
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Availability of DSR-REX, Baselines and Dataset Please find our code repository at:

https://anonymous.4open.science/status/dsr-rex-1876

1. the implementation of our DSR-REX method is in the folder “dsr rex pytorch/”.
2. the list of datasets is listed in “data oracle/scibench/scibench/data/”.
3. the implementation of several baseline algorithms is collected in folder “baslines/”.

We provide a “README.md” document for executing the programs.

We summarize the supplementary material as follows: Section A details the used mathematical laws
for deriving symbolic forms of expressions. Section B and section C give a detailed theoretical
explanation of the proposed method. Section D details the experimental settings.

A IMPLEMENTATION OF SYMBOLIC REASONING MODULE

We consider a wide list of mathematical properties.

1. Commuative law, for example, a+ b = b+ a or a ∗ b = b ∗ a.
2. Distributive laws, for example (x+ y)2 = x2 + 2xy + y2.
3. Factorize an expression into simpler components. For example, x2− y2 = (x− y)(x+ y).
4. Sum-to-Product Identities:

sin(a) + sin(b) = 2 sin

(
a+ b

2

)
, cos

(
a− b

2

)
cos(a) + cos(b) = 2 cos

(
a+ b

2

)
cos

(
a− b

2

)
5. Product-to-Sum Identities:

sin(a) cos(b) =
1

2
[sin(a+ b) + sin(a− b)]

cos(a) cos(b) =
1

2
[cos(a+ b) + cos(a− b)]

sin(a) sin(b) =
1

2
[cos(a− b) cos(a+ b)]

6. Double Angle Formulas:

sin(2a) = 2 sin(a) cos(a), cos(2a) = cos2(a) sin2(a)

7. Co-function Identities:

sin
(π
2
− x
)
= cos(x), cos

(π
2
− x
)
= sin(x),

tan
(π
2
− x
)
= cot(x), cot

(π
2
− x
)
= tan(x)

8. Pythagorean Identities:

sin2(x) + cos2(x) = 1, 1 + tan2(x) = sec2(x),

1 + cot2(x) = csc2(x)

9. Half-Angle Formulas:

sin
(x
2

)
= ±

√
1− cos(x)

2
, cos

(x
2

)
= ±

√
1 + cos(x)

2
,

tan
(x
2

)
= ±

√
1− cos(x)

1 + cos(x)
.

13

https://anonymous.4open.science/status/dsr-rex-1876


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rule expression

Product-to-Sum Identities sin(a) + sin(b) = 2 sin
(
a+b
2

)
cos
(
a−b
2

)
cos(a) + cos(b) = 2 cos

(
a+b
2

)
cos
(
a−b
2

)
Product-to-Sum Identities

sin(a) cos(b) = 1
2 [sin(a+ b) + sin(a− b)]

cos(a) cos(b) = 1
2 [cos(a+ b) + cos(a− b)]

sin(a) sin(b) = 1
2 [cos(a− b)− cos(a+ b)]

Double Angle Formulas

sin(2a) = 2 sin(a) cos(a)
cos(2a) = cos2(a)− sin2(a)
cos(2a) = 2 cos2(a)− 1
cos(2a) = 1− 2 sin2(a)

tan(2a) = 2 tan(a)
1−tan2(a)

Co-function Identities

sin
(
π
2 − a

)
= cos(a)

cos
(
π
2 − a

)
= sin(a)

tan
(
π
2 − a

)
= cot(a)

cot
(
π
2 − a

)
= tan(a)

Pythagorean Identities
sin2(a) + cos2(a) = 1
1 + tan2(a) = sec2(a)
1 + cot2(a) = csc2(a)

Half-Angle Formulas
sin
(
a
2

)
= ±

√
1−cos(a)

2

cos
(
a
2

)
= ±

√
1+cos(a)

2

tan
(
a
2

)
= ±

√
1−cos(a)
1+cos(a)

Sum and Difference Formulas
sin(a± b) = sin(a) cos(b)± cos(a) sin(b)
cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

tan(a± b) = tan(a)±tan(b)
1∓tan(a) tan(b)

Table 2: Mathematical Identities

10. Sum and Difference Formulas

sin(a± b) = sin(a) cos(b)± cos(a) sin(b),

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b),

tan(a± b) =
tan(a)± tan(b)

1∓ tan(a) tan(b)

11. Double-Angle Formulas:

sin(2a) = 2 sin(a) cos(a), cos(2a) = cos2(a) sin2(a),

cos(2a) = cos2(a)− sin2(a) tan(2a) =
2 tan(a)

1− tan2(a)

12. exp and log rules:

exp(a+ b) = exp(a) · exp(b) log(ab) = log(a) + log(b)

B PROOF OF THEOREM 1

Theorem. (1) The expectation of reward over probability distribution pθ(τ) equals the expectation
over probability distribution qθ(ϕ), that is:

µ = Eτ∼pθ
[R(τ)] = Eϕ∼qθ [R(ϕ)].

(2) The expectation of policy gradient over probability distribution pθ(τ) equals the expectation
over probability distribution qθ(ϕ), that is:

∇θJ(θ) = Eτ∼pθ
[R(τ)∇θ log pθ(τ)] = Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)].

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Symbol Definition
τ a sequence of math operators, variables, and coefficients
Π the set of all sequences

Sϕ ⊆ Π the subset of sequences which can be constructed into the same expression ϕ
ϕ an expression
Φ the set of all expressions

ϕ = MAP(τ) map the sequence τ to its corresponding expression ϕ
pθ(τ) the probability of sampling sequence
qθ(ϕ) the probability of sampling expression ϕ
gθ(τ) R(τ)∇θ log pθ(τ)

Table 3: List of notations used in this work.

It states the new objective as defined in Equation 5 is the same as the classic objective (defined in
Equation 1).

Proof. Define Π as the set of all possible sequences and Φ as the set of all possible expressions. We
denote Sϕ = {τ |MAP(τ) = ϕ} as the group of sequences that can be constructed into expression ϕ.
Part 1. The expectation can be expanded as:

µ = Eϕ∼qθ [R(ϕ)] =
∑
ϕ∈Φ

R(ϕ)qθ(ϕ) =
∑
ϕ∈Φ

R(ϕ)
∑
τ∈Sϕ

pθ(τ) =
∑
ϕ∈Φ

∑
τ∈Sϕ

R(τ)pθ(τ)

=
∑
τ∈Π

R(τ)pθ(τ) = Eτ∼pθ
[R(τ)]

The first and second equalities are due to the definitions of expectation and qθ. The third equality
is obtained by observing the fact all sequences τ in group Sϕ share the same reward value R(τ) =
R(τ ′) for τ, τ ′ ∈ Sϕ. The fourth equality is obtained because partitioning all trajectories by groups
and then summing over each trajectory in the group is the same as summing over all trajectories
directly.

Part 2. Based on the definition of expectation, the left-hand side and the right-hand side of policy
gradient:

Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)] =
∑
ϕ∈Φ

(R(ϕ)∇θ log qθ(ϕ)) qθ(ϕ) =
∑
ϕ∈Φ

R(ϕ)∇θqθ(ϕ)

Eτ∼pθ
[R(τ)∇θ log pθ(τ)] =

∑
τ∈Π

(R(τ)∇θ log pθ(τ)) pθ(τ) =
∑
τ∈Π

R(τ)∇θpθ(τ)

The problem is transformed into showing if the derived summation equals to each other. By the
definition of qθ(ϕ), we have:

∇θqθ(ϕ) = ∇θ

∑
τ∈Sϕ

pθ(τ) =
∑
τ∈Sϕ

∇θpθ(τ)

The last step holds since the gradient operator is linear to the summation operator. Then we have:∑
ϕ∈Φ

R(ϕ)∇θqθ(ϕ) =
∑
ϕ∈Φ

R(ϕ)
∑
τ∈Sϕ

∇θpθ(τ) =
∑
ϕ∈Φ

∑
τ∈Sϕ

R(τ)∇θpθ(τ) =
∑
τ∈Π

R(τ)∇θpθ(τ)

The last step holds because partitioning all sequences by groups and then summing over each se-
quence in the group is the same as summing over all sequences directly. Putting it all together, we
have:

Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)] = Eτ∼pθ
[R(τ)∇θ log pθ(τ)].

This completes the proof.

One important conclusion from the above theorem that will be useful for the following proof is∑
ϕ∈Φ R(ϕ)qθ(ϕ) =

∑
τ∈Π R(τ)pθ(τ). It implies:∑

ϕ∈Φ

R2(ϕ)qθ(ϕ) =
∑
τ∈Π

R2(τ)pθ(τ)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma 1. The variance of the policy gradient over probability distribution pθ(τ) is larger than the
variance over probability distribution qθ(ϕ), that is:

Varτ∼pθ
[R(τ)∇θ log pθ(τ)] ≥ Varϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)].

Proof. By the definition of variance, we have:

Varτ∼pθ
[R(τ)∇θ log pθ(τ)] =

∑
τ ′∈Π

(R(τ ′)∇θ log pθ(τ
′)−∇θJ(θ))

2pθ(τ
′)

=
∑
τ ′∈Π

R2(τ ′)
(∇θpθ(τ

′))
2

pθ(τ ′)
− 2∇θJ(θ)

∑
τ ′∈Π

R(τ ′)∇θpθ(τ
′) + (∇θJ(θ))

2
∑
τ ′∈Π

pθ(τ
′)

where ∇θJ(θ) indicates the expectation of policy gradient and is introduced in Theorem 1 and the
second row is obtained by expanding the whole equation. By Theorem 1, the first part can be lower
bounded as: ∑

τ ′∈Π

R2(τ ′)
(∇θpθ(τ

′))
2

pθ(τ ′)
≥
∑
ϕ′∈Φ

R2(ϕ′)
(∇θqθ(ϕ

′))
2

qθ(ϕ′)

By Theorem 1, the second part equals to:

−2∇θJ(θ)
∑
τ ′∈Π

R(τ ′)∇θpθ(τ
′) = −2∇θJ(θ)

∑
ϕ′∈Φ

R(ϕ′)∇θqθ(ϕ
′)

Since the probability mass equals one, i.e.,
∑

ϕ′∈Φ qθ(ϕ
′) =

∑
τ ′∈Π pθ(τ

′) = 1, the third parts
equals to:

(∇θJ(θ))
2
∑
τ ′∈Π

pθ(τ
′) = (∇θJ(θ))

2
∑
ϕ′∈Φ

qθ(ϕ
′)

To conclude, we have:

Varτ∼pθ
[R(τ)∇θ log pθ(τ)]

≥
∑
ϕ′∈Φ

R2(ϕ′)
(∇θqθ(ϕ

′))
2

qθ(ϕ′)
− 2∇θJ(θ)

∑
ϕ′∈Φ

R(ϕ′)∇θqθ(ϕ
′) + (∇θJ(θ))

2
∑
ϕ′∈Φ

qθ(ϕ
′)

=
∑
ϕ′∈Φ

(R(ϕ′)∇θ log qθ(ϕ
′)−∇θJ(θ))

2qθ(ϕ
′)

= Varϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)]

To conclude, we obtain the final result:

Varτ∼pθ
[R(τ)∇θ log pθ(τ)] ≥ Varϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)].

This completes the proof.

C PROOF OF THEOREM 2

Theorem. Using N samples τ1, . . . , τN from distribution pθ together with an reasoning engine to
obtain extra samples. (1) Unbiased Estimator. The expectation of ∇̂θJ(θ) over distribution pθ(τ)
equals to∇θJ(θ) that is:

Eτ∼pθ

[
∇̂θJ(θ)

]
= Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)] = ∇θJ(θ).

(2) Variance Reduction. The variance of the proposed estimator is smaller than ∇̃θJ(θ):

Varϕ∼qθ

[
∇̂θJ(ϕ)

]
≤ Varτ∼pθ

[
∇̃θJ(θ)

]
16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Proof of Unbiased Estimator. If we sample τ1, . . . , τN from distribution pθ, the proposed
estimator is defined as follows:

∇̂θJ(θ) =
1

N

N∑
i=1

∑
ϕ∈Φ

I{MAP(τi) = ϕ}R(ϕ)∇θ log qθ(ϕ)

By adding the expectation over the distribution pθ(τ), we have:

Eτ∼pθ

[
∇̂θJ(θ)

]
= Eτ∼pθ

 1

N

N∑
i=1

∑
ϕ∈Φ

I{MAP(τi) = ϕ}R(ϕ)∇θ log qθ(ϕ)


= Eτ∼pθ

∑
ϕ∈Φ

I{MAP(τ) = ϕ}R(ϕ)∇θ log qθ(ϕ)


Where the second row is obtained by the expectation operator is linear and the samples are drawn
i.i.d. from the distribution. We then expand the right-hand side with the definition of expectation:

Eτ∼pθ

[
∇̂θJ(θ)

]
=
∑
τ∈Π

∑
ϕ∈Φ

I{MAP(τ) = ϕ}R(ϕ)∇θ log qθ(ϕ)

 pθ(τ)

=
∑
ϕ∈Φ

∑
τ∈Π

I{MAP(τ) = ϕ}pθ(τ)︸ ︷︷ ︸
by the definition in Equation 4

R(ϕ)∇θ log qθ(ϕ)

=
∑
ϕ∈Φ

qθ(ϕ)R(ϕ)∇θ log qθ(ϕ)

= Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)]

where the last line is obtained by Theorem 1. In practice, we only have one sequence decoder
that models over sequences with probability distribution pθ. The lemma states that using sampled
sequences τ1, . . . , τN from the distribution pθ is the same as drawing sampled expressions from the
distribution qθ. Based on Theorem 1, we show that the gradient estimator is unbiased:

Eτ∼p(τ)

[
∇̂θJ(θ)

]
= ∇θJ(θ).

The above steps justify that the proposed expression reasoning module helps to compute the correct
gradient values (i.e., unbiased gradient estimator).

Proof of Variance Reduction. The sample variance of the original policy gradient is defined as:

Varτ∼pθ

[
∇̃θJ(θ)

]
= Varτ∼pθ

[
1

N

N∑
i=1

R(τi)∇θ log pθ(τi)

]
=

1

N
Varτ∼pθ

[R(τ)∇θ log pθ(τ)]

The sampled variance of the proposed method is:

Varτ∼pθ

[
∇̂θJ(θ)

]
= Varτ∼pθ

 1

N

N∑
i=1

∑
ϕ∈Φ

I{MAP(τi) = ϕ}R(ϕ)∇θ log qθ(ϕ)


=

1

N
Varτ∼pθ

∑
ϕ∈Φ

I{MAP(τ) = ϕ}R(ϕ)∇θ log qθ(ϕ)


Using the result in part 1 where we show the mean of the quantity is∇θJ(θ), we can expand by the
definition of variance:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Varτ∼pθ

[
∇̂θJ(θ)

]
=
∑
τ ′∈Π

∑
ϕ∈Φ

I{MAP(τ ′) = ϕ}R(ϕ)∇θ log qθ(ϕ)−∇θJ(θ)

2

pθ(τ
′)

=
∑
ϕ∈Φ

∑
τ ′∈Π

I{MAP(τ ′) = ϕ}pθ(τ ′)︸ ︷︷ ︸
By the definition in Equation 4

(R(τ ′)∇θ log qθ(ϕ))
2

− 2∇θJ(θ)
∑
ϕ∈Φ

∑
τ ′∈Π

I{MAP(τ) = ϕ}pθ(τ ′)︸ ︷︷ ︸
By the definition in Equation 4

R(τ ′)∇θ log qθ(ϕ)

+ (∇θJ(θ))
2
∑
τ ′∈Π

pθ(τ
′)

After plugin in Equation 4, we can have:

=
∑
ϕ∈Φ

qθ(ϕ) (R(τ ′)∇θ log qθ(ϕ))
2 − 2∇θJ(θ)

∑
ϕ∈Φ

qθ(ϕ)R(τ ′)∇θ log qθ(ϕ) + (∇θJ(θ))
2
∑
ϕ∈Φ

qθ(ϕ)

=
∑
ϕ∈Φ

(R(ϕ)∇θ log qθ(ϕ)−∇θJ(θ))
2qθ(ϕ)

=
1

N
Varϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)] .

Due to the linearity of summation, we obtain the second row by switching the two summations, i.e.,∑
ϕ∈Φ and

∑
τ ′∈Π. Based on Lemma 1, we can conclude that the proposed sampler enjoys a smaller

variance:

Varϕ∼qθ [∇̂θJ(θ)] ≤ Varτ∼pθ
[∇̃θJ(θ)].

This completes the proof.

Lemma 2.
∑

τ ′∈Π R2(τ ′)
(∇θpθ(τ

′))
2

pθ(τ ′) ≥∑ϕ∈Φ R2(ϕ′)
(∇θqθ(ϕ

′))
2

qθ(ϕ′) .

Proof. The first step is to rewrite the left-hand side by changing the summation over sequences to
summation over groups of sequences with the same reward,∑

τ ′∈Π

R2(τ ′)
(∇θpθ(τ

′))
2

pθ(τ ′)
=
∑
ϕ∈Φ

∑
τ ′∈Sϕ

R2(τ ′)
(∇θpθ(τ

′))
2

pθ(τ ′)
=
∑
ϕ∈Φ

R2(ϕ)
∑

τ ′∈Sϕ

(∇θpθ(τ
′))

2

pθ(τ ′)

Then we show, in each group of sequences Sϕ, the left-hand side is larger: ∑
τ ′∈Sϕ

(∇θpθ(τ
′))

2

pθ(τ ′)

− (∇θqθ(ϕ
′))

2

qθ(ϕ′)
=

 ∑
τ ′∈Sϕ

(∇θpθ(τ
′))

2

pθ(τ ′)

−
(∑

τ∈Sϕ
∇θpθ(τ)

)2
∑

τ∈Sϕ
pθ(τ)

> 0

The last inequality is obtained from Lemma 4 by relating scalar pθ(τ) with bi and vector/matrix
∇θpθ(τ) with ai.Therefore, the final result holds.

Lemma 3 (log-derivative trick). Let pθ(τ) ∈ (0, 1) represents a probability distribution over input
τ with parameters θ and notation∇θ is the partial derivative with respect to θ.

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ).

Lemma 4. For any real-valued vector ai ∈ Rd and positive real numbers bi, for i = 1 . . . , n. We
have:

n∑
i=1

a⊤i ai
bi
− (
∑n

i=1 ai)
⊤
(
∑n

i=1 ai)∑n
i=1 bi

≥ 0

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. The idea to prove is inspired from Sedrakyan & Sedrakyan (2018). To show that:
n∑

i=1

a⊤i ai
bi
− (
∑n

i=1 ai)
⊤
(
∑n

i=1 ai)∑n
i=1 bi

≥ 0,

Let’s denote ai ∈ Rd and bi ∈ R>0 for i = 1, . . . , n. Consider vectors ai ∈ Rd and scalars
√
bi and

apply the Cauchy-Schwarz inequality:(
n∑

i=1

ai√
bi
·
√
bi

)2

≤
(

n∑
i=1

∥∥∥∥ ai√
bi

∥∥∥∥2
)(

n∑
i=1

bi

)
(

n∑
i=1

ai

)2

≤
(

n∑
i=1

a⊤i ai
bi

)(
n∑

i=1

bi

)
(

n∑
i=1

ai

)⊤( n∑
i=1

ai

)
≤
(

n∑
i=1

a⊤i ai
bi

)(
n∑

i=1

bi

)
.

Rewriting the inequality, we obtain:(
n∑

i=1

bi

)(
n∑

i=1

a⊤i ai
bi

)
−
(

n∑
i=1

ai

)⊤( n∑
i=1

ai

)
≥ 0.

Dividing through by
∑n

i=1 bi, we get:
n∑

i=1

a⊤i ai
bi
− (
∑n

i=1 ai)
⊤
(
∑n

i=1 ai)∑n
i=1 bi

≥ 0,

which completes the proof.

D EXPERIMENT SETTINGS

D.1 HYPER-PARAMETERS CONFIGURATIONS

When fitting the values of open constants in each expression, we sample a batch of data with batch
size 1024 from the data Oracle. The open constants in the expressions are fitted on the data using the
BFGS optimizer1. We use a multi-processor library to fit multiple expressions using 8 CPU cores in
parallel. This greatly reduced the total training time.

An expression containing placeholder symbol A or containing more than 20 open constants is not
evaluated on the data, the fitness score of it is −∞. In terms of the reward function in the policy
gradient objective, we use reward(τ) = 1

1+NMSE(ϕ) . The normalized mean-squared error metric is
further defined in Equation 8.

The deep network part is implemented using the most recent version of TensorFlow, the expression
evaluation is based on the Sympy library, and the step for fitting open constants in expression with
the dataset uses the Scipy library. We further summary all the above necessary configurations in
Table 4.

D.2 LOSS BENCHMARK OF DSR-REX

1. The vanilla policy gradient follows the definition in Equation 7.
2. we choose the baseline function as the average of the reward of the current sampled batch

expressions. Thus we have:

∇θJ(θ) ≈
1

N

N∑
i=1

(R(τ i)− b)∇θ log pθ(τ
i), where b =

N∑
i=1

R(τ i)

1https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

19

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

General Parameters
max length of generated sequence 20

batch size of generated sequence 1024
total learning iterations 200

Reward function reward(τ) = 1
1+NMSE(ϕ)

Expressions and Dataset
training dataset size 2048

validation and testing dataset size 2048
coefficient fitting optimizer BFGS

maximum allowed coefficients 20
optimization termination criterion error is less than 1e− 6

Deep Neural Network Optimizer
optimizer Adam

learning rate 0.009
entropy weight 0.03
entropy gamma 0.7

Table 4: Hyper-parameter configurations.

3. policy gradient subtracting a risk-seeking quantile. This originated from DSR (Petersen
et al., 2021), where they encourage the model to factor in those well-fitted output expres-
sions and ignore the poor-fitted output expressions. They proposed to subtract a k% of the
quantile of the rewards instead of the empirical mean of the rewards.

∇θJ(θ) ≈
1

N

N∑
i=1

(R(τ i)− b)∇θ log pθ(τ
i), where b = k% quantile of the rewards

In Figure 2, b is set as 75% quantile of rewards, following the original hyper-parameter
definition in DSR (Petersen et al., 2021).

D.3 TIME BENCHMARK OF DSR-REX

We use three types of sequential decoders for the time benchmark setting. The major configurations
are listed in Table 5.

General Parameters
max length 20
training dataset size 2048
validation dataset size 2048
total learning iterations 200

Optimizer Hyperparameters
optimizer Adam
learning rate 0.009
entropy weight 0.03
entropy gamma 0.7

Decoder-relevant Hyperparameters
choice of decoder GRU LSTM Multi-head Self-Attention
num layers 3 3 3
hidden size 128 128 128
dropout 0.5 0.5 NA
number of head NA NA 6

Table 5: Hyperparameters for the RNN Model

20


	Implementation of Symbolic Reasoning Module
	Proof of Theorem 1
	Proof of Theorem 2
	Experiment Settings
	Hyper-parameters Configurations
	Loss Benchmark of DSR-Rex
	Time Benchmark of DSR-Rex


