
SQALER: Scaling Question Answering by
Decoupling Multi-Hop and Logical Reasoning

—
Appendix

Mattia Atzeni
IBM Research, EPFL

Switzerland
atz@zurich.ibm.com

Jasmina Bogojeska
IBM Research

Switzerland
jbo@zurich.ibm.com

Andreas Loukas
EPFL

Switzerland
andreas.loukas@epfl.ch

A Formal definition of the coalesced representation

Given a knowledge graph G = (V,R, E) and a set of entities VQ, we can provide an alternative
recursive definition of reachG(VQ, R) as:

reachG(VQ, (r1, r2, . . . , r|R|)) =


VQ if |R| = 0

reachG(V ′Q, (r2, . . . , r|R|)) if VQ
r1−→ V ′Q

∅ otherwise

where V ′Q is the set of nodes reachable from VQ by an r1 relation.

Then, we can define the coalesced representation G̃Q = (ṼQ, R̃Q, ẼQ) as follows:

• ṼQ = {reachG(VQ, R) | R ∈ R∗} are the nodes R-reachable from VQ by R ∈ R∗ (∗ is the
Kleene star);

• R̃Q = R∪ {self} is the original set of relations augmented with the self-loop relation type self,
which denotes the empty sequence self ∈ R∗;

• edge Vi
r−→ Vj belongs to ẼQ if and only if Vj = reachG(Vi, r), with r ∈ R̃Q.

Intuitively, this operation can be seen as coalescing relations in the original knowledge graph G and
adding self loops. In practice, we do not need to compute all the nodes in G̃Q but only edge labels.

B Computational Complexity

The knowledge seeking procedure described in Section 2.1 applies a search algorithm over the graph
G̃Q to obtain the most likely set of relation sequences originating from VQ. The exact knowledge
seeking procedure adopted in our experiments is based on the beam search algorithm and is detailed
in Algorithm 1. The algorithm is designed to scale with the number of relation types in the original
knowledge graph, which is usually much smaller than the number of edges (facts) or nodes (entities).
In this section, we describe the algorithm in more details and we provide an extensive analysis of the
computational complexity of our approach.

Overview of the knowledge seeking procedure. At each iteration, Algorithm 1 updates a set Bt
containing triples of the form (Vt, Rt, wt). We denote with Vt = reachG(VQ, Rt) the set of nodes
reachable from VQ by following Rt, whereas Rt represents a relation sequence constructed iteratively

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

by applying the relation-level model on edges of G̃Q up to time step t. The last element of the tuples
wt is the total accumulated negative log-likelihood of Rt, computed as explained in Section 2.1. At
the beginning of the algorithm, V1 = VQ is the set of entities mentioned in the natural language
question, R1 = self is the empty relation sequence and we set the initial negative log-likelihood
w1 = 0. The algorithm receives as input a parameter β which specifies the beam width, namely the
number of relation sequences that are expanded at each iteration. At time step t, we compute the set
Ẽt of all edges originating from Vt in G̃Q. Then, the relation sequences Rt are expanded with the
relation types labeling edges in Ẽt. The likelihood of the new relation sequences is calculated based
on wt and the likelihood assigned by the relation-level model to the relation type appended to Rt. At
the end of each iteration, the function min(Bt+1, β) in Algorithm 1 retains for the next time step only
the β tuples (Vt+1, Rt+1, wt+1) ∈ Bt+1 with the minimum negative log-likelihood wt+1. Note that,
in Algorithm 1, relation sequences ending with the self relation type are not expanded after the first
time step. As explained in Section 3, indeed, the self relation type is used to signal both the start
and the end of the decoding.

Time complexity. At time step t, for each triple (Vt, Rt, wt) ∈ Bt, the algorithm computes φ for
all edges Ẽt originating from Vt. This means that the relation-level model described in Section 3 is
queried |Bt| · |Ẽt| times at iteration t. Note that we do not need to compute the likelihood φ(Vi

r−→ Vj)
for all edges Vi

r−→ Vj in ẼQ. Let d+max(G̃Q) be the maximum outdegree of nodes in G̃Q. At time
step t, the size of the set Bt+1 is restricted to β for the next iteration by the operation min(Bt+1, β).
Since |Bt| is bounded by β and |Ẽt| is bounded by d+max(G̃Q), at any iteration, the relation-level
model is queried at most β · d+max(G̃Q) times. Each of such queries takes constant time. The function
min(Bt+1, β) selects the β tuples in Bt+1 with the smallest negative log-likelihood. This can be done
on average in O(|Bt+1|) time. At iteration t, the set Bt+1 is initialized as the empty set and updated

Algorithm 1: Knowledge Seeking

Input :a coalesced knowledge graph G̃Q; a set of starting entities VQ; the beam width β; the
maximum number of iterations τmax; and the number of relation sequences to be
returned k ≤ β

Output :A set of k tuples of the form (ÃQ, R,w), representing the k most likely candidate
answers ÃQ, the sequence of relations R to reach ÃQ, and the negative log-likelihood
w of R

t← 1
Bt ← {(VQ, self, 0)}
repeat
Bt+1 ← ∅
for (Vt, Rt, wt) ∈ Bt do

if Rt = (r0, . . . , self) and t > 1 then
Bt+1 ← Bt+1 ∪ {(Vt, Rt, wt)}

else
Ẽt ← {Vt

rt−→ Vt+1 ∈ ẼQ}
for Vt

rt−→ Vt+1 ∈ Ẽt do
Rt+1 = (Rt, rt)

wt+1 ← wt − log φ(Vt
rt−→ Vt+1)

Bt+1 ← Bt+1 ∪ {(Vt+1, Rt+1, wt+1)}
end

end
end
Bt+1 ← min(Bt+1, β)
t← t+ 1

until Bt = Bt−1 or t > τmax

return min(Bt, k)

2

by adding at most β · d+max(G̃Q) tuples (one element for each query to the relation-level model).
Therefore, the expected time complexity of the function min(Bt+1, β) isO(β · d+max(G̃Q)). Now, note
that by the definition of G̃Q, we have d+max(G̃Q) ≤ |R̃Q| = |R|+ 1. Hence, the number of queries to
the relation-level model is bounded by β · (|R|+ 1) and the time complexity of min(Bt+1, β) is also
O(β · |R|). The maximum depth reached by the knowledge seeking procedure starting from VQ is
bounded by τmax, because Algorithm 1 performs at most τmax iterations of the main outer loop. The
final step min(Bt, k) selects the k most likely tuples and can be run on average in O(β) time. This
yields a final computational complexity of

O(τmax · β · |R|) = O(|R|).

Note that τmax and β are constant parameters of the algorithm and are usually small. In our experi-
ments, we set τmax = 3 for MetaQA 3 and τmax = 2 for MetaQA 2 and WebQSP. We set the beam
width β = 10, obtaining only minor improvements with respect to a greedy search with β = 1.
Therefore, we obtain that that time complexity of the knowledge seeking procedure scales linearly
with the number of relation types and does not depend on the number of nodes or edges in G.

Space complexity. For each iteration t, Algorithm 1 constructs Bt+1 by analyzing all edges
originating from each node Vt stored in the tuples (Vt, Rt, wt) ∈ Bt. From the considerations reported
above, the size of Bt+1 is O(β · |R|). Although for notational convenience we are representing Bt
as a set of triples, in practice we can avoid storing intermediate nodes Vt and construct the set of
candidate answers by following Rt at the final iteration. Therefore, we only need to store relation
sequences Rt and their negative log-likelihood wt. Each tuple requires O(τmax) space, as |Rt| is
bounded by τmax. The space complexity of the algorithm is thus O(τmax · β · |R|).

C Expressive Power

As mentioned in Section 2.3, the approach described in this paper can be used to answer any valid
existential positive first order query on a knowledge graph G. In order to prove this, we first consider
the simpler class of conjunctive queries. We will show a result similar to Proposition 1 for conjunctive
queries, and then we will extend this result to the wider class of EPFO queries.

C.1 Conjunctive Queries

Given a knowledge graph G = (V,R, E) and a non-empty set of nodes VQ ⊆ V , a conjunctive query
on G is a query involving only existential quantification and conjunction:

Q[V?] = V?.∃V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q|,

such that each literal ei is an atomic formula of the form r(V,V′), where V ∈ VQ ∪ {V1, . . . ,Vm},
V′ ∈ {V?,V1, . . . ,Vm}, V 6= V′, and r(V,V′) is satisfied if and only if V r−→ V′, r ∈ R.

In general, for any query Q, we can define its dependency graph as the graph with nodes VQ ∪
{V?,V1, . . . ,Vm}. The edges of the graph are the literals {e1, . . . , e|Q|}, as each literal is of the form
r(V,V′) and defines an edge between V and V′ [25]. Figure 1 shows an example of the dependency
graph of a conjunctive query.

We say that a query is valid if its dependency graph is a directed acyclic graph (DAG), with VQ as
the source nodes and the target variable V? as the unique sink node. In the following, we will always
consider valid queries, as this ensures that the query has no redundancies or contradictions.

Lemma 1. Let G = (V,R, E) be a knowledge graph and Q be a valid conjunctive query on G. Then,
there exists a sequence of relations R? ∈ R∗ such that:

AQ ⊆ reachG(VQ, R?),

where AQ = {v ∈ V | Q[v] = True} is the denotation set of Q, namely the entities satisfying Q.

Proof. We proceed by induction on the number of literals |Q|.

3

Base case. Assume |Q| = 1. Then, since Q is valid, the query is of the form:
Q[V?] = V?.r(v,V?),

with {v} = VQ. We have:
AQ = {v′ ∈ V | Q[v′] = True}

= {v′ ∈ V | v r−→ v′}
= reachG(VQ, r).

Hence the sequence with only relation r is sufficient to generate the set of correct answers AQ.

Inductive step. Let Q be a conjunctive query of the form:
Q[V?] = V?.∃V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q|.

Assume that there exists a sequence of relations R? ∈ R∗, such that:
AQ = {v ∈ V | Q[v] = True} ⊆ reachG(VQ, R?).

Consider a query Q′ constructed by adding a literal e|Q|+1 to Q, and let A′Q be the denotation set of
Q′, namely the set of nodes satisfying Q′. The conjunctive query Q′ may or may not have the same
target variable of Q.

If Q′ shares the same target variable of Q, then Q′ is of the form:
Q′[V?] = V?.∃V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q| ∧ e|Q+1|.

Note that:
A′Q = {v ∈ V | Q′[v] = True}
⊆ {v ∈ V | Q[v] = True}
⊆ reachG(VQ, R?).

Hence, if Q and Q′ share the same target variable, the same sequence of relations that generates
candidate answers for Q can be used to generate candidate answers for Q′.

If Q and Q′ do not have the same target variable, then we can write Q′ as:
Q′[V′?] = V′?.∃V?,V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q| ∧ e|Q+1|.

Since Q′ is a valid conjunctive query on G, e|Q+1| is of the form r(V?,V
′
?). Then we have that:

A′Q = {v′ ∈ V | Q′[v′] = True}

= {v′ ∈ V | ∃V?,V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q| ∧ V?
r−→ v′}

= {v′ ∈ V | ∃v ∈ AQ : v
r−→ v′}

= reachG(AQ, r)

⊆ reachG(reachG(VQ, R?), r)

= reachG(VQ, (R?, r)).

Therefore, the sequence (R?, r) can be used to generate the answers to Q′.

C.2 Existential Positive First-Order Queries

Any EPFO query can be expressed in disjunctive normal form (DNF), namely a disjunction of one or
more conjunctions:

Q[V?] = V?.∃V1, . . . ,Vm : C1 ∨ C2 ∨ · · · ∨ Cn∨+1,
such that:

• each Ci is a conjunction of literals of the form Ci = ei1 ∧ ei2 ∧ · · · ∧ ei|Ci|

• each literal eij is an atomic formula of the form r(V,V′), where V ∈ VQ ∪ {V1, . . . ,Vm},
V′ ∈ {V?,V1, . . . ,Vm}, V 6= V′, and r(V,V′) = True if and only if V r−→ V′, r ∈ R.

As above, we assume that the Q is a valid query on G, namely all Ci are valid conjunctive queries.
As shown in Figure 1, we can represent any EPFO query Q with a computation graph containing the
operations that are required to answer Q. Specifically, each atomic formula can be represented as
a relation projection, whereas conjunctions and disjunctions can be represented as intersection and
union operations respectively.

4

Edge-level model
Relation-level model

Question: Which American actors appeared in movies

 directed by George Lucas or James Cameron?

Computation Graph: Coalesced Representation:

citizen

George_Lucas
United_States

directed starred

Dependency Graph:

Logical query (DNF):

James_Cameron

United_States citizen

Relation Projection Intersection Union

starred

citizen
George_Lucas

United_States

directed

directed starred James_Cameron

Figure 1: Example of a natural language question and the corresponding EPFO query expressed in
DNF (top left); the dependency graph of the EPFO query (top right); the computation needed to
answer the query in the original KG (bottom left); and the computation performed by our approach in
the coalesced representation (bottom right). Note that, for completeness, we represent two paths in
the coalesced representation, but only one is sufficient.

Proof of Proposition 1. We assume that Q is expressed in disjuctive normal form and we denote
with n∨ the number of disjunction (∨) operators in Q. We proceed by induction on n∨.

Base case. Assume n∨ = 0. Then, Q is a conjunctive query, and by Lemma 1, there exists R? ∈ R∗
such that:

AQ = {v ∈ V | Q[v] = True} ⊆ reachG(VQ, R?).

Inductive step. Let Q be an EPFO query in DNF:

Q[V?] = V?.∃V1, . . . ,Vm : C1 ∨ C2 ∨ · · · ∨ Cn∨+1.

Consider the subquery Q′ consisting of the conjunction terms C1 ∨ C2 ∨ · · · ∨ Cn∨ and assume that
there exist k ≤ n∨ sequences of relations R?

i such that:

A′Q = {v ∈ V | Q′[v] = True} ⊆
k⋃

i=1

reachG(VQ, R?
i).

Note that Cn∨+1 is a valid conjunctive query and by Lemma 1 there exists R?
k+1 ∈ R∗ such that:

{v ∈ V | Cn∨+1[v]} ⊆ reachG(VQ, R?
k+1).

Then, it holds that:

AQ = {v ∈ V | Q[v] = True}
= {v ∈ V | Q′[v] ∨ Cn∨+1[v]}
= A′Q ∪ {v ∈ V | Cn∨+1[v]}

⊆
k⋃

i=1

reachG(VQ, R?
i) ∪ {v ∈ V | Cn∨+1[v]}

⊆
k+1⋃
i=1

reachG(VQ, R?
i).

D Training strategies

In this section we describe the training strategies that we used to optimize the parameters of our
relation-level model and improve generalization performance.

5

Supervision. For the experiments on KBQA, we assume that we only have access to pairs of
questions and answers, i.e. the actual inferential chain leading from the question to the answer is
latent. Therefore, we resort to weak supervision to train the model. Since at training time the set
AQ is known, we can compute all relation sequences R?, such that ÃQ = reachG(VQ, R?) is the
smallest reachable superset of VQ. If the smallest reachable superset of AQ is not unique, all relation
sequences leading to any superset of AQ of minimum cardinality are considered. Note that the set
of all possible relation sequences of a given length originating from VQ in G̃Q is much smaller than
the set of all possible paths starting from nodes in VQ in G, as shown in Appendix E.5. Since the
CFQ dataset contains boolean questions (where the answer is not a set of entities), for the experiment
on compositional generalization we use the logical parsing provided in the dataset to compute the
correct sequences of relations. We assume these sequences of relations are stored in such a way that
the set of relations exiting from the a node in G̃Q can be accessed efficiently in constant time. Then,
at any decoding time step t, an edge is labeled as positive if and only if it belongs to a sequence of
relations leading to ÃQ. The model is then trained using teacher forcing, namely we feed into the
decoder relation sequences leading from VQ to ÃQ. We do not have multiple decoding time steps at
training time, as the whole sequence is provided at once, and relation types are appropriately masked
so that they cannot attend to items in future positions.

Path dropout. Previous work [41] has shown that randomly removing facts from the knowledge
base at training time can be beneficial for generalization. Inspired by such insight, we employ a
similar technique to enhance the performance of our model. Specifically, in the first epochs, we
randomly remove paths that are not labeled as correct with probability pdrop, in order to make the
problem easier for the model. This probability is the linearly decreased to 0 during training. We set
the initial pdrop to 0.5 and we gradually lower it to 0 until half of the training epochs have been run.

Pretraining and fine tuning. For the experiments on WebQuestionsSP and CFQ, we found it
beneficial to pretrain our model in order to incorporate knowledge from Freebase into the layers of
the decoder. Specifically, we sampled a total of 500k 1-hop or 2-hop paths and we trained the model
to predict the sequence of relations connecting two nodes, given the embeddings of the source node
and the target node of the path. In order to do this, we replace the encoder with a simple 2-layer feed-
forward network, with a ReLU non-linearity. This network receives as input two 100-dimensional
embeddings for the source and target nodes of the path, and maps them to a dmodel-dimensional
representation. This representation is then fed into the decoder to predict the relations connecting the
two nodes. We use a concatenation of 50-dimensional random and 50-dimensional pretrained TransE
[8] embeddings [26] to represent the entities in the KG. Moreover, on WebQuestionsSP we observed
that it was helpful to fine-tune BERT in order to produce better representations of the relations in the
knowledge graph. The same BERT model is still used to encode both the questions and relation types.

E Experimental Details

E.1 Datasets

KBQA datasets. We performed our experiments on KBQA on two widely adopted datasets, namely
MetaQA [50] and WebQuestionsSP [49]. We provide below a detailed description of each one.

• MetaQA1 [50] is a multi-hop question answering dataset including 400K question-answer pairs.
Questions are answerable using the WikiMovies knowledge base. The dataset includes 1-hop, 2-hop
and 3-hop questions. It is provided under the Creative Commons Public License Attribution 3.0
Unported2. We evaluated our approach on 2-hop (MetaQA 2) and 3-hop (MetaQA 3) questions.

• WebQuestionsSP [49] comprises 4737 questions over a subset of Freebase, which is provided
under the CC BY 2.5 license3. The questions in this dataset are answerable by performing relational
following for up to two hops and an optional relational filtering operation on the result.

1https://github.com/yuyuz/MetaQA
2https://creativecommons.org/licenses/by/3.0/
3https://creativecommons.org/licenses/by/2.5/

6

https://github.com/yuyuz/MetaQA
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/2.5/

Table 1 shows the number of questions in the training, development and test splits of each dataset. We
use the same splits as in [41]. Table 3 reports instead the number of triples (edges), entities (nodes)
and relations in the KGs used in our experiments.

Table 1: Number of questions in the training, development and test sets
Train Dev Test

MetaQA 2 118 980 14 872 14 872
MetaQA 3 114 196 14 274 14 274
WebQSP 2 848 250 1 639

Table 2: Size of the knowledge graphs used for MetaQA and WebQuestionsSP
Triples Entities Relations

MetaQA 392 906 43 230 18
WebQSP 23 587 078 7 448 928 575

Compositional generalization. Our experiments on compositional generalization rely on the Com-
positional Freebase Questions (CFQ) dataset. It includes a total of 239 357 English question-answer
pairs that are answerable using the public Freebase data [21]. CFQ is released under the CC-BY-4.0
license4 provides train-test splits designed to measure the compositional generalization ability of a
machine-learning model. Each question is composed of primitive elements (atoms), which include
entity mentions, predicates and question patterns. These atoms can be combined in different ways
(compounds) to instantiate the specific examples in the dataset. The train-test splits are designed with
the twofold goal of:

1. minimizing atom divergence: the atoms present in the test set are also included in the training set
and their distribution in the test set is as similar as possible to their distribution in the test set;

2. maximizing compound divergence: the distribution of compounds in the test set is as different as
possible from their distribution in the training set.

The dataset provides three different splits (MCD1, MCD2, MCD3), with maximum compound
divergence (MCD) and low atom divergence. For each question, both a logical parsing and the
expected answers are included. Hence, CFQ can be used both for semantic parsing and end-to-end
question answering.

E.2 Baselines

KBQA Baselines. On WebQuestionsSP and MetaQA, we compared our approach against the
following baselines.

• KV-MemNN is a key-value memory network [35] that makes use of a memory of key-value pairs
to store the triples from the KG. Keys are joint representation of the subject and relation of each
triple, whereas the objects of the triples are used as the corresponding values.

• ReifKB [10] uses a compact encoding for representing symbolic KGs, called a sparse-matrix
reified KG, which can be distributed across multiple GPUs, allowing efficient symbolic reasoning.

• GRAFT-Net [41] is a graph neural network designed to reason over question-specific subgraphs.
The message-passing scheme is conditioned on the input question and takes inspiration from
personalized page rank to perform a directed propagation of the messages starting from the entities
mentioned in the question.

• PullNet [42] builds on top of GRAFT-Net and improves the quality of the question-specific
subgraphs with an iterative process based on a learned classifier. This classifier selects which
node should be expanded at each iteration and it is a further GNN with the same architecture as
GRAFT-Net.

4https://creativecommons.org/licenses/by/4.0/

7

https://creativecommons.org/licenses/by/4.0/

• EmbedKGQA [39] uses KG embeddings for multi-hop question answering.

• EmQL [43] relies on a query embedding method that combines a count-min sketch representation
for entity sets with logical operations implemented via neural retrieval over embedded KG triples.

CFQ Baselines. For the experiment on compositional generalization, we compare to the best-
performing baselines in CFQ’s public leaderboard5. These baselines are all designed for semantic
parsing and are encoder-decoder architectures trained to output a formal query given a natural
language question. Keysers et al. [28] evaluated the compositional generalization capabilities of
three sequence-to-sequence models, namely one based on LSTMs [27] equipped with an attention
mechanism [5] (LSTM + Attention), a Transformer [44] and a Universal Transformer [17].
Furrer et al. [20] conducted a study that assessed the performance of three more models. The
Evolved Transformer [40] is a variation of the Transformer discovered with an evolutionary neural
architecture search seeded with the original model of Vaswani et al. [44]. The Text-to-Text Transfer
Transformer (T5) [36] is a model pre-trained to treat every task as a text-to-text problem. Furrer
et al. [20] fine-tuned all variants, including the largest one with 11 billion parameters (T5-11B).
Following the technique introduced by Guo et al. [22], Furrer et al. [20] further implemented the
variant T5-11B-mod, which learns to predict an intermediate representation of the SPARQL query
which is closer to the formulation of the questions in natural language. Finally, Guo et al. [23]
introduced the Hierarchical Poset Decoding (HPD), which enforces partial permutation invariance,
thus taking into account semantics and capturing higher-level compositionality.

E.3 Hyperparameters and Reproducibility

We train the relation-level model for 300 epochs on both datasets. We use a mini-batch size of 128
for MetaQA and 32 for WebQuestionsSP. We set the dimension of the embeddings to dmodel = 768,
as we use 12 attention heads applied to tensors of size 64. We optimize the model using the AdamW
optimizer [31], with weight decay of 10−3. The initial learning rate is set to 10−4 for MetaQA and
5 · 10−6 for WebQuestionsSP. We apply dropout regularization, with probability 0.1 on both the
encoder and the decoder layers. We use a beam width β = 10 for the knowledge seeking algorithm
described in Appendix B.

BERT is fine-tuned for WebQuestionsSP, whereas the weights are kept fixed for MetaQA. For
experiments on WebQuestionsSP, we found beneficial to pretrain our model in order to incorporate
knowledge from Freebase into the layers of the decoder, as explained in Appendix D. Specifically,
we sampled a total of 500k 1-hop or 2-hop paths and we trained the model to predict the sequence of
relations connecting two nodes, given the embeddings of the source node and the target node of the
path.

For the GCN-based edge-level model, we used the same implementation and hyperparameters of the
version publicly available at: https://github.com/OceanskySun/GraftNet. All experiments
are performed on a NVIDIA Tesla V100 GPU with 16 GB of memory.

E.4 Discussion and qualitative examples

In our experiments on KBQA, for each model, we selected the entity v? ∈ V with the highest
likelihood to be a correct answer. The answer to the question is considered correct if v? ∈ AQ. For
the unrefined SQALER model, we report the expected performance selecting v? uniformly at random
from ÃQ.

The high performance of the unrefined model on MetaQA confirms our hypothesis that the relation-
level model applied on the coalesced representation is sufficient for tasks such as multi-hop question
answering. On WebQuestionsSP, the edge-level model is needed because relation projection is not
sufficient to answer some of the questions in the dataset. Figure 2 shows some examples of the
relation sequences predicted by our model on the test set of WebQuestionsSP. For examples (a) and
(b), the relation-level model is sufficient, as the set of candidates ÃQ is the same as the set of the
actual answers AQ. However, examples (c) and (d) demonstrate the need for an edge-level model, as
following a sequence of relations is not always sufficient to obtain the correct answer. Note that the
edge-level model is applied on a 1-hop neighborhood expansion of the graphs depicted in Figure 2

5https://github.com/google-research/google-research/tree/master/cfq

8

https://github.com/OceanskySun/GraftNet
https://github.com/google-research/google-research/tree/master/cfq

(a)

place_of_death

What town was martin
luther king assassinated in?

(b)

religion

religions

religionsreligions

rel
igi

on
s

religion

religion

religion

What are the religions
practiced in indonesia?

Entity mentions Candidates Answers

(c)

parents

parents

Who is the mother
of prince michael jackson?

(d)

ed
uc

ati
on

education

education
educationeducation

institution

institution

institution

institution

institution

What highschool did harper
lee go to?

Figure 2: Example of relation sequences predicted by the unrefined relation-level model on the test
set of WebQuestionsSP

and constrained to select an answer among the candidates ÃQ. Figure 2 also shows that the answer
paths for 2-hop questions in WebQuestionsSP always contain compound value type (CVT) entities in
the middle (depicted with cyan nodes in the image). These are special entity types that are used in
Freebase to describe n-ary relationships between entities. EmQL uses different encodings for CVT
nodes and the real entities, while SQALER does not depend on the KG specifics.

E.5 Analysis of relational coalescing

In order to answer a question that requires multi-hop reasoning over a KG correctly, one should ideally
either consider the full KG or a complete subgraph consisting of all possible multi-hop neighbors
of the entities mentioned in the question. However, such subgraphs can be very large, as shown in
Table 3. The subgraphs we analyzed include 3-hop neighbors for MetaQA 3 and both 1 and 2-hop
neighbors of the entities mentioned in the question for WebQSP. The average number of nodes for
MetaQA 3 exceeds 10k and for the larger Freebase KG there are question subgraphs with millions of
nodes. This makes impractical to perform KBQA on complete subgraphs with models that scale with
the number of edges or nodes in the graph.

Table 3: Size of the subgraphs including all neighbors of the entities mentioned in a question
MetaQA 3 WebQSP

Mean nodes 8.6k 36k
Max nodes 30k 1.6M

Mean facts 49k 211k
Max facts 230k 9.5M

1 2 3
Path length

10
0

10
2

10
4

10
6

N
um

be
r o

f p
at

hs

Original Coalesced

1 2
Path length

10
0

10
2

10
4

10
6

N
um

be
r o

f p
at

hs

Figure 3: Number of paths by path length in the original and coalesced graphs for MetaQA (right)
and WebQuestionsSP (left)

9

As a further analysis, we investigate the computational advantage of relational coalescing by com-
puting the number of paths originating from the entities mentioned in the questions both in the
original KG and in the coalesced representation. Figure 3 presents the results for both MetaQA and
WebQuestionsSP. The experiment shows that relation coalescing allows reducing the number of paths
by up to 2 orders of magnitude on both datasets. This directly impacts both the memory requirements
and the efficiency of our approach. For MetaQA we analyzed paths of length up to 3, whereas for
WebQuestionsSP we consider paths of length 1 or 2, as the dataset does not include 3-hop questions.

10

	Formal definition of the coalesced representation
	Computational Complexity
	Expressive Power
	Conjunctive Queries
	Existential Positive First-Order Queries

	Training strategies
	Experimental Details
	Datasets
	Baselines
	Hyperparameters and Reproducibility
	Discussion and qualitative examples
	Analysis of relational coalescing

