Under review as a conference paper at ICLR 2025

Availability of DSR-REX, Baselines and Dataset Please find our code repository at:

https://anonymous.4open.science/status/dsr—-rex—1876

1. the implementation of our DSR-REX method is in the folder “dsr_rex_pytorch/”.
2. the list of datasets is listed in “data_oracle/scibench/scibench/data/”.
3. the implementation of several baseline algorithms is collected in folder “baslines/”.

We provide a “README.md” document for executing the programs.

We summarize the supplementary material as follows: Section[A]details the used mathematical laws
for deriving symbolic forms of expressions. Section [B] and section [C] give a detailed theoretical
explanation of the proposed method. Section|D|details the experimental settings.

A IMPLEMENTATION OF SYMBOLIC REASONING MODULE

We consider a wide list of mathematical properties.

. Commuative law, for example,a +b=b+aora*xb=bx*a.
. Distributive laws, for example (x + y)? = 22 + 22y + >
. Factorize an expression into simpler components. For example, 2% — y? = (z —y)(z + ¥).

A W N =

. Sum-to-Product Identities:

sin(a) + sin(b) = 2sin (a ;_ b) , COS (a ; b)

cos(a) + cos(b) = 2 cos (“?’) cos (a ; b)

5. Product-to-Sum Identities:

1
sin(a) cos(b) = B [sin(a + b) + sin(a — b)]
1
cos(a) cos(b) = i[cos(a +b) + cos(a — b)]
1
sin(a) sin(b) = 3 [cos(a — b) cos(a + b))
6. Double Angle Formulas:
sin(2a) = 2sin(a) cos(a), cos(2a) = cos?(a)sin®(a)
7. Co-function Identities:
. ™ m .
sin (5 - x) = cos(z), cos (5 - :zc) = sin(z),
™ T
tan (5 - x) = cot(z), cot (5 - x) = tan(z)
8. Pythagorean Identities:

sin?(z) + cos?(x) 1+ tan?(z) = sec?(z),

1+ cot?(z) = csc?(z)

I
-

9. Half-Angle Formulas:

AN 1 — cos(x) A 1+ cos(z)
in(3) =25 es(g) =25
tan (f) ==+ 1= costz) cos(x).

2 1+ cos(x)

13

https://anonymous.4open.science/status/dsr-rex-1876

Under review as a conference paper at ICLR 2025

Rule expression
Product-to-Sum Identities | S(@) +sin(b) = 2sin (a;bg cos (a;_bg
cos(a) + cos(b) = 2 cos (“£2) cos (252)
sin(a) cos(b) = I [sin(a + b) + sin(a — b)]
Product-to-Sum Identities cos(a) cos(b) = 2% [cos(a + b) + cos(a — b)]
sin(a) sin(b) = £ [cos(a — b) — cos(a + b)]
sin(2a) = 2sin(a) cos(a)

— 2 .2
Double Angle Formulas cos(2a) = cos*(a) —sin*(a)

2tan(a)
tan(2a) 17tzn2(a)
sin (3 — a) = cos(a)
Co-function Identities cos (5 — a) = sin(a)
tan (5 —a) = cot(a)
cot (2 — a) = tan(a)
sin?(a) + cos?(a) = 1
Pythagorean Identities 1+ tan?(a) = secz(a)

a 1— co%(a
3) jE\/

_ 1+C05(a)
§) =+ =5

tan (3) = /Tl

sin(a £ b) = sin(a) cos(b) =+ cos(a) sin(b)
Sum and Difference Formulas | cos(a =+ b) = cos(a) cos(b) F sin(a) sin(b)

tan(a)ttan(b
tan(a £ b) = m

Half-Angle Formulas

Table 2: Mathematical Identities

10. Sum and Difference Formulas

sin(a 4 b) = sin(a) cos(b) £ cos(a) sin(b),
cos(a £ b) = cos(a) cos(b) F sin(a) sin(b),
tan(a) =+ tan(b)
1 F tan(a) tan(b)

tan(a +b) =

11. Double-Angle Formulas:

sin(2a) = 2sin(a) cos(a), cos(2a) = cos®(a)sin?(a),
5 9 _ 2tan(a)
cos(2a) = cos”(a) — sin“(a) tan(2a) = T tan(a)

12. exp and log rules:

exp(a + b) = exp(a) - exp(b) log(ab) = log(a) + log(b)
B PROOF OF THEOREMI]

Theorem. (1) The expectation of reward over probability distribution py(7) equals the expectation
over probability distribution gg(¢), that is:

1= By [R(7)] = By [R(9)]-

(2) The expectation of policy gradient over probability distribution py(7) equals the expectation
over probability distribution gg(¢), that is:

Vo J(0) = Erpy [R(T) Vo log po(7)] = Egrg, [R(0) Ve log go(9)].

14

Under review as a conference paper at ICLR 2025

Symbol | Definition

T | asequence of math operators, variables, and coefficients

II | the set of all sequences

Sy CII | the subset of sequences which can be constructed into the same expression ¢
¢
d

an expression
the set of all expressions

¢ = MAP(7) | map the sequence T to its corresponding expression ¢
po(7) | the probability of sampling sequence
qe(¢) | the probability of sampling expression ¢
96(7) | R(7)Vglogpy(r)

Table 3: List of notations used in this work.

It states the new objective as defined in Equation [5]is the same as the classic objective (defined in
Equation [T)).

Proof. Define II as the set of all possible sequences and ® as the set of all possible expressions. We
denote Sy, = {7|MAP(7) = ¢} as the group of sequences that can be constructed into expression ¢.
Part 1. The expectation can be expanded as:

1n=Esgo RO = S RO)as(0) = S R®) S po(r) =S 3 R(r

ped pe® TE€S, HPED TES,

=Y R(T)po(r) = Ermpy [R(7)]
Tell

The first and second equalities are due to the definitions of expectation and gy. The third equality
is obtained by observing the fact all sequences 7 in group Sy share the same reward value R(7) =
R(r") for 7,7" € S,. The fourth equality is obtained because partitioning all trajectories by groups
and then summing over each trajectory in the group is the same as summing over all trajectories
directly.

Part 2. Based on the definition of expectation, the left-hand side and the right-hand side of policy
gradient:

E¢~qe [R(¢)v9 log q9(¢)] = Z (R(¢)v0 log % Z R Vg(]g
PP PED

Erpo [R(T)Vglogpe(T)] = Z (R(T)Vglogpe(T Z R(1)Vope(T
Tell Tell

The problem is transformed into showing if the derived summation equals to each other. By the
definition of gy (&), we have:

Vogo(6) = Vo > po(t) = Y Vops(T)
T€S¢ TES¢
The last step holds since the gradient operator is linear to the summation operator. Then we have:
> R(6)Voeae(d) = > R(¢) > Vope(r)=>_ > R(r)Veps(r) = > _ R(r)Vops(r
ped ped TESy PEDP TES, Tell

The last step holds because partitioning all sequences by groups and then summing over each se-
quence in the group is the same as summing over all sequences directly. Putting it all together, we
have:

Egpqo [R(@)Valog go(0)] = Ernpy [R(T) Vg log po(T)].

This completes the proof. O

One important conclusion from the above theorem that will be useful for the following proof is

> sca B(9)ao(d) =3, cip R(7)po(7). It implies:

> BA@)ao() = Y R ()po(7)

peD T€Ell

15

Under review as a conference paper at ICLR 2025

Lemma 1. The variance of the policy gradient over probability distribution pg(7) is larger than the
variance over probability distribution gg(¢), that is:

Var,p, [R(T) Vg log po(T)] > Varsq, [R(6) Vg log go(¢)].

Proof. By the definition of variance, we have:

Var,p, [R(17)Vglog pe(T)] = Z (R(7")Vglogpe(T') — Vo J(0))*pe(r")

T/ell
v
=Y R m())) —2V5J(0) 3 R(r')Vops(r') + (VoI (6))* . pol')
T/ €ll T/ell T/ell

where VJ(0) indicates the expectation of policy gradient and is introduced in Theorem and the
second row is obtained by expanding the whole equation. By Theorem] the first part can be lower
bounded as:

S R Vepe > Y R V9q0(¢’))2

/
ot o q6(¢')

By Theorem I} the second part equals to:

-2V J(0) Z R(7")Vepe(T') = =2V J (0 Z R(¢")Voqa (')

T'ell ¢'eP

Since the probability mass equals one, i.e., Zqﬁ/ec} q9(¢') = > enpo(r’) = 1, the third parts
equals to:

(Vo (0))* D po(r') = (VaJ (0))* D ao(9)

T/ €Il ¢'eP

To conclude, we have:

Var, p, [R(T) Vg log pg(T)]

> 3 m2e) Y 59,70) S ROVaan(@) + (VeI 0 S a0()

¢'ed 90 (%) e e
=) (R(¢)Valogas(¢') — VoI (0)) a0 ()
e

= Vargq, [R(¢) Ve log 4o (¢)]

To conclude, we obtain the final result:

Var,p, [R(T) Vo log pe(7)] = Varg.g, [R(¢) Ve log gs(9)].
This completes the proof. O
C PROOF OF THEOREM
Theorem. Using N samples 71, ..., 7y from distribution py together with an reasoning engine to
obtain extra samples. (1) Unbiased Estimator. The expectation of V,.J () over distribution py(7)
equals to Vy.J(0) that is:

Ervpy [V (0)] = By [R(E)Vo 08 s (6)] = Vo (0).

(2) Variance Reduction. The variance of the proposed estimator is smaller than 69J (9):

Vargq, [%J(gb)} < Var,p, [%J(e)]

16

Under review as a conference paper at ICLR 2025

Proof. Proof of Unbiased Estimator. If we sample 7, ..., 7y from distribution pg, the proposed
estimator is defined as follows:

N
VoJ(6) = > 3 AR (1) = G} R(6) Vo log as(0)

i=1 ¢pcd

By adding the expectation over the distribution py(7), we have:

Y
Ervp [00)] = Ernp, | 3¢ > X ae () = S}V o)

=Ernp, | Y I{MAR(7) = ¢} R($) Vs log go(4)

=

Where the second row is obtained by the expectation operator is linear and the samples are drawn
i.i.d. from the distribution. We then expand the right-hand side with the definition of expectation:

Ermpy [VoI(0)] = 3 | D2 H{MaR(7) = 6} R(6) Vo log as(6) | pa(7)

T€ll | pedP

- Z Z I{MAP(7) = ¢}po(T) R(¢) Vg log go(o)

¢ped Tell

by the definition in Equation[4]

=Y a9(¢)R(¢) Ve log qu(¢)

ped
= Egngy [R(0) Vo log go()]
where the last line is obtained by Theorem [I] In practice, we only have one sequence decoder
that models over sequences with probability distribution py. The lemma states that using sampled

sequences Ty, . . . , Ty from the distribution py is the same as drawing sampled expressions from the
distribution gy. Based on Theorem [I] we show that the gradient estimator is unbiased:

Erpir) [%J(a)} = V,J(0).

The above steps justify that the proposed expression reasoning module helps to compute the correct
gradient values (i.e., unbiased gradient estimator).

Proof of Variance Reduction. The sample variance of the original policy gradient is defined as:

N
~ 1 1
Varrp, [VBJ(Q)] = Varrp, [N > R(r:)Ve 10gp9(ﬂ')] = Varr~p, [R(7) Vo log po(7)]
=1

The sampled variance of the proposed method is:

N
Var,p, [%J(@)} = Varop, % 33 1{Re(n) = $}R(6) Ve log as(6)

i=1 pcd

= V., | Y HRR(r) = 6} R(6) Vo log as(0)
PpED

Using the result in part 1 where we show the mean of the quantity is V.J(#), we can expand by the
definition of variance:

17

Under review as a conference paper at ICLR 2025

2

Varsap, (Vo (0)] = 37 | 30 1MaR(7) = 6}R(6) Vo log 4o (@) — Vo (0) | pa(r')

T/l \ peP

=33 1{map(r) = ¢}po(r) (R(7')Vo log go(¢))*

ped T/ €ll

By the definition in EquationE]

—2VeJ(0) > > H{MaP(r) = ¢}pe(7') R(7') Vg log 4o (9)

ped T/ €11

By the definition in Equation[d]

+ (Vo (0)* > pa(r')

T/ ell
After plugin in Equationd] we can have:
=" 00(6) (R(~')Vologas(6))” — 2V (0) Y ao(6) R(~') Ve log ao () + (VoI (0)* Y o (0
LIS PED pED
=) (R(¢)Vologgs(d) — VoI (0))’qa(0)

P
= %Varqwqg [R(¢)Vglogqa(o)].

Due to the linearity of summation, we obtain the second row by switching the two summations, i.e.,
> sco and > +cn- Based on Lemma we can conclude that the proposed sampler enjoys a smaller
variance:

Vargeq, Vo (0)] < Varyp, [VoJ(6)]:
This completes the proof. O

v ") Voqo(¢') 2
Lemma2. > ;R (7)% > pca B 2(¢')%

Proof. The first step is to rewrite the left-hand side by changing the summation over sequences to
summation over groups of sequences with the same reward,

Z R (r Vopa Z Z R(r Vape ZRQ Z Vepe(i/))z

-
/€l $ed /€S, pED €Sy po(7’)

Then we show, in each group of sequences Sy, the left-hand side is larger:

(Vors(r)” | _ (Voas(6)) _ Fopo()?) (Zres, Varo(r)
> = >

=z () 96(¢') = w)) e, pol(0)

The last inequality is obtained from Lemma |4| by relating scalar pg(7) with b; and vector/matrix
Vope(7) with a;.Therefore, the final result holds. O

Lemma 3 (log-derivative trick). Let pg(7) € (0, 1) represents a probability distribution over input
7 with parameters 6 and notation V is the partial derivative with respect to 6.

Vopo(T) = po(7)Velog po(T).

Lemma 4. For any real-valued vector a; € R? and positive real numbers b;, fori = 1...,n. We
have:

n T
aa; - i) (i, a) >0
i—1 bi > i1 bi B

18

Under review as a conference paper at ICLR 2025

Proof. The idea to prove is inspired from|Sedrakyan & Sedrakyan| (2018])). To show that:

n

n T n
Z a a; _ (imia) (o) >0
— b D im1 bi B

7

Let’s denote a; € R% and b; € R fori = 1,...,n. Consider vectors a; € R? and scalars 1/b; and
apply the Cauchy-Schwarz inequality:

n
(a
i=1

Rewriting the inequality, we obtain:

<Zb><;aif“>-

Dividing through by Z?:l b;, we get:

. n T n
"L aa; Cina) i a)
~ b D iy bi o

which completes the proof. O

D EXPERIMENT SETTINGS

D.1 HYPER-PARAMETERS CONFIGURATIONS

When fitting the values of open constants in each expression, we sample a batch of data with batch
size 1024 from the data Oracle. The open constants in the expressions are fitted on the data using the
BFGS Optlleel 'l We use a multi-processor library to fit multiple expressions using 8 CPU cores in
parallel. This greatly reduced the total training time.

An expression containing placeholder symbol A or containing more than 20 open constants is not
evaluated on the data, the fitness score of it is —oco. In terms of the reward function in the policy
gradient objective, we use reward(r) = 1 The normalized mean-squared error metric is

T+NMSE() *
further defined in Equation

The deep network part is implemented using the most recent version of TensorFlow, the expression
evaluation is based on the Sympy library, and the step for fitting open constants in expression with
the dataset uses the Scipy library. We further summary all the above necessary configurations in
Table[d]

D.2 Loss BENCHMARK OF DSR-REX

1. The vanilla policy gradient follows the definition in Equation 7}

2. we choose the baseline function as the average of the reward of the current sampled batch
expressions. Thus we have:

N N
1 .)
VoJ(0) ~ N E (R(T") — b)Vglogpe(T*), where b = g R(r*

i=1 i=1

'https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

19

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

Under review as a conference paper at ICLR 2025

General Parameters

max length of generated sequence 20
batch size of generated sequence 1024
total learning iterations 200
Reward function | reward(r) = WISE@)
Expressions and Dataset
training dataset size 2048
validation and testing dataset size 2048
coefficient fitting optimizer BFGS

maximum allowed coefficients 20
optimization termination criterion | error is less than le — 6
Deep Neural Network Optimizer

optimizer Adam

learning rate 0.009
entropy weight 0.03
entropy gamma 0.7

Table 4: Hyper-parameter configurations.

3. policy gradient subtracting a risk-seeking quantile. This originated from DSR (Petersen
et al., 2021)), where they encourage the model to factor in those well-fitted output expres-
sions and ignore the poor-fitted output expressions. They proposed to subtract a k% of the
quantile of the rewards instead of the empirical mean of the rewards.

N
1 B)
VoJ(0) =~ N E (R(T") — b)Vglog pe(T"), where b = k% quantile of the rewards
i=1

In Figure [2 b is set as 75% quantile of rewards, following the original hyper-parameter
definition in DSR (Petersen et al., [2021).

D.3 TIME BENCHMARK OF DSR-REX

We use three types of sequential decoders for the time benchmark setting. The major configurations
are listed in Table

General Parameters

max length 20
training dataset size 2048
validation dataset size 2048
total learning iterations | 200
Optimizer Hyperparameters

optimizer Adam
learning rate 0.009
entropy weight 0.03
entropy gamma 0.7

Decoder-relevant Hyperparameters
choice of decoder GRU | LSTM | Multi-head Self-Attention
num layers 3 3 3
hidden size 128 128 128
dropout 0.5 0.5 NA
number of head NA NA 6

Table 5: Hyperparameters for the RNN Model

20

	Implementation of Symbolic Reasoning Module
	Proof of Theorem 1
	Proof of Theorem 2
	Experiment Settings
	Hyper-parameters Configurations
	Loss Benchmark of DSR-Rex
	Time Benchmark of DSR-Rex

