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A  SUPPLEMENTAL LINEAR GAUSSIAN FIGURES

First we show here a useful visual to gain intuition about the linear Gaussian setting. We visualize the
distributions given by Equationﬂ;l']using concrete values: ¢; = 3,c3 = 2,¢c3 = —6,01 = 0.5,09 = 1.
We observe the potential difference between observational and interventional densities. In[7b/and
we depict two distributions that are consistent with the observed joint distribution depicted in [7a]
Without the assumptions made by backdoor adjustment, we cannot estimate the interventional density
seen in[7al
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Figure 7: Linear Gaussian Visualization

Below are figures that give a different view on Figures[Zajand 2b. Instead of plotting the error we
give the log likelihood plotted with the ground truth interventional likelihood. As given by the ELBO,
our estimates will be a lower bound in expectation of the ground truth.
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Figure 8: Linear Gaussian Results

B PROOF OF PROPOSITION [1]

Consider the objective given in Equation [I0]
LR = =20y () O @y, 2) - LYy ) (19)
12 *n B

There exists parameters ¢, 6,y such that

p(z | 2,y) = po(2) (16)
Py(y |z, 2) =ply|z) (17)
Given these parameters, we get the following ELBO.
Eqy (1) (log po(2) +logpy(y | 2, 2) —logay(z | 2,y)) (18)
=Eq, (212, (logp(y | z)) (19)
=logp(y | =) (20)
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Thus, when E,(, ) logp(y | ) > Ep ) logp(y | do(z)), the model fy ¢ (,y) will converge to
p(y | «). We can show by construction that this can occur for some SCM. Let B denote a Bernoulli
distribution. Consider a simple example in which variables X, Y, Z induce distributions

p(z) = B(1/2) 1)
9= {3908 4
o= {20 7
It then follows from this example that
= (1/8)log(1/3) + (1/4)1og(2/3) + (5/16) log(1/2) + (5/16)log(1/2) (25)
> (1/8)1og(3/8) + (1/4)log(5/8) + (5/16) log(1/2) + (5/16) log(1/2) (26)
= Ep(x,y) Ing(y ‘ dO(lL‘)) (27)

C PROOF OF PROPOSITION

In this proof we shall refer to the lower bound derived in Equation[d]as the Backdoor ELBO (BELBO).

First we shall find the Jensen gap.
logp(y | do(z)) =log > p(')p(y | z,2") (29)
Z/
= Eq(zla,y) (logp(z) +logp(y | ,2) —logq(z | z,y)) (30)

e [ PEIPlY [ @, 2)
+]Eq(z|m,y) (IOgQ('Z | ;my) 1 g (Zz/p(z’)p(y | x,Z’))) (31)
ylz

p(2)p(y | =, 2) )

— BELBO + KL , 32
+ (Q(Z | z,y) | S p()ply |z, 2) (32)
= BELBO + KL (¢(z | =,y) || p(= | do(z),y)) (33)

Note that to arrive at p(z | do(z),y) we utilize
p(2)p(y | 2, 2) = p(z | do(x))p(y | do(x), 2) (34)
=p(z,y | do(x)) (35)

using do calculus. Rewriting we have

BELBO = logp(y | do(z)) — KL (q(z | #,y) || p(z | do(z),y)) (36)

Finetuning loss maximizes the BELBO, which will obtain an optimum when the KL term
is zero. Because we have a consistent estimate of p(z) and p(y | x, z), the KL term will approach
zero if ¢4 (2 | z,y) is parameterized as a family of distributions that includes p(z | do(x),y). An
expressivity assumption on the encoder is made in VAE consistency arguments and is also necessary
for our proof.

ELBO
L [

D PITFALL OF FULLY JOINT TRAINING

As state in Proposition 1| we cannot simply optimize the parameters of the prior § and decoder -, and
that they must remain fixed in the objective £LE-BO given in Equation@ If these parameters are freely
optimized in a fully joint manner, the backdoor adjustment will not be computed correctly because Z
will not be constrained by observation. Below, we have a plot similar to Figure

This figure empirically shows that naively optimizing Equation[9 with fully joint training, that is
optimizing all the parameters, will result in estimation of the wrong query. It can be seen that fully
joint training is estimating p(y | ) rather than p(y | do(x))
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Figure 9: Pitfall of Fully Joint Training

E PROOF OF LINEAR GAUSSIAN ANALYTICAL SOLUTIONS

We prove the solutions found for the interventional and observational distributions seen in Equation

and Equation

E.1 INTERVENTIONAL

‘We aim to show that

y | do(z) ~ N (CQx, \/ A+ O’%)

First observe that the setup seen in Equation[I1]entails 2 ~ N'(0,1) and y | z, 2 ~ N (com + c32, 02).
We can thus compute

ply | do(x Zp ply |, 2) (37)
.2 —(y— 62m c32)2
— Z (162) 1 203 (38)
~ V2T 02\/271'
1 7(11;622)2
= ———— ¢ 2(3t72) (39

(3 +03)2m
The same proof can be found in Rissanen & Marttinen| (2021) Appendix A Equation 12.

E.2 OBSERVATIONAL

To compute p(y | x) in this setting, we must express Y := o X + ¢3Z + N (0, o2) in terms of only
X. To do this, we must express Z in terms of X. It is known that this swap can be performed using
conjugate priors (Fink, 1997} |Atkinson et al.|2022). We find

2
ZIX =2~ N[5t L
cl—i—a ]+ o7
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Through simple addition and scaling properties of Gaussians, we combine the above with the
definition of Y to obtain

2 2
ciC3 cio? )
PRV (g N Y Ll —
vl (((cl+o%) 2) 3+ o2 2)
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F IMAGE SAMPLES

In our generative models, we can draw samples to qualitatively ensure that the correct distribution is
being learned.

F.1 MNIST SAMPLES
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Figure 10: Examples of X from MNIST dataset.

Figure 11: Samples from p(y | z), with X given by Figure |[10. Here, we see that the numbers
generated are successive because that is how Y is observed.
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Figure 12: Samples from p(y | do(z)), with X given by Figure|10. Here, we are able to sample
Y such that digits are not successive, which indicates the difference between the observational and
interventional distributions.
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F.2 CAUSAL X-RAY SAMPLES
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Figure 13: Samples from FFJORD
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Figure 14: More Causal X-ray samples from the encoder. Top 3 rows are sampled from an encoder
that is trained separately. Bottom 3 rows are sampled from a finetuned encoder. More samples further
reinforce the conclusion from Figure
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