5.79E-1(2.65E-2)
5.93E-1(1.18E-1)

6.04E-1(7.52E-2)
8.71E-1(2.67E-1)
5.02E-1(7.47E-2)
9.31E-1(7.12E-2)

4.49E-2(7.91E-3)
2.90E-2(3.92E-3)
7.39E-1(7.24E-2)
1.04E+0(6.13E-5)

Heat

2d-VC
2d-MS
2d-CG
2d-LT

3.11E-2(6.17E-3)
2.84E-2(1.30E-2)
1.50E-2(1.17E-4)
2.11E-1(1.00E-2)

1.01E+0(6.34E-2)
6.21E-2(1.38E-2)
3.64E-2(8.82E-3)
9.99E-1(1.05E-5)

2.35E-1(1.70E-2)
2.42E-1(2.67E-2)
1.45E-1(4.77E-3)
9.99E-1(8.01E-5)

2.12E-1(8.61E-4)
8.79E-2(2.56E-2)
1.25E-1(4.30E-3)
9.99E-1(7.37E-5)

2.14E-1(5.82E-3)
4.40E-2(4.81E-3)
1.16E-1(1.21E-2)
1.00E+0(2.82E-4)

9.66E-1(1.86E-2)
7.49E-2(1.05E-2)
2.72E-2(3.22E-3)
9.99E-1(1.56E-4)

4.75E-1(8.44E-2)
2.18E-1(9.26E-2)
7.12E-2(1.30E-2)
1.00E+0(3.85E-5)

2.12E+0(5.51E-1)
1.13E-1(3.08E-3)
9.38E-2(1.45E-2)
1.00E+0(9.82E-5)

9.40E-1(1.73E-1)
9.30E-1(2.06E-2)
1.67E+0(3.62E-3)
1.00E+0(0.00E+0)

6.42E-1(6.32E-2)
7.40E-2(1.92E-2)
2.39E-2(1.39E-3)
9.99E-1(4.49E-4)

8.49E-1(1.06E-1)
9.85E-1(1.04E-1)
4.61E-1(2.63E-1)
9.99E-1(2.20E-4)

9.52E-1(2.29E-3)
8.20E-2(4.87E-3)
9.16E-2(3.29E-2)
1.01E+0(1.23E-4)

NS

2d-C
2d-CG
2d-LT

1.28E-2(2.44E-3)
6.62E-2(1.26E-3)
9.09E-1(4.00E-4)

4.70B-2(1.12E-3)
1.19E-1(5.46E-3)
9.96E-1(1.19E-3)

1.45E-1(1.21E-2)
3.26E-1(7.69E-3)
1.00E+0(3.34E-4)

NA
3.32E-1(7.60E-3)
1.00E+0(4.05E-4)

1.98E-1(2.60E-2)
2.93E-1(2.02E-2)
9.99E-1(6.04E-4)

4.69E-1(1.16E-2)
3.34E-1(6.52E-4)
1.00E+0(3.35E-4)

7.27E-1(1.95E-1)
4.31E-1(6.95E-2)
1.00E+0(2.19E-4)

7.70E-2(2.99E-3)
1.54E-1(5.89E-3)
9.95E-1(7.19E-4)

2.92E-1(8.24E-2)
9.94E-1(3.80E-3)
1.73E+0(1.00E-5)

3.60E-2(3.87E-3)
8.24E-2(8.21E-3)
9.98E-1(3.42E-3)

3.79E-2(4.32E-3)
1.74E-1(7.00E-2)
9.99E-1(1.10E-3)

8.45E-2(2.26E-2)
8.27E+0(3.68E-5)
1.00E+0(2.07E-3)

Wave

1d-C
2d-CG
2d-MS

1.28E-2(1.20E-4)
5.85E-1(9.05E-3)
5.71E-2(5.68E-3)

5.88E-1(9.63E-2)
1.84E+0(3.40E-1)
1.34E+0(2.34E-1)

2.85E-1(8.97E-3)
1.66E+0(7.39E-2)
1.02E+0(1.16E-2)

3.61E-1(1.95E-2)
1.48E+0(1.03E-1)
1.02E+0(1.36E-2)

9.79E-2(7.72E-3)
2.16E+0(1.01E-1)
1.04E+0(3.11E-2)

5.39E-1(1.77E-2)
1.15E+0(1.06E-1)
1.35E+0(2.43E-1)

1.21E-1(1.76E-2)
1.09E+0(1.24E-1)
1.01E+0(5.64E-3)

5.56E-1(1.67E-2)
8.14E-1(1.18E-2)
1.02E+0(4.00E-3)

8.39E-1(5.94E-2)
7.99E-1(4.31E-2)
9.82E-1(1.23E-3)

4.54E-1(1.08E-2)
8.19E-1(2.67E-2)
1.06E+0(1.71E-2)

6.77E-1(1.05E-1)
7.94E-1(9.33E-3)
1.06E+0(5.35E-2)

5.91E-1(4.74E-2)
1.06E+0(7.54E-2)
1.03E+0(6.68E-3)

Chaotic

GS
KS

1.44E-2(2.53E-3)
9.52E-1(2.94E-3)

3.19E-1(3.18E-1)
1.01E+0(1.28E-3)

1.58E-1(9.10E-2)
9.86E-1(2.24E-2)

9.37E-2(4.42E-5)
9.57E-1(2.85E-3)

2.16E-1(7.73E-2)
9.64E-1(4.94E-3)

9.46E-2(9.46E-4)
1.01E+0(8.63E-4)

9.37E-2(1.21E-5)
9.61E-1(4.77E-3)

2.48E-1(1.10E-1)
9.94E-1(3.83E-3)

1.16E+0(1.43E-1)
9.72E-1(5.80E-4)

9.47E-2(7.07E-5)
1.01E+0(2.12E-3)

9.46E-2(1.15E-4)
1.00E+0(1.24E-2)

7.99E-2(1.69E-2)
1.02E+0(2.31E-2)

Table 6: Mean (std) of L1RE for main experiments.

L1RE

Name

Ours

Vanilla

Loss Reweighting/Sampling

Optimizer

Loss functions

Architecture

PINN

PINN-w

LRA

NTK

RAR

MultiAdam

gPINN

vPINN

LAAF

GAAF

FBPINN

Burgers

1d-C
2d-C

9.05E-3(1.45E-4)
4.14E-1(2.24E-2)

9.55E-3(6.42E-4)
2.96E-1(7.40E-4)

1.88E-2(4.05E-3)
2.43E-1(2.98E-3)

1.35E-2(2.57E-3)
2.31E-1(7.16E-3)

1.30E-2(1.73E-3)
2.48E-1(5.33E-3)

1.35E-2(4.66E-3)
3.27E-1(3.73E-5)

2.64E-2(5.69E-3)
3.12E-1(1.15E-2)

1.42E-1(1.98E-2)
3.01E-1(3.55E-4)

4.02B-2(6.41E-3)
6.56E-1(3.01E-2)

1.40E-2(3.68E-3)
2.57E-1(2.06E-2)

1.95E-2(8.30E-3)
2.67E-1(1.22E-2)

3.75E-2(9.70E-3)

Poisson

2d-C
2d-CG
3d-CG
2d-MS

4.43E-3(4.69E-3)
4.76E-3(1.92E-3)
3.82E-2(1.26E-3)
4.84E-2(1.52E-3)

7.40E-1(5.49E-3)
5.45E-1(4.71E-3)
4.51E-1(3.35E-2)
7.60E-1(1.06E-2)

3.08E-2(5.13E-3)
4.54E-2(6.42E-3)
3.33E-1(2.64E-2)
7.49E-1(1.12E-2)

7.82E-2(7.47E-2)
2.63E-2(5.50E-3)
7.76E-2(1.63E-2)
7.93E-1(7.62E-2)

1.30E-2(8.23E-3)
1.33E-2(4.96E-3)
9.93E-1(2.91E-4)
7.26E-1(1.46E-2)

7.48E-1(1.01E-2)
5.60E-1(8.19E-3)
4.61E-1(4.46E-2)
7.84E-1(2.42E-2)

2.47E-2(6.38E-3)
2.46E-1(1.07E-1)
3.55E-1(7.75E-2)
6.94E-1(5.61E-2)

7.35E-1(2.08E-2)
7.31E-1(2.77E-3)
4.57E-1(5.07E-2))
741E-1(2.01E-2)

4.60E-1(1.39E-2)
2.45E-1(5.14E-3)
7.96E-1(3.57E-4)
9.61E-1(5.67E-2)

7.67E-1(1.36E-2)
4.04E-1(1.03E-2)
4.60E-1(1.13E-2)
6.31E-1(5.42E-2)

6.57E-1(3.99E-2)
7.09E-1(2.12E-1)
3.82E-1(4.89E-2)
9.04E-1(1.01E-1)

5.01E-2(4.71E-3)
3.21E-2(6.23E-3)
6.91E-1(7.52E-2)
9.94E-1(9.67E-5)

Heat

2d-VC
2d-MS
2d-CG
2d-LT

2.81E-2(6.46E-3)
3.22E-2(1.42E-2)
8.42E-3(2.71E-4)
1.36E-1(4.34E-3)

1.12E+0(5.79E-2)
9.30E-2(2.27E-2)
3.05E-2(8.47E-3)
9.98E-1(6.00E-5)

2.41E-1(1.73E-2)
2.90E-1(2.43E-2)
1.37E-1(7.70E-3)
9.98E-1(1.42E-4)

2.07E-1(1.04E-3)
1.13E-1(3.57E-2)
1.12E-1(2.57E-3)
9.98E-1(1.47E-4)

2.03E-1(1.12E-2)
6.69E-2(8.24E-3)
1.07E-1(1.44E-2)
9.99E-1(1.01E-3)

1.06E+0(5.13E-2)
1.19E-1(2.16E-2)
2.21E-2(3.42E-3)
9.98E-1(2.28E-4)

5.45E-1(1.07E-1)
3.00E-1(1.14E-1)
5.88E-2(1.02E-2)
9.99E-1(5.69E-5)

2.41E+0(5.27E-1)
1.80E-1(1.12E-2)
8.20E-2(1.32E-2)
9.98E-1(8.62E-4)

8.79E-1(2.57E-1)
9.25E-1(3.90E-2)
3.09E+0(1.86E-2)
9.98E-1(0.00E+0)

7.49E-1(8.54E-2)
1.14E-1(4.98E-2)
1.94E-2(1.98E-3)
9.98E-1(1.27E-4)

9.91E-1(1.37E-1)
1.08E+0(2.02E-1)
3.77E-1(2.17E-1)
9.98E-1(8.58E-5)

9.44E-1(1.75E-3)
5.33E-2(3.92E-3)
6.77E-1(3.93E-2)
1.01E+0(7.75E-4)

NS

2d-C
2d-CG
2d-LT

6.90E-3(7.17E-4)
9.62E-2(1.06E-3)
8.51E-1(8.00E-4)

5.08E-2(3.06E-3)
1.77E-1(1.00E-2)
9.88E-1(1.86E-3)

1.84E-1(1.52E-2)
4.22E-1(8.72E-3)
9.98E-1(4.68E-4)

NA
4.12E-1(6.93E-3)
9.97E-1(3.64E-4)

2.44E-1(3.05E-2)
3.69E-1(2.46E-2)
9.95E-1(6.66E-4)

5.54E-1(1.24E-2)
4.65E-1(4.44E-3)
1.00E+0(2.46E-4)

9.86E-1(3.16E-1)
6.23E-1(8.86E-2)
9.99E-1(9.27E-4)

9.43E-2(3.24E-3)
2.36E-1(1.15E-2)
9.90E-1(3.60E-4)

1.98E-1(7.81E-2)
9.95E-1(3.50E-4)
1.00E+0(1.40E-4)

4.42E-2(7.38E-3)
1.25E-1(1.42E-2)
9.90E-1(3.78E-3)

3.78E-2(8.71E-3)
2.40E-1(8.01E-2)
9.96E-1(2.68E-3)

1.18E-1(3.10E-2)
5.92E+0(5.65E-4)
1.00E+0(1.38E-3)

Wave

1d-C
2d-CG
2d-MS

1.11E-2(2.87E-4)
4.95E-1(1.23E-2)
7.46E-2(8.35E-3)

5.87E-1(9.20E-2)
1.96E+0(3.83E-1)
2.04E+0(7.38E-1)

2.78E-1(8.86E-3)
1.78E+0(8.89E-2)
1.10E+0(4.25E-2)

3.49E-1(2.02E-2)
1.58E+0(1.15E-1)
1.08E+0(6.01E-2)

9.42E-2(9.13E-3)
2.34E+0(1.14E-1)
1.13E+0(4.91E-2)

5.40E-1(1.74E-2)
1.16E+0(1.16E-1)
2.08E+0(7.45E-1)

1.15E-1(1.91E-2)
1.09E+0(1.54E-1)
1.07E+0(1.40E-2)

5.60E-1(1.69E-2)
7.22E-1(1.63E-2)
1.11E+0(1.91E-2)

1.41E+0(1.30E-1)
1.08E+0(1.25E-1)
1.0SE+0(1.00E-2)

4.38E-1(1.40E-2)
7.45E-1(2.15E-2)
1.17E+0(4.66E-2)

6.82E-1(1.08E-1)
7.08E-1(9.13E-3)
1.12E+0(8.62E-2)

6.55E-1(4.86E-2)
1.15E+0(1.03E-1)
1.29E+0(2.81E-2)

Chaotic

GS
KS

4.18E-3(6.93E-4)
8.70E-1(8.52E-3)

3.45E-1(4.57E-1)
9.44E-1(8.57E-4)

1.29E-1(1.54E-1)
8.95E-1(2.99E-2)

2.01E-2(5.99E-5)
8.60E-1(3.48E-3)

1.11E-1(4.79E-2)
8.64E-1(3.31E-3)

2.98E-2(6.44E-3)
9.42E-1(8.75E-4)

2.00E-2(6.12E-5)
8.73E-1(8.40E-3)

2.72E-1(1.79E-1)
9.36E-1(6.12E-3)

1.04E+0(3.04E-1)
8.88E-1(9.92E-3)

2.07E-2(9.19E-4)
9.39E-1(3.25E-3)

1.16E-1(1.31E-1)
9.44E-1(9.86E-3)

5.06E-2(1.87E-2)
9.85E-1(3.35E-2)

Table 7: Mean (std) of MSE for main experiments.

MSE

Name

Ours

Vanilla

Loss Reweighting/Sampling

Optimizer

Loss functions

Architecture

PINN

PINN-w

LRA

NTK

RAR

MultiAdam

gPINN

vPINN

LAAF

GAAF

FBPINN

Burgers

1d-C
2d-C

7.52E-5(1.53E-6)
2.31E-1(7.11E-2)

7.90E-5(1.78E-5)
1.69E-1(7.86E-4)

2.64E-4(8.69E-5)
1.17E-1(3.41E-3)

3.03E-4(2.62E-4)
1.09E-1(4.84E-3)

1.30E-4(5.19E-5)
1.22E-1(4.22E-3)

5.78E-4(6.31E-4)
1.92E-1(5.07E-5)

9.68E-4(5.51E-4)
1.79E-1(9.36E-3)

1.77E-2(5.58E-3)
1.72E-1(1.31E-4)

5.13E-3(1.90E-3)
7.08E-1(5.16E-2)

1.80E-4(1.35E-4)
1.26E-1(1.54E-2)

3.00E-4(1.56E-4)
1.41E-1(1.12E-2)

1.53E-2(1.03E-2)

Poisson

2d-C
2d-CG
3d-CG
2d-MS

7.22E-6(1.03E-5)
9.29E-6(7.92E-6)
1.46E-4(5.29E-6)
2.75E-2(9.75E-4)

1.17E-1(2.98E-3)
1.28E-1(1.03E-3)
2.64E-2(2.67E-3)
2.67E+0(9.04E-2)

3.09E-4(1.25E-4)
1.17E-3(1.83E-4)
1.18E-2(1.97E-3)
3.90E+0(7.16E-2)

7.24E-3(9.95E-3)
6.13E-4(2.31E-4)
9.51E-4(6.51E-4)
4.28E+0(6.83E-1)

5.00E-5(5.33E-5)
6.99E-5(3.50E-5)
7.54E-2(7.86E-5)
3.77E+0(9.98E-2)

1.19E-1(2.55E-3)
1.32E-1(3.23E-3)
2.81E-2(5.15E-3)
2.80E+0(1.87E-1)

1.79E-4(8.84E-5)
2.73E-2(1.92E-2)
1.16E-2(4.42E-3)
2.36E+0(3.15E-1)

1.15E-1(6.22E-3)
1.98E-1(2.28E-3)
2.01E-2(4.93E-3)
2.56E+0(1.43E-1)

4.86E-2(4.43E-3)
2.50E-2(3.80E-4)
4.58E-2(8.04E-5)
6.09E+0(5.46E-1)

1.39E-1(5.67E-3)
7.67E-2(2.73E-3)
2.82E-2(2.62E-3)
1.83E+0(3.00E-1)

9.38E-2(1.91E-2)
1.77E-1(8.70E-2)
2.16E-2(5.87E-3)
5.87E+0(8.72E-1)

7.89E-4(2.17E-4)
4.84F-4(9.87E-5)
4.63E-2(9.28E-3)
6.68E+0(8.23E-4)

Heat

2d-VC
2d-MS
2d-CG
2d-LT

3.95E-5(1.54E-5)
2.59E-5(1.80E-5)
3.34E-4(5.02E-6)
5.09E-2(4.88E-3)

4.00E-2(4.94E-3)
1.09E-4(4.94E-5)
2.09E-3(9.69E-4)
1.14E+0(2.38E-5)

2.19E-3(3.21E-4)
1.60E-3(3.35E-4)
3.15E-2(2.08E-3)
1.13E+0(1.82E-4)

1.76E-3(1.43E-5)
2.25E-4(1.22E-4)
2.32E-2(1.59E-3)
1.14E+0(1.67E-4)

1.79E-3(9.80E-5)
5.27E-5(1.18E-5)
2.02E-2(4.15E-3)
1.14E+0(6.4 1E-4)

3.67E-2(1.42E-3)
1.54E-4(4.17E-5)
1.12E-3(2.65E-4)
1.14E+0(3.55E-4)

9.14E-3(3.13E-3)
1.51E-3(1.25E-3)
7.79E-3(2.63E-3)
1.14E+0(8.74E-5)

1.89E-1(9.44E-2)
3.43E-4(1.87E-5)
1.34E-2(4.13E-3)
1.14E+0(2.23E-4)

3.23E-2(2.26E-2)
2.57B-2(2.22E-3)
1.16E+1(9.04E-2)
1.14E+0(0.00E+0)

1.74E-2(4.35E-3)
1.57E-4(8.06E-5)
8.53E-4(9.74E-5)
1.14E+0(2.20E-4)

2.93B-2(7.12E-3)
3.10B-2(1.15E-2)
3.94E-1(2.71E-1)
1.14E+0(3.27E-4)

3.56E-2(1.71E-4)
2.17E-4(2.47E-5)
5.61E-1(5.96E-2)
1.16E+0(2.83E-4)

NS

2d-C
2d-CG
2d-LT

3.22E-6(1.23E-6)
2.15E-4(8.21E-6)
4.30E+2(4.00E-1)

4.19E-5(2.00E-6)
6.94E-4(6.45E-5)
5.06E+2(1.21E+0)

4.03E-4(6.45E-5)
5.19E-3(2.43E-4)
5.10E+2(3.40E-1)

NA
5.40E-3(2.49E-4)
5.10E+2(4.13E-1)

7.56E-4(1.90E-4)
4.22E-3(5.82E-4)
5.09E+2(6.15E-1)

4.18E-3(2.05E-4)
5.45E-3(2.13E-5)
5.10E+2(3.42E-1)

1.07E-2(5.67E-3)
9.32E-3(3.09E-3)
5.10E+2(2.23E-1)

1.13E-4(8.77E-6)
1.16E-3(8.97E-5)
5.05E+2(7.30E-1)

5.30E-4(3.50E-4)
1.06E+0(1.61E-2)
5.11E+2(1.76E-2)

2.33E-5(4.71E-6)
3.37E-4(6.60E-5)
5.06E+2(1.82E+0)

2.67E-5(4.71E-6)
1.72E-3(1.33E-3)
5.11E+2(2.99E+0)

1.37E-4(7.24E-5)
3.34E+0(2.97E-5)
5.15E+2(1.77E+0)

Wave

1d-C
2d-CG
2d-MS

5.08E-5(1.16E-6)
1.59E-2(5.16E-4)
2.20E+3(4.38E+2)

1.11E-1(3.66E-2)
1.64E-1(6.13E-2)
1.30E+5(4.25E+4)

2.54E-2(1.61E-3)
1.28E-1(1.13E-2)
7.35E+4(1.68E+3)

4.08E-2(4.31E-3)
1.03E-1(1.46E-2)
7.34E+4(1.97E+3)

3.01E-3(4.82E-4)
2.17E-1(2.05E-2)
7.69E+4(4.55E+3)

9.07E-2(6.02E-3)
6.25E-2(1.17E-2)
1.33E+5(4.47E+4)

4.68E-3(1.28E-3)
5.59E-2(1.29E-2)
7.15E+4(8.04E+2)

9.66E-2(5.85E-3)
3.09E-2(8.98E-4)
7. 27E+4(5.4TE+2)

6.17E-1(1.19E-1)
5.24E-2(9.01E-3)
1.13E+2(1.46E+2)

6.03E-2(2.87E-3)
3.49E-2(3.38E-3)
7.91E+4(2.55E+3)

1.48E-1(4.44E-2)
2.99E-2(4.68E-4)
7.98E+4(8.00E+3)

1.39E-1(1.97E-2)
5.78E-2(7.99E-3)
8.95E+5(1.15E+4)

Chaotic

GS
KS

1.04E-4(3.69E-5)
1.03E+0(4.00E-3)

1.00E-1(1.35E-1)
1.16E+0(2.95E-3)

1.64E-2(1.70E-2)
1.11E+0(5.07E-2)

4.32E-3(4.07E-6)
1.04E+0(6.20E-3)

2.59E-2(1.44E-2)
1.06E+0(1.09E-2)

4.40E-3(8.83E-5)
1.16E+0(1.98E-3)

4.32E-3(1.11E-6)
1.05E+0(1.04E-2)

3.62E-2(2.28E-2)
1.12E+0(8.67E-3)

4.00E-1(2.33E-1)
1.0SE+0(2.50E-3)

4.32E-3(4.71E-6)
1.16E+0(4.50E-3)

1.69E-2(1.79E-2)
1.14E+0(2.33E-2)

5.16E-3(1.64E-3)
1.16E+0(5.28E-2)

	Supplements for Section 3
	Proof for Theorem 3.2
	The Existence of Condition Number in Special Cases
	Proof for Theorem 3.3
	Proof for Corollary 3.4
	Proof for Theorem 3.5
	Discussion on Approximation Error of the Truncated Taylor Expansion
	Proof for Theorem 3.6

	Supplements for Section 4
	Detailed Derivation for Eq. (13)
	Enforcing Boundary Conditions via Discretized Losses
	Handling Time-Dependent & Nonlinear Problems

	Supplements for Section 5.2
	Environment and Global Settings
	Details of Wave, Burgers', and Helmholtz Equations
	Experimental Details
	Physical Interpretation for Correlation Between PINN Error and Condition Number

	Supplements for Section 5.3
	Environment and Global Settings
	PDE Problems' Introduction and Implementation Details
	Benchmark of Inverse Problems
	Experimental Results of Ablation Study

	Supplementary Experimental Results

