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A SUPPLEMENTAL LINEAR GAUSSIAN FIGURES

First we show here a useful visual to gain intuition about the linear Gaussian setting. We visualize the
distributions given by Equation 11 using concrete values: c1 = 3, c2 = 2, c3 = �6,�1 = 0.5,�2 = 1.
We observe the potential difference between observational and interventional densities. In 7b and
7c, we depict two distributions that are consistent with the observed joint distribution depicted in 7a.
Without the assumptions made by backdoor adjustment, we cannot estimate the interventional density
seen in 7a.

(a) Joint Density
p(x, y)

(b) Observational Density
p(y | x)

(c) Interventional Density
p(y | do(x))

Figure 7: Linear Gaussian Visualization

Below are figures that give a different view on Figures 2a and 2b. Instead of plotting the error we
give the log likelihood plotted with the ground truth interventional likelihood. As given by the ELBO,
our estimates will be a lower bound in expectation of the ground truth.

(a) Sampling vs Variational Inference
Log Likelihood Comparison

(b) Finetuning vs Separate Training
Log Likelihood Comparison

Figure 8: Linear Gaussian Results

B PROOF OF PROPOSITION 1

Consider the objective given in Equation 10.

LELBO
�,✓,�(x, y) = �

X
z0
1,...,z

0
n⇠q�(z|x,y)

�
LMLE
✓ (z0j) + LMLE

� (x, y, z0j)� LMLE
� (x, y, z0j)

�
(15)

There exists parameters �, ✓, � such that
q�(z | x, y) = p✓(z) (16)

p�(y | x, z) = p(y | x) (17)
Given these parameters, we get the following ELBO.

Eq�(z|x,y) (log p✓(z) + log p�(y | x, z)� log q�(z | x, y)) (18)
= Eq�(z|x,y) (log p(y | x)) (19)
= log p(y | x) (20)
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Thus, when Ep(x,y) log p(y | x) > Ep(x,y) log p(y | do(x)), the model f�,✓,�(x, y) will converge to
p(y | x). We can show by construction that this can occur for some SCM. Let B denote a Bernoulli
distribution. Consider a simple example in which variables X,Y, Z induce distributions

p(z) = B(1/2) (21)

p(x | z) =
⇢
B(3/4) if z,
B(1/2) if ¬z (22)

p(y | x, z) =
⇢
B(1/2) if x _ z,
B(3/4) if ¬x ^ ¬z (23)

It then follows from this example that

Ep(x,y) log p(y | x) (24)
= (1/8) log(1/3) + (1/4) log(2/3) + (5/16) log(1/2) + (5/16) log(1/2) (25)
> (1/8) log(3/8) + (1/4) log(5/8) + (5/16) log(1/2) + (5/16) log(1/2) (26)
= Ep(x,y) log p(y | do(x)) (27)

C PROOF OF PROPOSITION 2

In this proof we shall refer to the lower bound derived in Equation 4 as the Backdoor ELBO (BELBO).

BELBO = Eq(z|x,y) (log p(z) + log p(y | x, z)� log q(z | x, y)) (28)

First we shall find the Jensen gap.

log p(y | do(x)) = log
X

z0

p(z0)p(y | x, z0) (29)

= Eq(z|x,y) (log p(z) + log p(y | x, z)� log q(z | x, y)) (30)

+ Eq(z|x,y)

✓
log q(z | x, y)� log

✓
p(z)p(y | x, z)P
z0 p(z0)p(y | x, z0)

◆◆
(31)

= BELBO + KL
✓
q(z | x, y) k p(z)p(y | x, z)P

z0 p(z0)p(y | x, z0)

◆
(32)

= BELBO + KL (q(z | x, y) k p(z | do(x), y)) (33)

Note that to arrive at p(z | do(x), y) we utilize

p(z)p(y | x, z) = p(z | do(x))p(y | do(x), z) (34)
= p(z, y | do(x)) (35)

using do calculus. Rewriting we have

BELBO = log p(y | do(x))� KL (q(z | x, y) k p(z | do(x), y)) (36)

Finetuning loss LELBO
� maximizes the BELBO, which will obtain an optimum when the KL term

is zero. Because we have a consistent estimate of p(z) and p(y | x, z), the KL term will approach
zero if q�(z | x, y) is parameterized as a family of distributions that includes p(z | do(x), y). An
expressivity assumption on the encoder is made in VAE consistency arguments and is also necessary
for our proof.

D PITFALL OF FULLY JOINT TRAINING

As state in Proposition 1 we cannot simply optimize the parameters of the prior ✓ and decoder �, and
that they must remain fixed in the objective LELBO given in Equation 9. If these parameters are freely
optimized in a fully joint manner, the backdoor adjustment will not be computed correctly because Z
will not be constrained by observation. Below, we have a plot similar to Figure 8b.
This figure empirically shows that naively optimizing Equation 9 with fully joint training, that is
optimizing all the parameters, will result in estimation of the wrong query. It can be seen that fully
joint training is estimating p(y | x) rather than p(y | do(x))
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Figure 9: Pitfall of Fully Joint Training

E PROOF OF LINEAR GAUSSIAN ANALYTICAL SOLUTIONS

We prove the solutions found for the interventional and observational distributions seen in Equation
12 and Equation 13.

E.1 INTERVENTIONAL

We aim to show that
y | do(x) ⇠ N

✓
c2x,

q
c23 + �2

2

◆

First observe that the setup seen in Equation 11 entails z ⇠ N (0, 1) and y | x, z ⇠ N (c2x+ c3z,�2).
We can thus compute

p(y | do(x)) =
X

z

p(z)p(y | x, z) (37)

=
X

z

✓
1p
2⇡

e
�z2

2

◆ 
1

�2

p
2⇡

e
�(y�c2x�c3z)2

2�2
2

!
(38)

=
1p

(c23 + �2
2)2⇡

e
�(y�c2x)2

2(c23+�2
2) (39)

The same proof can be found in Rissanen & Marttinen (2021) Appendix A Equation 12.

E.2 OBSERVATIONAL

To compute p(y | x) in this setting, we must express Y := c2X + c3Z +N (0,�2) in terms of only
X . To do this, we must express Z in terms of X . It is known that this swap can be performed using
conjugate priors (Fink, 1997; Atkinson et al., 2022). We find

Z | X = x ⇠ N
 

c1x

c21 + �2
1

,

s
�2
1

c21 + �2
1

!

15



Under review as a conference paper at ICLR 2024

Through simple addition and scaling properties of Gaussians, we combine the above with the
definition of Y to obtain

y | x ⇠ N
 ✓

c1c3
(c1 + �2

1)
+ c2

◆
x,

s
c23�

2
1

c21 + �2
1

+ �2
2

!
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F IMAGE SAMPLES

In our generative models, we can draw samples to qualitatively ensure that the correct distribution is
being learned.

F.1 MNIST SAMPLES

Figure 10: Examples of X from MNIST dataset.

Figure 11: Samples from p(y | x), with X given by Figure 10. Here, we see that the numbers
generated are successive because that is how Y is observed.
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Figure 12: Samples from p(y | do(x)), with X given by Figure 10. Here, we are able to sample
Y such that digits are not successive, which indicates the difference between the observational and
interventional distributions.
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F.2 CAUSAL X-RAY SAMPLES

Figure 13: Samples from FFJORD
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Figure 14: More Causal X-ray samples from the encoder. Top 3 rows are sampled from an encoder
that is trained separately. Bottom 3 rows are sampled from a finetuned encoder. More samples further
reinforce the conclusion from Figure 6b

.
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