
PIMT: Physics-Based Interactive Motion Transition for Hybrid
Character Animation

Yanbin Deng
202222280715@std.uestc.edu.cn

University of Electronic Science and Technology of China
Chengdu, Sichuan, China

Zheng Li
202152080128@std.uestc.edu.cn

University of Electronic Science and Technology of China
Chengdu, Sichuan, China

Ning Xie∗
seanxiening@gmail.com

University of Electronic Science and Technology of China
Chengdu, Sichuan, China

Wei Zhang
37058836@qq.com

University of Electronic Science and Technology of China
Chengdu, Sichuan, China

Figure 1: Our framework can handle diverse interactive transition tasks with high accuracy and naturalness. Here, the policy
controls the character to generate transitionmovements (in orange) between the source and target poses (in blue), thus smoothly
bridging the front and back motion clips (top: stab and shield bash; bottom: run and slash).

Abstract
Motion transitions, which serve as bridges between two sequences
of character animation, play a crucial role in creating long variable
animation for real-time 3D interactive applications. In this paper,
we present a framework to produce hybrid character animation,
which combines motion capture animation and physical simulation
animation that seamlessly connects the front and back motion clips.
In contrast to previous works using interpolation for transition,
our physics-based approach inherently ensures physical validity,
and both the transition moment of the source motion clip and the

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3681582

horizontal rotation of the target motion clip can be specified arbi-
trarily within a certain range, which achieves high responsiveness
and wide latitude for user control. The control policy of charac-
ter can be trained automatically using only the motion capture
data that requires transition, and is enhanced by our proposed Self-
Behavior Cloning (SBC), an approach to improve the unsupervised
reinforcement learning of motion transition. We show that our
framework can accomplish the interactive transition tasks from a
fully-connected state machine constructed from nine motion clips
with high accuracy and naturalness.

CCS Concepts
• Computing methodologies→ Procedural animation; Physi-
cal simulation; Reinforcement learning; Motion capture.

Keywords
Character Animation, Unsupervised Reinforcement Learning, Physics-
Based Simulation and Control, State Machine
ACM Reference Format:
Yanbin Deng, Zheng Li, Ning Xie, and Wei Zhang. 2024. PIMT: Physics-
Based Interactive Motion Transition for Hybrid Character Animation. In
Proceedings of the 32nd ACM International Conference on Multimedia (MM

https://orcid.org/0009-0007-3080-608X
https://orcid.org/0009-0005-2295-7027
https://orcid.org/0000-0002-1509-464X
https://orcid.org/0009-0001-9109-6372
https://doi.org/10.1145/3664647.3681582

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yanbin Deng, Zheng Li, Ning Xie, and Wei Zhang

’24), October 28-November 1, 2024, Melbourne, VIC, Australia. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3664647.3681582

1 Introduction
In Real-time 3D interactive applications such as video games, hu-
manoid characters are required to perform corresponding motions
according to the instructions input by the user. Currently, the stan-
dard and well-established practice is to use motion capture ani-
mation organized by a state machine[5, 31], and one of the key
research topics is to achieve a natural transition of two motion
clips. For this issue, early practices include letting all motion clips
start and stop in a uniform idle pose or creating transition motion
clips for every possible combination of transition[32]. The previ-
ous approach has implications for the naturalness of transition,
since a transfer posture was forcibly assigned to it. As for the latter
method, it is not trivial for animators to create transitions between
two arbitrary motion clips, especially when the amount of motion
clips increases. Furthermore, the transition points in both methods
can only be fixedly specified by the animator and, therefore, cannot
respond to user inputs at an arbitrary frame.

By far, the most common solution for motion transition in the
game industry remains interpolation [3, 4, 13, 33] for its simplicity
and computational efficiency. In this approach, transitions are gen-
erated by blending two motion clips to create a visually compelling
and seamless motion. This solution can be applied to interactive
motion transition. However, the motions it generates are not con-
strained by the human body dynamics model and thus may produce
severe visual artifacts when the difference between source and tar-
get poses is huge. On the other hand, the animation generated by
physics-based character control [22, 23, 34, 35] inherently guaran-
tees physical validity. However, They are not designed to create
transitions between two motion clips. Most of these works require
imitation of large reference motion datasets to ensure naturalness;
when dealing with interactive motion transition, they may suffer
from the mismatch between the motions from the training dataset
and the desired transition motions.

In this work, we aim to develop a framework to generate long
term character animation with the hybrid pattern [26] interactively,
which leverages the physics-based character control to bridge the
motion clips seamlessly, and both the transition moment and the
target motion rotation can be specified in real-time. As far as we
know, previous researchers have yet to investigate such an imple-
mentation of interactive motion transition. The framework only
utilizes the motion clips that require transition for the unsupervised
reinforcement learning, and our proposed SBC mechanism will fur-
ther utilize the knowledge of transition in the exploration process.
The SBC provides animators with greater creative freedom, as they
do not need to ensure the similarity of the motions in their creation
to the reference dataset. Previous works of hybrid animation often
require blending post-processing to align the physics-based anima-
tion with the motion clip [36], while our control policy trained with
sophisticated reward function and curriculum learning strategy can
align with target pose very precisely, in the meantime eliminating
several noticeable visual artifacts in the motion. Our contributions
can be summarized as follows:

• We propose a novel hybrid framework to archive interactive
motion transition and design a sophisticated reward function
that integrates transition accuracy and naturalness objec-
tives for unsupervised reinforcement learning. The well-
trained policy considers accuracy, naturalness, rapidity, and
robustness.
• We introduce a task planning mechanism with a curriculum
learning strategy; thus the policy can be trained automati-
cally with the designer-defined state machine and efficiently
achieve the highest accuracy.
• We present Self-Behavior Cloning (SBC) to help the policy
better utilize its exploration trajectories, thereby learning
richer knowledge of motion transition and improving the
result.

2 Related Work
2.1 Interpolation
Interpolation techniques, introduced by [24], use ease-in-ease-out
to blend twomotion clips smoothly, and the sourcemotion clip fades
out as the target motion clip fades in. Time-warping technology
introduced by [3] is commonly used in these works, which align
two motion sequences by stretching or compressing them in time.
Several previous interpolation-based methods specifically focused
on interactive motion transition, which requires responsiveness to
user input and efficiency to run in real-time. Egbert et al. [4] use
Laplacian pyramid decomposition to keep the features of original
motion; Ikemoto et al. [10] precompute a look-up table for the
weights of multi-way blends and recover the blend recipe at run-
time; Koyama et al. [13] search for an optimal intermediate motion
that minimizes the duration for the transition while maximizing
the naturalness.

Compared with our physics-based method, interpolation-based
approaches inherently distort the actual motion and do not con-
sider the dynamic model of the human body. Thus the generated
transitions may not be realistic. In addition, most of these methods
used a fixed duration for the transition. Meanwhile, ours let the
control policy decide the duration according to the difficulty of
transition (similar to [13]), which is consistent with real human
movement.

2.2 Motion Graphs
In this approach, a set of motion capture data is structured as
a motion graph, whose edges represent either pieces of original
motion clips or automatically generated transitions [12], i.e., the
blends between poses that are similar enough. Many works studied
the criteria for selecting appropriate nodes [2, 14, 30, 33], i.e. rational
transition points of motion clips. After the graph creation, a graph
search technique obtains the motion transition.

Some variations of motion graphs have been proposed for better
adaptation to interactive applications [6, 14, 15]. However, a com-
mon problem with this approach is its insufficient responsiveness,
as noted by [13], since the path from the source motion to the target
motion on a graph can be unacceptably long. In contrast, our ap-
proach uses a designer-defined state machine to organize animation
intuitively, and the well-trained control policy can ensure a swift
transition.

https://doi.org/10.1145/3664647.3681582

PIMT: Physics-Based Interactive Motion Transition for Hybrid Character Animation MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

pm'

sm

EnvironmentEnvironmentEnvironment

at

Task PlannerTask PlannerTask Planner

ptar

PolicyPolicyPolicy
rt

pt
psrc

st

SBC Buffer

pm

`am

am
LSBC

State MachineState Machine

SBC Learning Flow

Dthr

Figure 2: An overview of our framework on the interactive transition task. With the animation system (state machine) defined
by animator, the task planner unit plans the transition task containing source pose 𝑝src, target pose 𝑝tar, and deviation threshold
𝐷thr, so as to carry out pure objective RL. The SBC buffer records the sequence of poses and actions, and produces retargeted
states 𝑠𝑚 and actions 𝑎𝑚 for SBC. The SBC learning flow is in blue.

2.3 Motion In-Betweening
Compared with motion transition, motion in-betweening lever-
aging Deep Learning (DL) is more focused on generating rational
transition between poses that are far apart. Harvey et al. [8] employ
an Encoder-Recurrent-Decoder (ERD) architecture, which uses la-
tent representations to encode the states, as well as a recurrent
Long-Short-Term-Memory (LSTM) network to generates them se-
quentially. Tang et al. [28, 29] adopt ERD architecture as well as
CVAE to produce real-time motion transitions. Another solution of
in-betweening is to cast motion infilling as a temporal inpainting
task and employ a fully-convolutional auto-encoder architecture
[9, 11], which can achieve higher computational efficiency.

The most essential difference between motion in-betweening
and our approach is that we do not have ground truth data of the
missing motion. All these approaches employ ground truth motion
sequences to carry out supervised training. Nevertheless, the ideal
result of interactive transition is most likely an Out-of-Distribution
sample for the training data. On the other hand, our approach
sets up any possible transition as the tasks for the unsupervised
reinforcement learning. Thus, all the animator needs to do is provide
the motion clips for transition, and do not require an extensive
training set that resembles them.

2.4 Physics-Based Character Control
Physics-based control can ensure physical validity and interactions
with the environment. This approach has gained popularity since
Peng et al. [21] introduced deep reinforcement learning (Deep RL)
for physics-based characters control. In their recent and impres-
sive work [22], they employ adversarial imitation reward to learn
the latent representations of skills from the motion data and then
train a high-level policy that exerts the skills to accomplish several
tasks. However, they did not study the tasks of creating transitions
between two motion clips.

Several physics-based works study in-betweening, Li et al. [17]
use a kinematics-based pretrained in-betweening network [8] to
infill the motion sequence and then train a control policy to repro-
duce it on the simulated humanoid character; Gopinath et al.[7]
directly reproduce the ground truth motion clips and outperform
their previous work [34] when dealing with unseen motions(in-
distribution). The shortcomings of these methods in handling in-
teractive motion transition are consistent with those of kinematics-
based in-betweening. In addition, the training conditions in our
approach can be adjusted arbitrarily, thereby adapting to the char-
acter physical properties of the motion clips for transition, and are
not constrained by the physical properties of the training set used
in the above frameworks.

3 Approach
The interactive motion transition task can be formulated as: given a
humanoid character making source pose 𝑝src, we want the control
policy to drive the model by generating torques on the joints and
reaching target pose 𝑝tar. Crucially, the framework does not require
ground truth motion data to supervise the training or to imitate;
instead, it employs pure objective Reinforcement Learning with
only the motion clips that require transition.

Figure 2 provides a schematic overview of the framework. The
animator should define the transition as a state machine, which
assigns the range of transition moments, possible transition groups,
and their rotation range. A task planner unit plans the transition
task for the agent in environment, including the source pose 𝑝src
and the target pose 𝑝tar sampled from the state machine, as well as
the deviation threshold 𝐷thr controlling the difficulty of reaching
𝑝tar. The environment then reset the agent with 𝑝src and judge
whether it reached 𝑝tar through 𝐷thr, to carry out RL. Meanwhile,
the trajectories of action 𝑎𝑡 and pose 𝑝𝑡 are recorded by the SBC
buffer. During the SBC process, the policy model will be enhanced
with the samples from it. Specifically, for a certain pose 𝑝𝑚 sampled

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yanbin Deng, Zheng Li, Ning Xie, and Wei Zhang

from the buffer, we "retarget" its target pose to a subsequent pose
𝑝𝑚′ to form state 𝑠𝑚 , which will serve as the expert demonstration
in SBC along with the corresponding action 𝑎𝑚 .

3.1 Pure Objective RL for Transition
In our framework, motion transition is formulated as a Markov
decision process. The humanoid agent starts at the source pose
𝑝src, and interacts with a physics simulator environment by taking
action 𝑎𝑡 and receiving reward 𝑟𝑡 , according to a policy 𝜋 (𝑎𝑡 |𝑠𝑡)
conditioned on state 𝑠𝑡 . The policy is trained using proximal-policy
optimization (PPO) [25]. The reward we define not only encourages
the agent to reach 𝑝tar, but also ensures the naturalness of the
movement to a certain extent. Here, we detail the state, action and
reward of our RL process.

3.1.1 State. The state 𝑠𝑡 ≜ (𝑝𝑡 , 𝑝tar) consists of two parts: local-
ized current pose representation 𝑝𝑡 and localized target pose rep-
resentation 𝑝tar. For the humanoid skeleton, our representation of
the pose at frame 𝑡 is similar to the state used by [22], which is
𝑝𝑡 ≜ (𝑅𝑡 , 𝑞𝑡 , ¤𝑞𝑡 , 𝑘𝑡), where 𝑅𝑡 is the root translation, 𝑞𝑡 ∈ R78 is the
local rotation of all joints using the 6D normal-tangent encoding,
¤𝑞𝑡 ∈ R31 is the local velocity of all joints using a 3D exponential
map, and 𝑘𝑡 ∈ R6×3 is the 3D position of 6 key bodies, i.e., the end-
effectors [23]. Root translation includes height 𝑅h𝑡 , linear velocity
𝑅
¤p
𝑡 ∈ R3, orientation 𝑅

q
𝑡 ∈ R6, and angular velocity 𝑅

¤q
𝑡 ∈ R3. All

the configurations are represented with respect to the current loca-
tion and facing transformation(i.e., "localized"). 𝑝tar employs the
representation consistent with 𝑝𝑡 , except that it is represented with
respect to the transformation of 𝑝𝑡 , and the root height is replaced
with integral 3D position 𝑅

p
𝑡 ∈ R3. In contrast with [22], our root

orientation is also localized, and only the pitch angle information
is retained in 𝑝𝑡 , since the serial transition tasks in our framework
will substantially change the character’s orientation.

3.1.2 Action. The action 𝑎𝑡 is the target rotation for all the joints,
and that of the spherical joints are encoded using a 3D exponential
map, which is consistent with [23]. The proportional derivative(PD)
controllers [27] on joints will generate torques that are proportional
to the current position error.

3.1.3 Reward. If agent is only rewarded when it reaches the target
pose, it will be a sparse reward, causing the agent to learn slowly or
even unable to learn. Previous work [22] used a decreasing function
of the deviation as the reward for location task, while we use the
reduction of the current deviation relative to the previous frame,
thus avoiding the reward value being affected by the size of the
deviation value. Specifically, to encourage the approaching of the
target pose at frame 𝑡 , we propose deviation improvement reward
𝑟
imp
𝑡 :

𝑟
imp
𝑡 = 2.4𝐼 rp𝑡 + 0.1𝐼 rv𝑡 + 0.1𝐼 rq𝑡 + 0.3𝐼kp𝑡 + 1.6𝐼uq𝑡 (1)

We assign higher weights for root position improvement 𝐼 rp𝑡 , up-
per body joints rotation improvement 𝐼uq𝑡 and key body position
improvement 𝐼kp𝑡 , since these deviations are quite visually obvious,
and we also find that they have the strongest guiding effect on
transition. Root velocity improvement 𝐼 rv𝑡 and root rotation im-
provement 𝐼 rq𝑡 have relatively lower weights. We did not adopt

the multiplicative reward function used in [34], since we allow the
policy to reduce various deviations in different orders. The linear
deviation terms 𝑑rp𝑡 , 𝑑rv𝑡 and 𝑑kp𝑡 are computed with the L2 norm in
meters, the root rotation deviation 𝑑rq𝑡 computes the scalar rotation
of a quaternion about its axis in radians(denoted with | |𝑞 | |), while
the joint rotation deviation computes the L1 norm of 3D exponential
map, as follows:

𝐼
rp
𝑡 = 𝑑

rp
𝑡−1 − 𝑑

rp
𝑡 = | |𝑅p

𝑡−1 − 𝑅
p
tar | |2 − ||𝑅

p
𝑡 − 𝑅

p
tar | |2 (2)

𝐼 rv𝑡 = 𝑑rv𝑡−1 − 𝑑
rv
𝑡 = | |𝑅 ¤p

𝑡−1 − 𝑅
¤p
tar | |2 − ||𝑅

¤p
𝑡 − 𝑅

¤p
tar | |2 (3)

𝐼
rq
𝑡 = 𝑑

rq
𝑡−1 − 𝑑

rq
𝑡 = | |𝑅q

𝑡−1 ⊖ 𝑅
q
tar | | − | |𝑅

q
𝑡 ⊖ 𝑅

q
tar | | (4)

𝐼
kp
𝑡 = 𝑑

kp
𝑡−1 − 𝑑

kp
𝑡 =

∑︁
𝑒

(| |𝑘𝑒𝑡−1 − 𝑘
𝑒
tar | |2 − ||𝑘𝑒𝑡 − 𝑘𝑒tar | |2) (5)

𝐼
uq
𝑡 =

∑︁
𝑢

𝑤𝑢𝑆 (| |𝑞𝑢𝑡−1 − 𝑞
𝑢
tar | |1, | |𝑞𝑢𝑡 − 𝑞𝑢tar | |1) (6)

Here, 𝑘𝑒𝑡 is the position of 𝑒th key body, 𝑒 ∈[left foot, right foot,
left hand, right hand, sword, shield], consistent with [22]. 𝑞1 ⊖ 𝑞2
denotes the quaternion difference, and 𝑞𝑢𝑡 is the local rotation of
𝑢th upper body joint, 𝑢 ∈[abdomen, neck, right shoulder, right
elbow, right hand, left shoulder, left elbow]. 𝑅ptar, 𝑅

¤p
tar, 𝑅

q
tar, 𝑘

𝑒
tar and

𝑞𝑢tar represent the parameters of the target pose.𝑤𝑢 is the weight
for the rotation deviation of 𝑢th joint, this design is based on the
consideration of the error accumulation problem [19], andwe assign
higher weight to joints with smaller kinematic chain lengths 𝑐𝑢 to
the root joints (abdomen, left hip, and right hip):

𝑤𝑢 = 1.53−𝑐𝑢 (7)

The design of the negative scaling function 𝑆 (𝑥,𝑦) is based on
our assumption about transition movements: the upper body has
less impact on maintaining body balance; thus, it only needs to
transit "monotonically" to the target pose. Therefore, we penalize
the negative terms in 𝐼

uq
𝑡 to reduce redundant rotation of the upper

body joints:

𝑆 (𝑥,𝑦) =
{
𝑥 − 𝑦 𝑥 ≥ 𝑦

2(𝑥 − 𝑦) 𝑥 < 𝑦
(8)

On the contrary, for joints in the lower body, we hope that they
will complete the transition task on the basis of maintaining body
balance, rather than directly reducing the lower body joints’ local
rotation deviation 𝑑 lq𝑡 to match the target. In the same way, for the
joint angular velocity deviation 𝑑

¤q
𝑡 , we also encourage policy to

approach the target in a "roundabout" way, since in some human
movements (e.g. walk and run), joint velocity oscillate periodically.
Therefore, we include them in the end reward 𝑟 end𝑡 , which only
takes effect at the frame that ends the trajectory, i.e., when falling
or a timeout occurs (failure), or when the character reaches the
target pose (success):

𝑟 end𝑡 =


−3 failure
3 + exp(−4𝑑 lq𝑡) + exp(−0.2𝑑 ¤q𝑡) success
0 otherwise

(9)

PIMT: Physics-Based Interactive Motion Transition for Hybrid Character Animation MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

In the same way as Eq. 6, The deviations can be formulated as:

𝑑
lq
𝑡 =

∑︁
𝑙

𝑤𝑙 | |𝑞𝑙𝑡 − 𝑞𝑙tar | |1 (10)

𝑑
¤q
𝑡 =

∑︁
𝑗

𝑤 𝑗 | | ¤𝑞 𝑗𝑡 − ¤𝑞
𝑗
tar | |1 (11)

where 𝑤𝑙 , 𝑤 𝑗 are the weights of 𝑙𝑡ℎ(lower body joints only) and
𝑗𝑡ℎ joint respectively, consistent with Eq. 7. 𝑞𝑙𝑡 , ¤𝑞

𝑗
𝑡 are current pa-

rameter terms, and 𝑞𝑙tar, ¤𝑞
𝑗
tar are target parameter terms. We find

that this separate treatment does result in more natural lower body
movements.

In early experiments, we found that the trained policy often
aligned to the target pose in a high-frequency tremble manner, a
phenomenon that can lead to severe visual artifacts. Therefore, we
propose tremble reward 𝑟 trem𝑡 to penalize joints whose velocities
has opposite signs to those of the last frame:

𝑟 trem𝑡 =

{∑
𝑗 ′ 𝑤trem𝑂 (¤𝑞 𝑗

′

𝑡 , ¤𝑞
𝑗 ′

𝑡−1) 𝐶 > 𝐶thr
0 𝐶 ≤ 𝐶thr

𝐶 =

𝑡∑︁
𝑡 ′=1

∑︁
𝑗 ′

𝑂 (¤𝑞 𝑗
′

𝑡 ′ , ¤𝑞
𝑗 ′

𝑡 ′−1)

𝑂 (𝑥,𝑦) =
{

1 𝑥𝑦 < 0
0 𝑥𝑦 ≥ 0

(12)

Here, ¤𝑞 𝑗
′

𝑡 denotes the velocity of 𝑗 ′𝑡ℎ joint Degrees-of-Freedom
(DOF, i.e. each dimension of the 3D exponential map), and𝑤trem =

−0.05 is the penalization weight. Because a certain amount of joint
velocity direction changes would have occurred during the move-
ment, we compute the cumulative value of changes 𝐶 , and only
penalize 𝑟 trem𝑡 when 𝐶 exceeds the threshold 𝐶thr, which is set to
100.

Finally, we get the complete reward 𝑟𝑡 by accumulating the above
terms:

𝑟𝑡 = 𝑟
imp
𝑡 + 𝑟 end𝑡 + 𝑟 trem𝑡 (13)

3.2 Task Planning
3.2.1 Pose Sampling. During training, we randomly sample the
transition task from the state machine, including the source motion,
target motion, source motion transition moment, and target motion
rotation. Each motion clip has a start time point and a cancel time
range (usually the last part of the motion clips, i.e., the recovery
motion) specified by the animator. The former is used as the transi-
tion moment when motion serves as target motion, while the latter
is used as the uniform sampling range for the transition moment
when motion serves as source motion. With these two transition
moments, we acquire the source pose 𝑝src and the target pose 𝑝tar
from motion clips. The position, velocity, and orientation config-
urations of 𝑝tar will be rotated (around the z-axis) by the rotation
angle uniformly sampled from a particular range. After that, the
rotated root position of the target pose will add the offset 𝑅poffset
produced by the source pose:

𝑅
p
offset = �̃�

p
offset −

�̃�
p
offset · uup
| |uup | |2

�̃�
p
offset = 𝑅

p
src + (𝑅

¤p
src + 𝑅

¤p
end)𝑇 /2

(14)

where 𝑅psrc is the root position of source pose, and uup is the up-
vector direction that is perpendicular to the ground. We assume
that the root linear velocity of source pose 𝑅 ¤psrc changes uniformly
to 𝑅

¤p
end over time 𝑇 (𝑇 = 0.8) in the transition, from which we

estimate the root position offset. Compared with [4], we simply set
𝑅
¤p
end to zero, since in most motion clips the root velocity at start

time point is close to still.

3.2.2 Curriculum Learning. To judgewhether the character reached
the target pose, we employ deviation threshold𝐷thr ≜ (𝑑

rp
thr, 𝑑

kp
thr, 𝑑

q
thr),

where 𝑑rpthr, 𝑑
kp
thr and 𝑑

q
thr are the threshold of 𝑑rp𝑡 (Eq. 2), 𝑑kp𝑡 (Eq. 5),

and joints local rotation deviation 𝑑q𝑡 respectively. The calculation
of 𝑑q𝑡 is similar to Eq. 10, except that it includes all joints:

𝑑
q
𝑡 =

∑︁
𝑗

𝑤 𝑗 | |𝑞 𝑗𝑡 − 𝑞
𝑗
tar | |1 (15)

The criterion for reaching the target pose is (𝑑rpthr > 𝑑
rp
𝑡) ∧ (𝑑

kp
thr >

𝑑
kp
𝑡) ∧ (𝑑

q
thr > 𝑑

q
𝑡), i.e. all the deviation terms are less than the

threshold terms. In addition to this, there are two situations of ter-
mination: falling (body parts other than feet contact the ground) and
timeout (agent steps more than 60), which are considered failures.

To accelerate training, we adopt a curriculum learning strategy
with respect to the difficulty of reaching the target pose. Specifically,
we compute the achievement rate of tasks through a sliding average
window of length 100, once the task achievement rate exceeds
88%, it means that the current difficulty is too easy for the policy.
Therefore, we replace the deviation thresholds with new values
𝑑
rp
thr, 𝑑

kp
thr, 𝑑

q
thr:

𝑑
rp
thr = max(0.9𝑑rpthr, 0.01)

𝑑
kp
thr = max(0.9𝑑kpthr, 0.09)

𝑑
q
thr = max(0.9𝑑qthr, 0.15)

(16)

We employ an exponential form to reduce thresholds, thus as higher
and higher accuracy is achieved, the thresholds decrease more and
more slowly until they all reach their constant lower bounds (i.e.,
final accuracy). The initial values of 𝑑rpthr, 𝑑

kp
thr and 𝑑

q
thr are 0.3, 3 and

1 respectively. We find this curriculum learning strategy to be a
very significant facilitator of the training process. If the policy is
trained directly with the final accuracy, the task achievement rate
almost remains zero throughout the training.

We also propose a stay probability 𝑃stay = 0.5 to increase the
number of times the policy handles complex tasks. When the agent
fails on a task, the task will be retained with 𝑃stay chance instead
of randomly sampling another. This measure can further increase
the training speed.

3.3 Self-Behavior Cloning
The idea of Self-Behavior Cloning (SBC) is similar to Hindsight
Experience Replay (HER) [1]. We hope that the policy can not only
learn from the experience of accurately achieving the task, but
also learn from the experience of failure, which can be viewed as
achieving similar tasks. Given the state 𝑠𝑡 ≜ (𝑝𝑡 , 𝑝tar), the gener-
ated action 𝑎𝑡 may not be the proper choice for the transition to
pose 𝑝tar, but it is the right choice for transitioning to pose 𝑝𝑡+1,

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yanbin Deng, Zheng Li, Ning Xie, and Wei Zhang

ALGORITHM 1: Training with SBC

𝜋 ← initialize policy;
𝑉 ← initialize value function;
B ← ∅ initialize replay buffer;
BSBC ← ∅ initialize SBC buffer;

while not done do
for environment 𝑖 ← 1 to𝑚 do

𝜏𝑖 ← {(𝑝𝑡 , 𝑝tar), 𝑎𝑡 , 𝑟𝑡 }𝑇 −1
𝑡=0 collect trajectory with 𝜋 ;

for time step 𝑡 ← 0 to𝑇 − 1 do
for 𝑘 ← 𝑡 + 1 to𝑇 − 1 do

if (𝑝𝑡 , 𝑝𝑘) is valid then
𝑝𝑘 ← localize 𝑝𝑘 with respect to 𝑝𝑡 ;
store{ (𝑝𝑡 , 𝑝𝑘), 𝑎𝑡 } in BSBC;

end
end

end
store 𝜏𝑖 in B;

end

for update step 𝑡 ← 1 to 𝑛 do
𝑏SBC ← sample 𝐾 demonstrations {𝑠 𝑗 , 𝑎 𝑗 }𝐾𝑗=1 from BSBC;
update 𝜋 according to Eq. 17 using 𝑏SBC;

update 𝜋 and𝑉 using data from B;
end

end

𝑝𝑡+2, as well as all poses before the end of the trajectory. Unlike
HER, which adds the reassembled failed trajectories to the replay
buffer, we directly reuse the state-action trajectory as the expert
demonstrations to perform Behavior Cloning (BC). This is because
our reward function is neither sparse nor binary, and recomputing
the rewards for all transitions on the failed trajectory is very time-
consuming. In addition, updating the policy through supervised
learning is more efficient than using rewards.

As Algorithm 1 states, for each time step 𝑡 , we localize the follow-
ing pose 𝑝𝑘 (serves as the target pose) with respect to the current
pose 𝑝𝑡 (serves as the source pose) to form a transition task, as
long as this group is "valid", i.e., 𝑝𝑡 and 𝑝𝑘 are from a continuous
trajectory without being reset midway. The task (𝑝𝑡 , 𝑝𝑘) as well as
the action 𝑎𝑡 form an expert demonstration, which will be stored in
the SBC buffer. During the update phase, an expert demonstrations
batch 𝑏SBC is randomly sampled from the SBC buffer; the policy
objective is then given by:

arg min
𝜋

∑︁
(𝑠𝑖 ,𝑎𝑖)∼𝑏SBC

𝑤SBC
𝑇 − 1
𝑇 − 𝑔𝑖

| |𝑎𝑖 − 𝜋 (𝑠𝑖) | |22 (17)

Here, 𝑔𝑖 is the time step gap between the source pose and target
pose in 𝑠𝑖 , used for balancing the impacts of demonstrations with
different gap lengths since those with shorter lengths are more
numerous. Within each update step, SBC and pure objective RL
will be executed sequentially, and𝑤SBC is the coefficient to balance
their impacts, which is set to 0.533.

During the exploration of an agent, plenty of falling motions
have low correlation with the correct motions expected in the tasks.
Thus, the Behavior Cloning of these demonstrations is harmful. To
ensure the relevance of the demonstrations to the tasks, we add

considerations of reward in the validity determination, i.e., the root
position improvement 𝐼 rp𝑡 (Eq. 2) of the demonstration must be
positive.

4 Experiments
4.1 System Setup
4.1.1 StateMachine. Our 3D articulated humanoid charactermodel
is equippedwith a sword and shield and has 31 DOF, which is consis-
tent with [22]. The motion clips used to construct the state machine
come from the sword&shield stunts dataset from [22] and have
already been retargeted to the character model by them. We choose
9 motion clips, including common attack and movement motions,
and assign different ranges of transition moments for them with
complete coverage of their recovery motions (periodic motions
such as run have a range of almost their entire duration). The state
machine is a fully connected graph (including self-loop). Thus, there
are a total of 81 possible groups of transition. The rotation range of
target motion is uniformly set to (−𝜋4 ,

𝜋
4).

4.1.2 Training. The character is simulated in Isaac Gym [18], with
a simulation frequency of 120Hz and policy execution frequency
of 30Hz. Both the policy network and value function network are
multi-layer perceptions using independent state representation
and are implemented with PyTorch [20]. The policy is trained for
60000 iterations on a single NVIDIA 3090 GPU with 4096 envi-
ronments simulated in parallel, taking about 1.8 days, and yields
approximately 4 billion samples, corresponding to about 4 years of
simulated time.

4.2 Comparison to Existing Method
We compare our proposed method with the existing mainstream
method, i.e., the interpolation-based method. We use an ease-in-
ease-out cubic curve to blend two motion clips, and applied time
warping to their blended parts. The average time steps of transition
in our method is used as the fixed duration for blending (12 frames).
Figure 3 provides a qualitative comparison of the two methods.
The interpolation-based method suffers from severe visual artifact
of foot-skating, while our method completely avoids it. In addi-
tion, since the interpolation-based method uses a fixed transition
duration, the angular and linear velocity during transition are de-
termined by the deviation between the source pose and the target
pose, which will lead to abrupt velocity change in many cases.
Our method, on the other hand, determines the transition duration
based on the difficulty, and better follows the velocity of the source
pose and the target pose.

4.3 Evaluation Metrics
We use the well-trained policy to execute all possible transition
tasks sampled from the state machine and evaluate the effectiveness
of our framework with metrics in four aspects: accuracy, natural-
ness & rapidity, robustness, and training efficiency. The average
accumulated value of 𝑟𝑡 (i.e., Return) can be regarded as the syn-
thesis of the above metrics. The evaluation sampling intervals of
transition moment and rotation are 0.03𝑠 and 𝜋

180 , respectively, with
a total of 460278 different transition tasks.

PIMT: Physics-Based Interactive Motion Transition for Hybrid Character Animation MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 1: Quantitative result of our method, as well as the ablation study on SBC, URP, and TR refer to Self-Behavior Cloning,
upper body redundancy penalization, and tremble reward, respectively.

Methods FRPD↓ FRVD↓ FRRD↓ FKPD↓ FJRD↓ FJAD↓ SURI↑ TC↓ TS↓ MS↑ TTAR↑ IRFA↓ Return↑
Ours 0.0038 0.6556 0.1677 0.0513 0.1071 3.2404 -0.1677 71.90 12.02 e−3.7 1.000 10362 5.4027
No SBC 0.0306 0.6741 0.2080 0.1585 0.1484 2.5384 -0.1685 76.15 12.99 × 0.889 14809 4.5615
No URP 0.0237 0.6906 0.1699 0.0903 0.1284 3.3104 -0.3873 81.20 14.09 × 0.889 13157 4.1353
No TR 0.0048 0.7548 0.1045 0.0613 0.0592 1.2915 0.0482 154.27 10.23 e−3.5 1.000 3010 2.8425

Figure 3: Qualitative comparison between the interpolation-based method and our method when dealing with a same transition
task, shown in the upper and lower rows of the figure respectively. There is a large rotation angle between the source pose and
the target pose, thus the problems of foot-skating and velocity fluctuation in the interpolation-based method are very serious,
and our method avoids them well.

4.3.1 Accuracy. We use the deviation terms 𝑑rp𝑡 (Eq. 2), 𝑑rv𝑡 (Eq. 3),
𝑑
rq
𝑡 (Eq. 4), 𝑑kp𝑡 (Eq. 5), 𝑑q𝑡 (Eq. 15) and 𝑑 ¤q𝑡 (Eq. 11) at the final frame
to evaluate the accuracy of a certain transition, and the average
values of them across all tasks will be used as the accuracy metrics:
final root position deviation (FRPD), final root velocity deviation
(FRVD), final root rotation deviation (FRRD), final key body position
deviation (FKPD), final joint rotation deviation (FJRD), and final
joint angular velocity deviation (FJAD). For all of them, lower is
better.

4.3.2 Naturalness & Rapidity. We evaluate the naturalness of tran-
sition by unsupervised metrics, including scaled upper body joints
rotation improvement (SURI) being the average value of 𝐼uq𝑡 (Eq. 6)
and tremble count (TC) being the average value of 𝐶 (Eq. 12). Also,
due to the need to respond to user inputs, our framework should
generate sufficiently rapid transition motions, which is evaluated
by the average time steps of transition (TS). For SURI, higher is
better, since it additionally penalizes the upper body movement
away from the target pose. For both TC and TS, lower is better.

4.3.3 Robustness. The policy is modeled by a multivariate normal
distribution over the action space, with a state-dependent mean
𝜋 (𝑠𝑡) and a fixed diagonal covariance matrix Σ = diag(𝜎, 𝜎, ...). The
value of 𝜎 controls the amount of noise applied to the joint torque,
which is set to e−2.9 during training. During operation, too high a
𝜎 will lead to a decrease in transition stability, and the character
will fall during some tasks. In the evaluation, 𝜎 is set to e−3.7, and
the total task achievement rate (TTAR) in this condition along with
the maximum sigma value (MS) that guarantees 100% TTAR are

used to evaluate the robustness of the policy. For both TTAR and
MS, higher is better.

4.3.4 Training Efficiency. Our framework employs a curriculum
the learning strategy for the transition accuracy and the number of
iterations when reaching the final accuracy (IRFA) will be used as
the metric to evaluate training efficiency.

4.4 Result and Ablation
We evaluate our integral method by the above metrics, as reported
in the first row of Table 1. The result shows that our method can
achieve all the sampled interactive transition tasks with a certain
amount of action noise and achieves extremely high accuracy in
several deviation metrics (FRPD, FKPD and FJRD) that users are
more sensitive to. When reaching the final accuracy, we find that
the policy already has better effects with the deterministic pattern
(i.e., directly using the mean as the output). Subsequent iterations
mainly improve the stability of the sampling pattern. We also find
that the policy can usually handle amore extensive range of rotation
than in training, reflecting the strong generalization ability of it.

4.4.1 Self-Behavior Cloning. To show the importance of our pro-
posed SBC mechanism, we compare our method with a baseline
model training without SBC (No SBC), whose performance is re-
ported in the second row of Table 1. Our method significantly
outperforms the baseline on almost all metrics except FJAD. With-
out SBC, extreme fluctuations occurred in the mean return curves
(see Figure 4(a)) during training, and the trained policy can not
handle any tasks transitioning to the stab motion, even with the

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yanbin Deng, Zheng Li, Ning Xie, and Wei Zhang

(a) Mean Return

(b) Iterations required for different threshold reduction times

Figure 4: Curves of mean return and threshold reduction
iterations during training.

deterministic pattern. The SBC mechanism also improves training
efficiency; the policy takes less time to reach the same transition
difficulty (see Figure 4(b)), and reaches the final accuracy about
4000 iterations earlier.

4.4.2 Upper Body Redundancy Penalization. The third row of Table
1 reports the model trained without the additional penalization of
the redundant movement on the upper body (No URP). It suffers
from the increased redundant movement, causing lower perfor-
mance on all metrics (especially SURI) and unnatural swing of the
upper limbs. The trained policy can also not handle any tasks tran-
sitioning to a certain motion, the slash up motion. This confirms
our prior "monotonically" hypothesis about upper body movement,
which can reduce learning difficulty and improve naturalness.

4.4.3 Tremble Reward. The model trained without tremble reward
(No TR) achieves higher training efficiency and robustness by ex-
ploiting unnatural and unacceptable tremble behaviors (similar to
the result of interpolation-based method), and TC is doubled in the
evaluation, as shown in the fourth row of Table 1. Empirically, we

find that the efficacy of tremble reward is not sensitive to the values
of 𝐶thr and𝑤trem in Eq. 12.

5 Conclusion and Discussion
In this paper, we propose a novel unsupervised framework for
synthesizing physically valid transitions that seamlessly bridge
motion clips, enabling natural and interactive character animation
with a hybrid pattern. We have shown that our approach can handle
any transition task sampled from a complex state machine with high
accuracy and naturalness in the evaluation. Notably, our proposed
SBC mechanism specialized for RL of motion transition has been
proven to promote the training process and final result. In contrast
to using purely physical control to synthesize animation, our hybrid
manner can be regarded as a compromise between the current
mainstream animation system and the emerging physics-based
animation, avoiding the instability problem of the latter.

Despite its remarkable advantages, we note a few shortcomings.
The well-trained policy tends to sacrifice the accuracy of joint an-
gular velocity (reflected in FJAD) to improve the accuracy of other
aspects. A future research avenue could involve a user study to
evaluate the visual prominence of different transition deviations,
thereby improving the design of reward and curriculum learning.
Besides, our method takes on average 0.7 ms to inference an action,
however the simulation of a frame takes on average 14 ms. We
plan to investigate whether the efficiency is sufficient for real-time
applications with other physics engines. In addition, as we mainly
focus on the policy’s adaptability to various transitions, estimating
of the target pose root position offset in our framework is relatively
simple (see Eq. 14), and redundant appel movements may occur in
some transitions. The animator can employ more complex computa-
tions of the offset to obtain the desired result. Furthermore, without
the information from a reference motion dataset, our approach
sometimes produces unnatural movements on the upper body. We
are interested in exploring other unsupervised methods to mitigate
these artifacts, such as integrating energy efficiency objectives [35]
into our reward or employing a musculoskeletal model to generate
more biomechanically plausible motion [16].

Another application of hybrid character animation is generating
dynamic responses to unexpected impacts [26, 36]. We are inter-
ested in extending our approach for such application, since it will
be very suitable for controlling the character to recover to a motion
clip after being impacted, which is difficult to achieve with purely
physical control in previous works.

PIMT: Physics-Based Interactive Motion Transition for Hybrid Character Animation MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
Wewould like to thank the anonymous reviewers for their feedback,
Zhenjiang Du, Feng Tian, and Sophyani Banaamwini Yussif for their
support for this work.

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
2017. Hindsight experience replay. In Advances in Neural Information Processing
Systems (Long Beach, CA, United states), Vol. 2017-December. Neural information
processing systems foundation, California, CA, USA, 5049 – 5059.

[2] Okan Arikan, David A. Forsyth, and James F. O’Brien. 2005. Pushing People
Around. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Los Angeles, California) (SCA ’05). Association for
Computing Machinery, New York, NY, USA, 59–66. https://doi.org/10.1145/
1073368.1073376

[3] Armin Bruderlin and Lance Williams. 1995. Motion Signal Processing. In Pro-
ceedings of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’95). Association for Computing Machinery, New York,
NY, USA, 97–104. https://doi.org/10.1145/218380.218421

[4] Cameron Egbert, Parris K. Egbert, and Bryan S. Morse. 2010. Real-time mo-
tion transition by example. In Articulated Motion and Deformable Objects (Port
d’Andratx, Mallorca, Spain) (Lecture Notes in Computer Science, Vol. 6169 LNCS).
Springer-Verlag Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany, 138 – 147.
http://dx.doi.org/10.1007/978-3-642-14061-7_14

[5] Epic. 2019. State machines. Epic Games, Inc. Retrieved Nov 27, 2023 from
https://docs.unrealengine.com/5.3/en-US/state-machines-in-unreal-engine/

[6] Michael Gleicher, Hyun Joon Shin, Lucas Kovar, and Andrew Jepsen. 2003.
Snap-Together Motion: Assembling Run-Time Animations. In Proceedings of
the 2003 Symposium on Interactive 3D Graphics (Monterey, California) (I3D
’03). Association for Computing Machinery, New York, NY, USA, 181–188.
https://doi.org/10.1145/641480.641515

[7] Deepak Gopinath, Hanbyul Joo, and Jungdam Won. 2022. Motion In-Betweening
for Physically Simulated Characters. In SIGGRAPH Asia 2022 Posters (Daegu,
Republic of Korea) (SA ’22). Association for Computing Machinery, New York,
NY, USA, Article 7, 2 pages. https://doi.org/10.1145/3550082.3564186

[8] Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020.
Robust Motion In-Betweening. ACM Trans. Graph. 39, 4, Article 60 (aug 2020),
12 pages. https://doi.org/10.1145/3386569.3392480

[9] Alejandro Hernandez, Jurgen Gall, and Francesc Moreno. 2019. Human motion
prediction via spatio-temporal inpainting. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (Seoul, South Korea,) (ICCV 2019, Vol. 2019-October). IEEE,
New York, NY, USA, 7133 – 7142. http://dx.doi.org/10.1109/ICCV.2019.00723

[10] Leslie Ikemoto, Okan Arikan, and David Forsyth. 2007. Quick Transitions with
Cached Multi-Way Blends. In Proceedings of the 2007 Symposium on Interactive
3D Graphics and Games (Seattle, Washington) (I3D ’07). Association for Comput-
ing Machinery, New York, NY, USA, 145–151. https://doi.org/10.1145/1230100.
1230125

[11] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece, Remo Ziegler, and Otmar
Hilliges. 2020. Convolutional Autoencoders for Human Motion Infilling. In 2020
International Conference on 3D Vision (3DV 2020). IEEE, New York, NY, USA, 918
– 927. http://dx.doi.org/10.1109/3DV50981.2020.00102

[12] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. ACM
Trans. Graph. 21, 3 (jul 2002), 473–482. https://doi.org/10.1145/566654.566605

[13] Yuki Koyama and Masataka Goto. 2019. Precomputed optimal one-hop motion
transition for responsive character animation. Visual Computer 35, 6-8 (2019),
1131 – 1142. http://dx.doi.org/10.1007/s00371-019-01693-8

[14] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.
Pollard. 2002. Interactive Control of Avatars Animated with Human Motion Data.
ACM Trans. Graph. 21, 3 (jul 2002), 491–500. https://doi.org/10.1145/566654.
566607

[15] Jehee Lee and Kang Hoon Lee. 2004. Precomputing Avatar Behavior from Human
Motion Data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Grenoble, France) (SCA ’04). Eurographics Association,
Goslar, DEU, 79–87. https://doi.org/10.1145/1028523.1028535

[16] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable
muscle-actuated human simulation and control. ACM Trans. Graph. 38, 4, Article
73 (jul 2019), 13 pages. https://doi.org/10.1145/3306346.3322972

[17] Yunhao Li, Zhenbo Yu, Yucheng Zhu, Bingbing Ni, Guangtao Zhai, and Wei
Shen. 2022. Skeleton2Humanoid: Animating Simulated Characters for Physically-
Plausible Motion In-Betweening. In Proceedings of the 30th ACM International

Conference on Multimedia (Lisboa, Portugal) (MM ’22). Association for Computing
Machinery, New York, NY, USA, 1493–1502. https://doi.org/10.1145/3503161.
3548093

[18] ViktorMakoviychuk, LukaszWawrzyniak, YunrongGuo,Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. 2021. Isaac Gym: High Performance GPU-based physics simulation
for robot learning. (2021).

[19] Lucas Mourot, Ludovic Hoyet, Francois Le Clerc, Francois Schnitzler, and Pierre
Hellier. 2022. A Survey on Deep Learning for Skeleton-Based Human Animation.
Computer Graphics Forum 41, 1 (2022), 122 – 157. http://dx.doi.org/10.1111/cgf.
14426

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An imperative style, high-performance deep learning
library. In 2019 Advances in Neural Information Processing Systems (Vancouver,
BC, Canada) (NIPS 2019, Vol. 32). NIPS, California, USA.

[21] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-Adaptive
Locomotion Skills Using Deep Reinforcement Learning. ACM Trans. Graph. 35,
4, Article 81 (jul 2016), 12 pages. https://doi.org/10.1145/2897824.2925881

[22] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022.
ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated
Characters. ACM Trans. Graph. 41, 4, Article 94 (jul 2022), 17 pages. https:
//doi.org/10.1145/3528223.3530110

[23] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa.
2021. AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control. ACM Trans. Graph. 40, 4, Article 144 (jul 2021), 20 pages. https:
//doi.org/10.1145/3450626.3459670

[24] Ken Perlin. 1995. Real time responsive animation with personality. IEEE transac-
tions on visualization and Computer Graphics 1, 1 (1995), 5–15.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. (2017).

[26] A. Shapiro, F. Pighin, and P. Faloutsos. 2003. Hybrid control for interactive charac-
ter animation. In Proceedings of the 11th Pacific Conference on Computer Graphics
and Applications (Canmore, AB, Canada), Vol. 2003-January. IEEE COMPUTER
SOC, Los Alamitos, CA, USA, 455 – 461.

[27] Jie Tan, Karen Liu, and Greg Turk. 2011. Stable proportional-derivative controllers.
IEEE Computer Graphics and Applications 31, 4 (2011), 34 – 44. http://dx.doi.org/
10.1109/MCG.2011.30

[28] Xiangjun Tang, He Wang, Bo Hu, Xu Gong, Ruifan Yi, Qilong Kou, and Xiaogang
Jin. 2022. Real-Time Controllable Motion Transition for Characters. ACM Trans.
Graph. 41, 4, Article 137 (jul 2022), 10 pages. https://doi.org/10.1145/3528223.
3530090

[29] Xiangjun Tang, Linjun Wu, He Wang, Bo Hu, Xu Gong, Yuchen Liao, Songnan Li,
Qilong Kou, and Xiaogang Jin. 2023. RSMT: Real-Time Stylized Motion Transition
for Characters. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles,
CA, USA) (SIGGRAPH ’23). Association for Computing Machinery, New York,
NY, USA, Article 38, 10 pages. https://doi.org/10.1145/3588432.3591514

[30] Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-Optimal Character
Animation with Continuous Control. In ACM SIGGRAPH 2007 Papers (San Diego,
California) (SIGGRAPH ’07). Association for Computing Machinery, New York,
NY, USA, 7–es. https://doi.org/10.1145/1275808.1276386

[31] Unity. 2018. Unity—manual: State machine basics. Unity Technologies. Retrieved
Nov 27, 2023 from https://docs.unity3d.com/Manual/StateMachineBasics.html

[32] Herwin Van Welbergen, Ben JH Van Basten, Arjan Egges, Zs M Ruttkay, and
Mark H Overmars. 2010. Real Time Animation of Virtual Humans: A Trade-off
Between Naturalness and Control. COMPUTER GRAPHICS FORUM 29, 8 (2010),
2530–2554.

[33] Jing Wang and Bobby Bodenheimer. 2008. Synthesis and Evaluation of Linear
Motion Transitions. ACM Trans. Graph. 27, 1, Article 1 (mar 2008), 15 pages.
https://doi.org/10.1145/1330511.1330512

[34] JungdamWon, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach
to Control Diverse Behaviors for Physically Simulated Characters. ACM Trans.
Graph. 39, 4, Article 33 (aug 2020), 12 pages. https://doi.org/10.1145/3386569.
3392381

[35] Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning symmetric and low-
energy locomotion. ACM Trans. Graph. 37, 4, Article 144 (jul 2018), 12 pages.
https://doi.org/10.1145/3197517.3201397

[36] Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. 2005. Dy-
namic Response for Motion Capture Animation. In ACM SIGGRAPH 2005 Papers
(Los Angeles, California) (SIGGRAPH ’05). Association for Computing Machinery,
New York, NY, USA, 697–701. https://doi.org/10.1145/1186822.1073249

https://doi.org/10.1145/1073368.1073376
https://doi.org/10.1145/1073368.1073376
https://doi.org/10.1145/218380.218421
http://dx.doi.org/10.1007/978-3-642-14061-7_14
https://docs.unrealengine.com/5.3/en-US/state-machines-in-unreal-engine/
https://doi.org/10.1145/641480.641515
https://doi.org/10.1145/3550082.3564186
https://doi.org/10.1145/3386569.3392480
http://dx.doi.org/10.1109/ICCV.2019.00723
https://doi.org/10.1145/1230100.1230125
https://doi.org/10.1145/1230100.1230125
http://dx.doi.org/10.1109/3DV50981.2020.00102
https://doi.org/10.1145/566654.566605
http://dx.doi.org/10.1007/s00371-019-01693-8
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/1028523.1028535
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1145/3503161.3548093
https://doi.org/10.1145/3503161.3548093
http://dx.doi.org/10.1111/cgf.14426
http://dx.doi.org/10.1111/cgf.14426
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1145/3528223.3530110
https://doi.org/10.1145/3528223.3530110
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670
http://dx.doi.org/10.1109/MCG.2011.30
http://dx.doi.org/10.1109/MCG.2011.30
https://doi.org/10.1145/3528223.3530090
https://doi.org/10.1145/3528223.3530090
https://doi.org/10.1145/3588432.3591514
https://doi.org/10.1145/1275808.1276386
https://docs.unity3d.com/Manual/StateMachineBasics.html
https://doi.org/10.1145/1330511.1330512
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/1186822.1073249

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interpolation
	2.2 Motion Graphs
	2.3 Motion In-Betweening
	2.4 Physics-Based Character Control

	3 Approach
	3.1 Pure Objective RL for Transition
	3.2 Task Planning
	3.3 Self-Behavior Cloning

	4 Experiments
	4.1 System Setup
	4.2 Comparison to Existing Method
	4.3 Evaluation Metrics
	4.4 Result and Ablation

	5 Conclusion and Discussion
	Acknowledgments
	References

