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ABSTRACT

The availability of multiple training algorithms and architectures for generative
models requires a selection mechanism to form a single model over a group of
well-trained generation models. The selection task is commonly addressed by
identifying the model that maximizes an evaluation score based on the diversity
and quality of the generated data. However, such a best-model identification ap-
proach overlooks the possibility that a mixture of available models can outper-
form each individual model. In this work, we numerically show that a mixture of
generative models on benchmark image datasets can indeed achieve a better eval-
uation score (based on FID and KID scores), compared to the individual models.
This observation motivates the development of efficient algorithms for selecting
the optimal mixture of the models. To address this, we formulate a quadratic
optimization problem to find an optimal mixture model achieving the maximum
of kernel-based evaluation scores including kernel inception distance (KID) and
Rényi kernel entropy (RKE). To identify the optimal mixture of the models us-
ing the fewest possible sample queries, we view the selection task as a multi-
armed bandit (MAB) problem and propose the Mixture Upper Confidence Bound
(Mixture-UCB) algorithm that provably converges to the optimal mixture of the in-
volved models. More broadly, the proposed Mixture-UCB can be extended to op-
timize every convex quadratic function of the mixture weights in a general MAB
setting. We prove a regret bound for the Mixture-UCB algorithm and perform
several numerical experiments to show the success of Mixture-UCB in finding the
optimal mixture of text and image generative models. The project code is available
at https://github.com/Rezaei-Parham/Mixture-UCB.

1 INTRODUCTION

The rapid advancements in generative modeling have created a need for mechanisms to combine
multiple well-trained generative models, each developed using different algorithms and architec-
tures, into a single unified model. Consider m unconditional generative models G1, . . . ,Gm, where
each Gi represents a probability model PGi

according to which new samples are generated. A com-
mon approach for creating a unified model is to compute evaluation scores (e.g., the standard FID
(Heusel et al., 2017) and KID (Bińkowski et al., 2018) scores) that quantify the diversity and fidelity
of the generated data, followed by selecting the model PGi∗ with the best evaluated score. This
best-score model selection strategy has been widely adopted for choosing generative models across
various domains, including image, text, and video data generation.

However, the model selection approach by identifying the score-maximizing model overlooks the
possibility that a mixture of the generative models α1PG1

+ · · · + αmPGm
, where each sample is

generated from a randomly-selected model with αi being the probability of selecting model Gi, can
outperform every individual model. This motivates the following question: Can there be real-world
settings where a non-degenerate mixture of some well-trained generative models obtain a better
evaluation score compared to each individual model? Note that the standard FID and KID scores
are convex functions of the generative model’s distribution, and thus they can be optimized by a
non-degenerate mixture of the models. In this work, we numerically show that it is possible for a
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LDM (G1) StyleGAN-XL (G2) StyleNAT (G5)Efficient-VDVAE (G3) InsGen (G4)

25% G1+ 40% G2 +
1% G3 + 8% G4 +

26% G5 

FID ↓ 189.88 ± 1.98 186.16 ± 2.75 185.07 ± 2.12 490.39 ± 4.38 278.24 ± 1.62 170.11 ± 1.93 
KID ↓
(×102)

1.48 ± 0.02 1.36 ± 0.03 5.34 ± 0.05 2.29 ± 0.03 1.44 ± 0.03 1.33 ± 0.07 

Figure 1: A mixture (right-most case) of FFHQ pre-trained generative models with weights
(0.25,0.4,0.01,0.08,0.26) achieves better FID and KID scores compared to each of the five involved
models. The mixture weights are computed using our proposed Mixture-UCB-OGD algorithm.

mixture of real-world generative models to improve evaluation scores over the individual models.
An example is shown in Figure 1, where we find a non-degenerate mixture of five generative models
pre-trained on the FFHQ dataset1. As shown, assigning mixture weights (0.25, 0.4, 0.01, 0.08, 0.26)
to the models results in a significantly better FID score 170.11 than the best individual FID 185.07.

To understand the improvement achieved by the mixture model, we note that the FID and KID
scores evaluate both the quality and diversity of the generated data. While the averaged quality
of generated samples represents an expected value that is optimized by an individual model, the
diversity of samples from a mixture of the models can significantly improve over the diversity of the
individual models’ data. Figure 2 displays an illustrative example for this point, where we observe
that the diversity of “red bird, cartoon style” samples generated by each of the three text-to-image
models, is qualitatively and quantitatively2 lower than the diversity of their mixture. As a result, the
improvement in the diversity of a mixture of generative models can result in an improved FID and
KID evaluation scores, as we numerically observe in Figure 1.

1.1 COMPUTING OPTIMAL MIXTURES OF GENERATIVE MODELS: THE MIXTURE-UCB
MULTI-ARMED BANDIT ALGORITHM

Since the evaluation score of a mixture of generative models can improve over the scores of the
individual models, a natural question is how to efficiently compute the weights of an optimal mixture
of the models using the fewest possible samples from the models. Here, our goal is to minimize
the number of sample generation queries from sub-optimal models, which will save the time and
monetary costs of identifying the best model. To achieve this, we propose viewing the task as a
multi-armed bandit (MAB) problem, in which every generative model represents an arm and our
goal is to find the best mixture of the models with the optimal evaluation score. The MAB approach
for selecting among generative models has been recently explored by Hu et al. (2024) applying the
Upper Confidence Bound (UCB) algorithm to the FID score. This MAB-based model selection
extends the online model selection methods for supervised models, including the successive halving
strategy (Karnin et al., 2013; Jamieson & Talwalkar, 2016; Chen & Ghosh, 2024)3.

However, in the existing MAB algorithms, the goal is to eventually converge to a single arm with
the optimal score. Successive halving (Karnin et al., 2013; Jamieson & Talwalkar, 2016; Chen &
Ghosh, 2024) and the UCB algorithm developed by Hu et al. (2024) will ultimately select only one
generative model after a sufficient number of iterations. However, as we discussed earlier, the eval-
uation scores of the generated data could be higher when the sample generation follows a mixture
of models rather than a single model. This observation leads to the following task: Developing an
MAB algorithm that finds the optimal mixture of the arms rather than the single best arm.

1The pre-trained generative models are downloaded from dgm-eval GitHub repository (Stein et al., 2023).
2We have evaluated the diversity scores RKE (Jalali et al., 2023) and Vendi (Dan Friedman & Dieng, 2023).
3Jamieson & Talwalkar (2016) focused on applying successive halving on hyperparameter optimization

for supervised learning, whereas Chen & Ghosh (2024) focused on generative models using maximum mean
discrepancy (Gretton et al., 2012) as the score.
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PixArt-α

28% Kandinsky 3 +
40% Stable Diffusion 3 +

32% PixArt-α

3.94 ± 0.02 4.90 ± 0.03 4.44 ± 0.02 8.21 ± 0.03

7.79 ± 0.036.49 ± 0.03 7.08 ± 0.02 11.42 ± 0.04

RKE ↑

Vendi ↑

Stable Diffusion 3Kandinsky 3

Figure 2: Visual comparison of the diversity across individual arms and the optimal mixture for
images generated using models Kandinsky 3, Stable Diffusion 3, and PixArt-α with the prompt
“Red bird, cartoon style”. The mixture weights are computed via the Mixture-UCB-OGD method.

In this work, we develop a general MAB method, which we call the Mixture-UCB algorithm, that
can provably find the best mixture of the arms when the evaluation score is a quadratic function of
the arms’ distribution, i.e. when it represents the average of scores assigned to the pairs of drawn
samples. Formulating the optimization problem for a quadratic score function results in a quadratic
online convex optimization problem that can be efficiently solved using the online gradient descent
algorithm. More importantly, we establish a concentration bound for the quadratic function of the
mixture weights, which enables us to extend the UCB algorithm to the Mixture-UCB method for the
online selection of the mixture weights.

For selecting mixtures of generative models using Mixture-UCB, we focus on evaluation scores that
reduce to a quadratic function of the generative model’s distribution, including Kernel Inception
Distance (KID) (Bińkowski et al., 2018), Rényi Kernel Entropy (RKE) (Jalali et al., 2023) scores, as
well as the quality-measuring Precision (Sajjadi et al., 2018; Kynkäänniemi et al., 2019) and Density
(Naeem et al., 2020) scores, which are linear functions of the generative distribution. Among these
scores, RKE provides a reference-free entropy function for assessing the diversity of generated data,
making it suitable for quantifying the variety of generated samples. Our mixture-based MAB frame-
work can therefore be applied to find the mixture model with the maximum RKE-based diversity
score. Additionally, we consider a linear combination of RKE with the Precision, Density, or KID
quality scores to find a mixture of models that offers the best trade-off between quality and diversity.

We perform several numerical experiments to test the application of our proposed Mixture-UCB
approach in comparison to the Vanilla-UCB and One-Arm Oracle approaches that tend to generate
samples from only one of the available generative models. Our numerical results indicate that the
Mixture-UCB algorithms can generate samples with higher RKE diversity scores, and tends to gen-
erate samples from a mixture of several generative models when applied to image-based generative
models. Also, we test the performance of Mixture-UCB on the KID, Precision, and Density scores,
which similarly result in a higher score value for the mixture model found by the Mixture-UCB al-
gorithm. We implement the Mixture-UCB by solving the convex optimization sub-problem at every
iteration and also by applying the online gradient descent algorithm at every iteration. In our exper-
iments, both implementations result in satisfactory results and can improve upon learning strategies
tending to select only one generative model. Here is a summary of this work’s contributions:

• Studying the selection task for mixtures of multiple generative models to improve the evaluation
scores of generated samples (Section 4).

• Proposing an online learning multi-armed bandit framework to address the mixture selection task
for quadratic score functions (Section 5).

• Developing the Mixture-UCB-CAB and Mixture-UCB-OGD algorithms to solve the formulated
online learning problem and proving a regret bound for Mixture-UCB-CAB (Sections 5.1, 5.2).

• Presenting numerical results on the improvements in the diversity of generated data by the online
selection of a mixture of the generation models (Section 6, Appendix 8.4).
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2 RELATED WORK

Assessment of Generative Models. The evaluation of generative models has been extensively stud-
ied, with a focus on both diversity and quality of generated images. Reference-free metrics such
as Rényi Kernel Entropy (RKE) (Jalali et al., 2023) and VENDI (Dan Friedman & Dieng, 2023;
Ospanov et al., 2024) measure diversity without relying on ground-truth, while reference-based
metrics such as Recall (Sajjadi et al., 2018; Kynkäänniemi et al., 2019) and Coverage (Naeem et al.,
2020) assess diversity relative to real data. For image quality evaluation, Density and Precision
metrics (Naeem et al., 2020; Kynkäänniemi et al., 2019) provide measures based on alignment with
a reference distribution. The Wasserstein distance (Arjovsky et al., 2017) and Fréchet Inception
Distance (FID) (Heusel et al., 2017) approximate the distance between real and generated datasets,
while Kernel Inception Distance (KID) (Bińkowski et al., 2018) uses squared maximum mean dis-
crepancy for a kernel-based comparison of distributions. Wang et al. (2023) apply the KID score
for the distributed evaluation of generative models. The novelty evaluation of generative models has
also been studied in References (Han et al., 2022; Jiralerspong et al., 2023; Zhang et al., 2024b;a).

Multi-Armed Bandit Algorithms. The Multi-Armed Bandit (MAB) problem is a foundational
topic in reinforcement learning, where an agent aims to maximize rewards from multiple options
(arms) with initially unknown reward distributions (Lai & Robbins, 1985; Thompson, 1933). The
Upper Confidence Bound (UCB) algorithm (Agrawal, 1995a; Auer, 2002; Bubeck et al., 2012) is a
widely adopted method for addressing the MAB problem, where uncertainty about an arm’s reward
is replaced by an optimistic estimate. In generative models, optimism-based bandits have been
applied to efficiently identify models with optimal Fréchet Inception Distance (FID) or Inception
Score while minimizing data queries (Hu et al., 2024). A special case of MAB, the continuum-
armed bandit (CAB) problem (Agrawal, 1995b), optimizes a function over continuous inputs, and
has been applied to machine learning tasks such as hyperparameter optimization (Feurer & Hutter,
2019; Li et al., 2018). Recent research explores CABs under more general smoothness conditions
like Besov spaces (Singh, 2021), while other works have focused on regret bounds and Lipschitz
conditions (Kleinberg, 2004; Kleinberg et al., 2019; Bubeck et al., 2008).

Another related reference is informational multi-armed bandits (Weinberger & Yemini, 2023), which
extends UCB to maximizing the Shannon entropy of a discrete distribution. In comparison, the al-
gorithms in this paper can minimize the expectation of any quadratic positive-semidefinite function,
which also covers the order-2 Rényi entropy for discrete distributions. Since the generative models’
outputs are generally continuous, (Weinberger & Yemini, 2023) is not applicable to our setting.

3 PRELIMINARIES

We review several kernel-based performance metrics of generative models.

3.1 RÉNYI KERNEL ENTROPY

The Rényi Kernel Entropy (Jalali et al., 2023) of the distribution P , which measures the diversity
of the modes in P , is given by log(1/E

X,X′iid∼P
[k2(X,X ′)]), where k is a positive definite kernel.4

Taking the exponential of the Rényi Kernel Entropy, we have the RKE mode count 1/E[k2(X,X ′)])
(Jalali et al., 2023), which is an estimate of the number of modes. Maximizing the RKE mode count
is equivalent to minimizing the following loss

E
X,X′iid∼P

[k2(X,X ′)]. (1)

3.2 MAXIMUM MEAN DISCREPANCY AND KERNEL INCEPTION DISTANCE

The (squared) maximum mean discrepancy (MMD) (Gretton et al., 2012) between distributions
P,Q, which measures the distance between P and Q, can be written as

E[k(X,X ′)] + E[k(Y, Y ′)]− 2E[k(X,Y )], (2)

4The order-2 Rényi entropy for discrete distributions is a special case by taking k(x, x′) = 1x=x′ .
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where X,X ′ iid∼ P and Y, Y ′ iid∼ Q, and k is a positive definite kernel. Suppose P is the distribution
of samples from a generative model, and Q is a reference distribution. Minimizing the MMD can
ensure that P is close to Q. The Kernel Inception Distance (KID) (Bińkowski et al., 2018), a
popular quality metric for image generative models, is obtained by first passing P and Q through
the Inception network (Szegedy et al., 2016), and then computing their MMD, i.e., we have

E[k(ψ(X), ψ(X ′))] + E[k(ψ(Y ), ψ(Y ′))]− 2E[k(ψ(X), ψ(Y ))], (3)

where ψ is the mapping from x to its Inception representation.

4 OPTIMAL MIXTURES OF GENERATIVE MODELS

RKE (1), MMD (2) and KID (3) can all be written as a loss function in the following form

L(P ) := E
X,X′iid∼P

[κ(X,X ′)] + EX∼P [f(X)], (4)

where κ : X 2 → R is a positive semidefinite kernel, and f : X → R is a function. For (1), we
take κ(x, x′) = k2(x, x′) (the square of a kernel is still a kernel) and f(x) = 0. For (2), we take
κ(x, x′) = k(x, x′) and f(x) = −2EY∼Q[k(x, Y )] (the constant term E[k(Y, Y ′)] does not matter).
For KID (3), we take κ(x, x′) = k(ψ(x), ψ(x′)) and f(x) = −2EY∼Q[k(ψ(x), ψ(Y ))]. Note that
any convex combinations of (1), (2) and (3) is still in the form (4).

Suppose we are given m generative models, where model i generates samples from the distribution
Pi. If our goal is merely to find the model that minimize the loss (4), we should select argminiL(Pi).
Nevertheless, for diversity metrics such as RKE, it is possible that a mixture of the models will give a
better diversity. Assume that the mixture weight of model i is αi ∈ [0, 1], where α = (α1, . . . , αm)
is a probability vector. The loss of the mixture distribution

∑m
i=1 αiPi can then be expressed as

L(α) := L
( m∑

i=1

αiPi

)
= α⊤Kα+ f⊤α,

K := (EX∼Pi, X′∼Pj
[κ(X,X ′)])i,j∈[m] ∈ Rm×m, f := (EX∼Pi

[f(X)])mi=1 ∈ Rm.

Given K, f , the probability vector α minimizing L(α) can be found via a convex quadratic program.

In practice, we do not know the precise K, f , and have to estimate them using samples. Suppose we
have the samples xi,1, . . . , xi,ni

from the distribution Pi for i = 1, . . . ,m, where ni is the number
of observed samples from model i. Write x := (xi,a)i∈[m], a∈[ni]. We approximate the true mixture
distribution

∑m
i=1 αiPi by the empirical mixture distribution

∑m
i=1

αi

ni

∑ni

a=1 δxi,a , where we assign
a weight αi/ni to samples xi,a from model i, and δxi,a denotes the degenerate distribution at xi,a.
We then approximate L(α) by the sample loss

L̂(α;x) := L
( m∑

i=1

αi

ni

ni∑
a=1

δxi,a

)
= α⊤K̂(x)α+ f̂(x)⊤α, (5)

K̂(x) :=
( 1

ninj

ni∑
a=1

nj∑
b=1

κ(xi,a, xj,b)
)
i,j
∈ Rm×m, f̂(x) :=

( 1

ni

ni∑
a=1

f(xi,a)
)m
i=1
∈ Rm.

The minimization of L̂(α;x) over probability vectors α is still a convex quadratic program.

5 ONLINE SELECTION OF OPTIMAL MIXTURES – MIXTURE MULTI-ARMED
BANDIT

Suppose we are given m generative models, but we do not have any prior information about them.
Our goal is to use these models to generate a collection of samples (x(t))i∈[T ] in T rounds that
minimizes the loss (4) L(P̂ (T )) at the empirical distribution P̂ (T ) = T−1

∑T
t=1 δx(t) . We have

L(P̂ (T )) =
1

T 2

∑
s,t∈[T ]

κ(x(s), x(t)) +
1

T

T∑
t=1

f(x(t)).
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Algorithm 1 Mixture-UCB-CAB

1: Input: m generative arms, number of rounds T
2: Output: Gathered samples x(T )

3: for t ∈ {0, . . . ,m− 1} do
4: Pull arm t+ 1 at time t+ 1 to obtain sample xt+1,1 ∼ Pt+1. Set n(m)

t+1 = 1.
5: end for
6: for t ∈ {m, . . . , T − 1} do
7: Compute an estimate of the optimal mixture distribution via the convex quadratic program:

α(t) := argminα
(
L̂(α;x(t))− (ϵ(t))⊤α

)
, (6)

where the minimization is over probability vectors α, and ϵ(t) ∈ Rm is defined as

ϵ
(t)
i := ∆L

√
(β log t)/(2n

(t)
i ) + ∆κ/n

(t)
i . (7)

8: Generate the arm index b(t+1) ∈ [m] at random with P(b(t+1) = i) = α
(t)
i .

9: Pull arm b = b(t+1) at time t+1 to obtain a new sample x
b,n

(t)
b +1

∼ Pb. Set n(t+1)
b = n

(t)
b +1

and n(t+1)
j = n

(t)
j for j ̸= b.5

10: end for
11: return samples x(T )

If we are told by an oracle the optimal mixture α∗ that minimizes the loss L(α), then we should
generate samples according to this mixture distribution, giving ≈ α∗

i T samples from model i. We
call this the mixture oracle scenario. Nevertheless, in reality, we do not know K, f , and cannot
compute α∗ exactly. Instead, we have to approximate α∗ by minimizing the sample loss L̂(α;x)

(5). However, we do not have the samples x at the beginning in order to compute L̂(α;x), so we
have to generate some samples first. Yet, to generate these initial samples, we need an estimate
of α∗, or else those samples may have a suboptimal empirical distribution and affect our final loss
L(P̂ (T )), or we will have to discard those initial samples which results in wastage.

This “chicken and egg” problem is naturally solved by an online learning approach via multi-armed
bandit. At time t = 1, . . . , T , we choose and pull an arm b(t) ∈ [m] (i.e., generate a sample from
model b(t)), and obtain a sample x(t) from the distribution Pb(t) . The choice b(t) can depend on
all previous samples x(1), . . . , x(t−1). Unlike conventional multi-armed bandit where the goal is to
maximize the total reward over T rounds, here we minimize the loss L(P̂ (T )) which involve cross
terms κ(x(s), x(t)) between samples at different rounds. Note that if κ(x, x′) = 0, then this reduces
to the conventional multi-armed bandit setting by taking f(x) to be the negative reward of the sample
x. In the following subsections, we will propose two new algorithms that are generalizations of the
upper confidence bound (UCB) algorithm for multi-armed bandit (Agrawal, 1995a; Auer, 2002).

5.1 MIXTURE UPPER CONFIDENCE BOUND – CONTINUUM-ARMED BANDIT

Let n(t)i be the number of times arm i has been pulled up to time t. Let x(t) := (xi,a)i∈[m], a∈[n
(t)
i ]

be the observed samples up to time t. We focus on bounded loss functions, and assume that κ :
X 2 → [κ0, κ1] and f : X → [f0, f1] are bounded. Let ∆κ := κ1 − κ0, ∆f := f1 − f0. Define the
sensitivity of L as ∆L := 2∆κ +∆f .

We now present the mixture upper confidence bound – continuum-armed bandit (Mixture-UCB-
CAB) algorithm. It has a parameter β > 1. It treats the online selection problem as multi-armed
bandit with infinitely many arms similar to the continuum-armed bandit settings in (Agrawal, 1995b;
Lu et al., 2019). Each arm is a probability vector α. By pulling the arm α, we generate a sample
from a randomly chosen model, where model i is chosen with probability αi. Refer to Algorithm 1.
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Similar to UCB, Mixture-UCB-CAB finds a lower confidence bound L̂(α;x(t)) − (ϵ(t))⊤α of the
true loss L(α) at each round. To justify the expressions (6), (7), we prove that L̂(α;x(t))−(ϵ(t))⊤α
in (6) lower-bounds L(α) with probability at least 1− t−β . The proof is given in Appendix 8.1.

Theorem 1 Fix a probability vector α.6 Suppose we have samples xi,1, . . . , xi,ni
from the distri-

bution Pi for i = 1, . . . ,m, where ni is the number of observed samples from model i. For δ > 0,

P
(
L̂(α;x)− L(α) ≥ ϵ(δ)⊤α

)
≤ δ, P

(
L(α)− L̂(α;x) ≥ ϵ(δ)⊤α

)
≤ δ,

where ϵ(δ) :=
(
∆L

√
log(1/δ)

2ni
+ ∆κ

ni

)
i∈[m]

.

We now prove that Mixture-UCB-CAB gives an expected loss E[L(P̂ (T ))] that converges to the
optimal loss minα L(α) by bounding their gap. This means that Mixture-UCB-CAB is a zero-
regret strategy by treating E[L(P̂ (T ))]−minα L(α) as the average regret per round.7 The proof is
given in Appendix 8.2.

Theorem 2 Suppose m ≥ 2, β ≥ 4. Consider bounded quadratic loss function (4) with κ being
positive semidefinite. Let P̂ (T ) be the empirical distribution of the first T ≥ 2 samples x(T ) given
by Mixture-UCB-CAB. Then the gap between the expected loss and the optimal loss is bounded by

E
[
L(P̂ (T ))

]
−min

α
L(α) ≤ 4∆L

√
βm log T

T
.

When κ(x, x′) = 0, Mixture-UCB-CAB reduces to the conventional UCB, and Theorem 2 coincides
with the O(

√
(m log T )/T ) distribution-free bound on the regret per round of conventional UCB

(Bubeck et al., 2012). Since there is a Ω(
√
m/T ) minimax lower bound on the regret per round

even for conventional multi-armed bandit without the quadratic kernel term (Bubeck et al., 2012,
Theorem 3.4), Theorem 2 is tight up to a logarithmic factor.

The main difference between Mixture-UCB-CAB and conventional UCB is that we choose a mixture
of arms in (6) given by the probability vector α, instead of a single arm. A more straightforward
application of UCB would be to simply find the single arm that minimizes the lower bound in (6),
i.e., we restrict α = ei for some i ∈ [m], where ei is the i-th basis vector, and minimize (6) over
i instead. We call this Vanilla-UCB. Vanilla-UCB fails to take into account the possibility that a
mixture may give a smaller loss than every single arm. In the long run, Vanilla-UCB converges to
pulling the best single arm instead of the optimal mixture. Vanilla-UCB will be used as a baseline
to be compared with Mixture-UCB-CAB, and another new algorithm presented in the next section.

Mixture-UCB-CAB can be extended to the Sparse-Mixture-UCB-CAB algorithm which eventually
select only a small number of models. This can be useful if there is a subscription cost for each
model. Refer to Appendix 8.3 for discussions.

5.2 MIXTURE UPPER CONFIDENCE BOUND – ONLINE GRADIENT DESCENT

We present an alternative to Mixture-UCB-CAB, called the mixture upper confidence bound – online
gradient descent (Mixture-UCB-OGD) algorithm, inspired by the online gradient descent algorithm
(Shalev-Shwartz et al., 2012). It also has a parameter β > 1. Refer to Algorithm 2.

Mixture-UCB-CAB and Mixture-UCB-OGD can both be regarded as generalizations of the origi-
nal UCB algorithm, in the sense that they reduce to UCB when κ(x, x′) = 0. If we remove the
2
t K̂(x)n(t) term in (8), then Mixture-UCB-OGD becomes the same as UCB.

6Theorem 1 holds for a fixed α. A worst-case bound that simultaneously holds for every α is in Lemma 1.
7To justify calling R := E[L(P̂ (T ))]−minα L(α) the average regret per round, note that when κ(x, x′) =

0 and f(x) = −r(x) where r(x) is the reward of the sample x, i.e., the loss L(P ) = EX∼P [f(X)] is
linear, T (E[L(P̂ (T ))]−minα L(α)) = T maxi∈[m] EX∼Pi [r(X)]− E[

∑T
t=1 r(x

(t))] indeed reduces to the
conventional notion of regret. So R can be regarded as the quadratic generalization of regret.

7We may also consider the scenario where each pull gives a batch of l samples instead of only one sample.
In this case, we will have x

b,n
(t−1)
b

+1
, . . . , x

b,n
(t−1)
b

+l
∼ Pb and n

(t)
b = n

(t−1)
b + l.

7



Published as a conference paper at ICLR 2025

Algorithm 2 Mixture-UCB-OGD

1: Input: m generative arms, number of rounds T
2: Output: Gathered samples x(T )

3: for t ∈ {0, . . . ,m− 1} do
4: Pull arm t+ 1 at time t+ 1 to obtain sample xt+1,1 ∼ Pt+1

5: end for
6: for t ∈ {m, . . . , T − 1} do
7: Compute the gradient

h(t) := ∇α

(
L̂(α;x(t))− (ϵ(t))⊤α

) ∣∣∣
α=n(t)/t

=
2

t
K̂(x(t))n(t) + f̂(x(t))− ϵ(t), (8)

where n(t) := (n
(t)
i )i∈[m] ∈ Rm, and ϵ(t) is defined as in Mixture-UCB-CAB

8: Pull arm b = b(t+1) := argminih
(t)
i at time t+ 1 to obtain a new sample x

b,n
(t)
b +1

∼ Pb.
9: end for

10: return samples x(T )

Both Mixture-UCB-CAB and Mixture-UCB-OGD attempt to make the “proportion vector” n(t)/t

(note that n(t)i /t is the proportion of samples from model i) approach the optimal mixture α∗ that
minimizes L(α), but they do so in different manners. Mixture-UCB-CAB first computes the esti-
mate α(t) after time t, then approaches α(t) by pulling an arm randomly chosen from the distribution
α(t). Mixture-UCB-OGD estimates the gradient h(t) of the loss function at the current proportion
vector n(t)/t, and pulls an arm that results in the steepest descent of the loss.

An advantage of Mixture-UCB-OGD is that the computation of gradient (8) is significantly faster
than the quadratic program (6) in Mixture-UCB-CAB. The running time complexity of Mixture-
UCB-OGD is O(T 2 + Tm2).8 Nevertheless, a regret bound for Mixture-UCB-OGD similar to
Theorem 2 seems to be difficult to derive, and is left for future research.

6 NUMERICAL RESULTS

We experiment on various scenarios to showcase the performance of our proposed algorithms. The
experiments involve the following algorithms:

• Mixture Oracle. In the mixture oracle algorithm (Section 5), an oracle tells us the optimal mixture
α∗ in advance, and we pull arms randomly according to this distribution. The optimal mixture
is calculated by solving the quadratic optimization in Section 4 on a large number of samples for
each arm. The number of chosen samples varies based on the experiments. This is an unrealistic
setting that only serves as a theoretical upper bound of the performance of any online algorithm.
A realistic algorithm that performs close to the mixture oracle would be almost optimal.

• One-Arm Oracle. An oracle tells us the optimal single arm in advance, and we keep pulling
this arm. This is an unrealistic setting. If our algorithms outperform the one-arm oracle, this will
show that the advantage of pulling a mixture of arms (instead of a single arm) can be realistically
achieved via online algorithms.

• Vanilla-UCB. A direct application of UCB mentioned near the end of Section 5.1. This serves as
a baseline for the purpose of comparison.

• Successive Halving. The Success Halving algorithm (Karnin et al., 2013; Jamieson & Talwalkar,
2016; Chen & Ghosh, 2024) which serves as a second baseline for comparison.

• Mixture-UCB-CAB. The mixture upper confidence bound – continuum-armed bandit algorithm
proposed in Section 5.1.

8To update K̂(x(t)) after a new sample x′ is obtained, we only need to compute κ(x, x′) for each existing
sample x, and add their contributions to the corresponding entries in K̂(x(t)), requiring a computational time
that is linear with the number of existing samples.
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• Mixture-UCB-OGD. The mixture upper confidence bound – online gradient descent algorithm
proposed in Section 5.2.

Experiments Setup. We used DINOv2-ViT-L/14 (Oquab et al., 2023) for image feature extrac-
tion, as recommended in (Stein et al., 2023), and RoBERTa (Liu et al., 2019) as the text encoder.
Detailed explanation of the setup for each experiment is presented in Section 8.4.

6.1 OPTIMAL MIXTURE FOR DIVERSITY AND QUALITY VIA KID
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Figure 3: Performance comparison of online algorithms for the KID metric across FFHQ, LSUN-
Bedroom, and FFHQ Truncated generators.

We conducted three experiments to evaluate our method using the Kernel Inception Distance (KID)
metric. In the first experiment, we used five distinct generative models: LDM (Rombach et al.,
2022), StyleGAN-XL (Sauer et al., 2022), Efficient-VDVAE (Hazami et al., 2022), InsGen (Yang
et al., 2021), and StyleNAT (Walton et al., 2022), all trained on the FFHQ dataset (Karras et al.,
2019). In the second experiment, we used generated images from four models9: StyleGAN (Karras
et al., 2019), Projected GAN (Sauer et al., 2021), iDDPM (Nichol & Dhariwal, 2021), and Un-
leashing Transformers (Bond-Taylor et al., 2022), all trained on the LSUN-Bedroom dataset (Yu
et al., 2015). This experiment followed a similar setup to the first. In the final experiment, we em-
ployed the truncation method (Marchesi, 2017; Karras et al., 2019) to generate diversity-controlled
images centered on eight randomly selected points, using StyleGAN2-ADA (Karras et al., 2020),
also trained on the FFHQ dataset. Figure 3 demonstrates that the mixture of generators achieves
better KID scores compared to individual models. Additionally, the two Mixture-UCB algorithms
consistently outperform the baselines.

6.2 OPTIMAL MIXTURE FOR DIVERSITY VIA RKE

We used the RKE Mode Count (Jalali et al., 2023) as an evaluation metric to show the effect of
mixing the models on the diversity and the advantage of our algorithms Mixture-UCB-CAB and
Mixture-UCB-OGD. The score in the plots is the RKE Mode Count, written as RKE for brevity.

Synthetic Unconditional Generative Models We conduct two experiments on diversity-limited
generative models. First, we used eight center points with a truncation value of 0.3 to generate
images using StyleGAN2-ADA, trained on the FFHQ dataset. In the second experiment, we applied
the same model, trained on the AFHQ Cat dataset (Choi et al., 2020), with a truncation value of
0.4. As shown in Figure 7, the optimal mixture and our algorithms consistently achieve higher RKE
scores. The increase in diversity is visually depicted in Figures 6 and 8.

Text to Image Generative Models We used Stable Diffusion XL (Podell et al., 2024) with spe-
cific prompts to create three car image generators with distinct styles: realistic, surreal, and cartoon.
In the second experiment, recognizing the importance of diversity in generative models for design
tasks, we used five models—FLUX.1-Schnell (Labs, 2024), Kandinsky 3.0 (Vladimir et al., 2024),
PixArt-α (Chen et al., 2023a), and Stable Diffusion XL—to generate images of the object “Sofa”.

9FFHQ and LSUN-Bedroom datasets were downloaded from the dgm-eval repository (Stein et al., 2023)
(licensed under MIT license): https://github.com/layer6ai-labs/dgm-eval.
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In a similar manner, we generated red bird images using Kandinsky 3.0, Stable Diffusion 3 (Esser
et al., 2024), and PixArt-α, as shown in Figure 2.. Finally, in the third experiment, we used Sta-
ble Diffusion XL to simulate models generating images of different dog breeds: Bulldog, German
Shepherd, and Poodle, respectively. This illustrates the challenge of generating diverse object types
with text-to-image models. Figure 10 demonstrates the impact of using a mixture of models in the
first and third experiments. The improvement in diversity is evident visually and quantitatively, as
shown by the RKE scores. Our online algorithms consistently generate more diverse samples than
others, as illustrated in Figure 4.
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Figure 4: Performance comparison of online algorithms using RKE score of T2I generative models.

6.3 OPTIMAL MIXTURE FOR DIVERSITY AND QUALITY VIA RKE AND PRECISION/DENSITY

Using RKE, we focus solely on the diversity of the arms without accounting for their quality. To
address this, we apply our methodology to both RKE and Precision (Kynkäänniemi et al., 2019), as
well as RKE and Density (Naeem et al., 2020). We conduct experiments in which quality is a key
consideration. We use four arms: three are StyleGAN2-ADA models trained on the FFHQ dataset,
each generating images with a truncation of 0.3 around randomly selected center points. The fourth
model is StyleGAN2-ADA trained on CIFAR-10 (Krizhevsky et al., 2009). The FFHQ dataset is
used as the reference dataset. Figures 5 and 13 demonstrate the ability of our algorithms in finding
optimal mixtures with higher diversity/quality score.
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Figure 5: Performance comparison of online algorithms using the combination of RKE with Preci-
sion and RKE with Density metrics.

7 CONCLUSION AND LIMITATIONS

We studied the online selection from several generative models, where the online learner aims to
generate samples with the best overall quality and diversity. While standard multi-armed bandit
(MAB) algorithms converge to one arm and select one generative model, we highlighted that a
mixture of generative models could achieve a higher score compared to the individual models. We
proposed the Mixture-UCB MAB algorithm to find the optimal mixture. Our experiments suggest
the usefulness of the algorithm in improving the performance scores over individual arms. However,
we note that the diversity gain offered by the mixture approach should be analyzed together with the
quality of generated data, which can be adjusted by setting the coefficient of the quality Precision or
Density score when applying Mixture-UCB. The analysis of the regret of Mixture-UCB-OGD and
conditions under which a mixture can or cannot improve the scores will remain for future studies.
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8 APPENDIX

8.1 PROOF OF THEOREM 1

Consider any x̃i,a ∈ X . Let x̃ be the samples which are identical to x except that one entry xi,a is
changed to x̃i,a. We have∣∣∣L̂(α; x̃)− L̂(α;x)

∣∣∣
=

∣∣∣∣αi

ni
(f(x̃i,a)− f(xi,a)) + 2

∑
(j,b)̸=(i,a)

αiαj

ninj
(κ(x̃i,a, xj,b)− κ(xi,a, xj,b))

+
α2
i

n2i
(κ(x̃i,a, x̃i,a)− κ(xi,a, xi,a))

∣∣∣∣
≤ αi

ni
∆f + 2

∑
(j,b) ̸=(i,a)

αiαj

ninj
∆κ +

α2
i

n2i
∆κ

≤ αi

ni
(∆f + 2∆κ)

=
αi

ni
∆L.

By McDiarmid’s inequality,

P
(
L̂(α;x)− E[L̂(α;x)] ≥ ϵ

)
≤ exp

(
− 2ϵ2∑m

i=1

∑ni

a=1(
αi

ni
∆L)2

)

= exp

(
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)
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Note that ∣∣∣L(α)− E[L̂(α;x)]
∣∣∣

=

∣∣∣∣EX,X′iid∼P
[κ(X,X ′)]− E
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X,X′iid∼P

[κ(X,X ′)]− E[κ(xi,a, xi,a)]
) ∣∣∣∣

≤
m∑
i=1

α2
i

ni
∆κ.

Hence, for δ > 0,

P

L̂(α;x)− L(α) ≥ ∆L

√√√√ log(1/δ)

2

m∑
i=1

α2
i

ni
+∆κ

m∑
i=1

α2
i

ni

 ≤ δ.
The result follows from

∆L

√√√√ log(1/δ)

2

m∑
i=1

α2
i

ni
+∆κ

m∑
i=1

α2
i

ni

≤ ∆L

m∑
i=1

√
log(1/δ)

2

α2
i

ni
+∆κ

m∑
i=1

αi

ni

=

m∑
i=1

∆L

√
log(1/δ)

2ni
+

∆κ

ni

αi.

The other direction of the inequality is similar.
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8.2 PROOF OF THEOREM 2

Before we prove Theorem 2, we first prove a worst case concentration bound.

Lemma 1 Let T ≥ 2, and xi,1, xi,2, . . .
iid∼ Pi for i ∈ [m]. Let ∆L := 2∆κ+∆f . For n1, . . . , nm ∈

[T ], let x(ni)i := (xi,a)i∈[m], a∈[ni]. Fix any δ > 0. With probability at least 1− δ, we have

L(α)− L̂(α;x(ni)i)

≤
m∑
i=1

∆L

√
1

2ni
log

m2T 2

2δ
+

∆κ

ni

αi.

for every n1, . . . , nm ∈ [T ] and probability vector α. The same holds for L̂(α;x(ni)i) − L(α)

instead of L(α)− L̂(α;x(ni)i).

Proof: Fix any n1, . . . , nm ∈ [T ], and write x = x(ni)i . We have

L(α)− L̂(α;x)

=
∑
i,j

αiαj

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x)

)
.

For i = j, applying Theorem 1 on α being the i-th basis vector,

P

fi +Ki,i − f̂i(x)− K̂i,i(x) ≥ ∆L

√
log(1/δ)

2ni
+

∆κ

ni

 ≤ δ. (9)

For i ̸= j, we will use similar arguments as Theorem 1. Let x̃ be the samples which are identical to
x except that one entry xi,a of the i-th arm is changed to x̃i,a. We have∣∣∣∣∣ f̂i(x̃) + f̂j(x̃)

2
+ K̂i,j(x̃)−

f̂i(x) + f̂j(x)

2
− K̂i,j(x)

∣∣∣∣∣
=

∣∣∣∣ 1

2ni
(f(x̃i,a)− f(xi,a)) +

1

ninj

nj∑
b=1

(κ(x̃i,a, xj,b)− κ(xi,a, xj,b))
∣∣∣∣

≤ ∆f

2ni
+

∆κ

ni

=
∆L

2ni
.

Note that E[ f̂i(x)+f̂j(x)
2 + K̂i,j(x)] =

fi+fj
2 −Ki,j . By McDiarmid’s inequality,

P

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x) ≥ ϵ

)

≤ exp

− 2ϵ2

ni

(
∆L

2ni

)2
+ nj

(
∆L

2nj

)2


= exp

(
− 8ϵ2

∆2
L

(
n−1
i + n−1

j

)) .
Hence,

P

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x) ≥ ∆L

√
log(1/δ)

8

(
n−1
i + n−1

j

))
≤ δ. (10)
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Note that the event in (9) does not depend on ni′ for i′ ̸= i, and the event in (10) does not depend
on ni′ for i′ /∈ {i, j}. By union bound, all the events in (9) and (10) do not hold for all i ≤ j and
n1, . . . , nm ∈ [T ] with probability at least

1−mTδ − m(m− 1)

2
T 2δ ≥ 1− m2

2
T 2δ.

If these events do not hold, then
L(α)− L̂(α;x)

=
∑
i,j

αiαj

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x)

)

≤
∑
i

α2
i

∆L

√
log(1/δ)

2ni
+

∆κ

ni

+
∑

(i,j)∈[m]2,i̸=j

αiαj∆L

√
log(1/δ)

8

(
n−1
i + n−1

j

)

≤
∑
i

α2
i

∆L

√
log(1/δ)

2ni
+

∆κ

ni

+∆L

√
log(1/δ)

8

∑
(i,j)∈[m]2,i̸=j

αiαj

(
n
−1/2
i + n

−1/2
j

)

=
∑
i

α2
i

∆κ

ni
+∆L

√
log(1/δ)

8

∑
(i,j)∈[m]2

αiαj

(
n
−1/2
i + n

−1/2
j

)

=
∑
i

α2
i

∆κ

ni
+∆L

√
log(1/δ)

2

∑
i

αin
−1/2
i

≤
∑
i

∆L

√
log(1/δ)

2ni
+

∆κ

ni

αi.

The other direction of the inequality is similar.

We finally prove Theorem 2.

Proof: Assume m ≥ 2, β ≥ 4 and T ≥ 2. If T ≤ 40m, then since T−1 log T is decreasing for
T ≥ 3 (the following inequalities are obviously true for T = 2),√

βm log T

T
≥
√

4m log(40m)

40m
≥
√

log 80

10
≥ 0.66,

and Theorem 2 is trivially true since E
[
L(P̂ (T ))

]
− minα L(α) ≤ ∆L. Hence we can assume

T ≥ 40m+ 1.

Let α∗ be the minimizer of L(α). Let x̄(t) be the sample obtained at the t-th pull. Let α(t−1)
i =

1{t = i} for t ∈ [m], so “x̄(t) is generated from the distribution Pi with probability α(t−1)
i ” holds

for every t ≥ 1. Write x̄([s]) := (x̄(t))t∈[s]. For s < t, let x̂(s) be a random variable with the same
conditional distribution given x̄([s−1]) as x̄(s), but is conditionally independent of all other random
variables given x̄([s−1]). The joint distribution of x̄([t−1]), x̄(t), x̂(s) is

Px̄([t−1]),x̄(t),x̂(s) = Px̄([t−1]),x̄(t)Px̄(s)|x̄([s−1]) .

Recall that x̄(s) is generated from the distribution Pi with probability α(s−1)
i for i ∈ [m], where

α(s−1) = (α
(s−1)
i )i∈[m] is computed using x̄([s−1]). We have

E[κ(x̂(s), x̄(t))]

= E
[
E
[
κ(x̂(s), x̄(t))

∣∣ x̄([t−1])
]]

(a)
= E

 m∑
i=1

m∑
j=1

α
(s−1)
i α

(t−1)
i EX∼Pi,X′∼Pj

[κ(X,X ′)]


= E

[
(α(s−1))⊤Kα(t−1)

]
,

17
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where (a) is because x̂(s) only depends on x̄([s−1]) (i.e., is conditionally independent of all other ran-
dom variables in the expression given x̄([s−1])), and x̄(t) only depends on x̄([t−1]). Write δTV(A∥B)
for the total variation distance between the distributions of the random variables A and B. Write
I(A;B|C) for the conditional mutual information between A and B given C in nats. We have

E[κ(x̄(s), x̄(t))]
(b)

≤ E[κ(x̂(s), x̄(t))] + ∆κδTV(x̄
(s), x̄(t) ∥ x̂(s), x̄(t))

≤ E
[
(α(s−1))⊤Kα(t−1)

]
+∆κδTV(x̄

([s−1]), x̄(s), x̄(t) ∥ x̄([s−1]), x̂(s), x̄(t))

(c)

≤ E
[
(α(s−1))⊤Kα(t−1)

]
+∆κ

√
1

2
I(x̄(s); x̄(t)|x̄([s−1])),

where (b) is because κ takes values over [κ0, κ1] with ∆κ = κ1 − κ0, and (c) is by Pinsker’s
inequality. We also have, for every t,

E[κ(x̄(t), x̄(t))] ≤ E
[
(α(t−1))⊤Kα(t−1)

]
+∆κ.

Hence,

E

[
1

T 2

T∑
s=1

T∑
t=1

κ(x̄(s), x̄(t))

]
− E

[
1

T 2

T∑
s=1

T∑
t=1

(α(s−1))⊤Kα(t−1)

]

≤ 2∆κ

T 2

T∑
s=1

T∑
t=s+1

√
1

2
I(x̄(s); x̄(t)|x̄([s−1])) +

∆κ

T

=
2∆κ

T 2

T∑
t=1

t−1∑
s=1

√
1

2
I(x̄(s); x̄(t)|x̄([s−1])) +

∆κ

T

≤ 2∆κ

T 2

T∑
t=1

√√√√ t− 1

2

t−1∑
s=1

I(x̄(s); x̄(t)|x̄([s−1])) +
∆κ

T

(d)
=

2∆κ

T 2

T∑
t=1

√
t− 1

2
I(x̄([t−1]); x̄(t)) +

∆κ

T

(e)

≤ 2∆κ

T 2

T∑
t=1

√
t− 1

2
logm+

∆κ

T

≤ 2∆κ

T 2

√
logm

2

∫ T

0

√
τdτ +

∆κ

T

=
4∆κ

3

√
logm

2T
+

∆κ

T
,

where (d) is by the chain rule of mutual information, and (e) is because x̄(t) only depends on x̄([t−1])

through the choice of arm b(t) ∈ [m], and hence I(x̄([t−1]); x̄(t)) is upper bounded by the entropy of
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b(t), which is at most logm. Also note that E[f(x̄(t))] = f⊤E[α(t−1)]. Hence,

E[L(P̂ (T ))]

= E

[
1

T

T∑
t=1

f(x̄(t)) +
1

T 2

T∑
s=1

T∑
t=1

κ(x̄(s), x̄(t))

]

≤ E

[
1

T

T∑
t=1

f⊤α(t−1) +
1

T 2

T∑
s=1

T∑
t=1

(α(s−1))⊤Kα(t−1)

]
+

4∆κ

3

√
logm

2T
+

∆κ

T

= E

f⊤ 1

T

T∑
t=1

α(t−1) +

(
1

T

T∑
t=1

α(t−1)

)⊤

K

(
1

T

T∑
t=1

α(t−1)

)+
4∆κ

3

√
logm

2T
+

∆κ

T

= E

[
L

(
1

T

T∑
t=1

α(t−1)

)]
+

4∆κ

3

√
logm

2T
+

∆κ

T

(f)

≤ 1

T

T∑
t=1

E
[
L(α(t−1))

]
+

4∆κ

3

√
logm

2T
+

∆κ

T
, (11)

where (f) is because K is positive semidefinite, and hence L is convex. Therefore, to bound the
optimality gap, we study the expected loss E

[
L(α(t))

]
of the estimate of the optimal mixture dis-

tribution α(t).

Let δ̃ > 0. Let Ẽ be the event

L(α)− L̂(α;x(ni)i) ≤
m∑
i=1

∆L

√
1

2ni
log

m2T 2

2δ̃
+

∆κ

ni

αi

for every n1, . . . , nm ∈ [T ] and probability vector α, as in Lemma 1. By Lemma 1, P(Ẽ) ≥ 1− δ̃.

Fix a time t ∈ {m, . . . , T}. Let Et be the event

L̂(α∗;x(ni)i)− L(α∗) ≤
m∑
i=1

(
∆L

√
β log t

2ni
+

∆κ

ni

)
α∗
i

for every n1, . . . , nm ≥ 1 such that
∑

i ni = t. Since

m∑
i=1

(
∆L

√
1

2ni
log

m2t2

2m2t−2/2
+

∆κ

ni

)
α∗
i

=

m∑
i=1

(
∆L

√
1

2ni
log t4 +

∆κ

ni

)
α∗
i

≤
m∑
i=1

(
∆L

√
β log t

2ni
+

∆κ

ni

)
α∗
i

by β ≥ 4, applying Lemma 1,
P(Et) ≥ 1−m2t−2/2. (12)

If the event Et holds, by taking ni = n
(t)
i ,

L̂(α∗;x(t))− L(α∗) ≤ (ϵ(t))⊤α∗. (13)

If the event Ẽ holds,

L(α)− L̂(α;x(t))

≤
m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
αi (14)
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for every α. Combining (13) and (14) (with α = α(t)),

L̂(α(t);x(t))− L̂(α∗;x(t)) + (ϵ(t))⊤α∗

+

m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

≥ L(α(t))− L(α∗).

By (6), L̂(α(t);x(t))− (ϵ(t))⊤α(t) ≤ L̂(α∗;x(t))− (ϵ(t))⊤α∗, and hence if the events Ẽ, Et hold,

(ϵ(t))⊤α(t) +

m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

≥ L(α(t))− L(α∗). (15)

We have

(ϵ(t))⊤α(t) +

m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

=

m∑
i=1

(
∆L

√
β log t

2n
(t)
i

+
∆κ

n
(t)
i

+∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

=
∑
i

 ∆L√
n
(t)
i

√β

2
log t+

√
1

2
log

m2T 2

2δ̃

+
2∆κ

n
(t)
i

α
(t)
i

≤
∑
i

 ∆L√
n
(t)
i

√β

2
log T +

√
1

2
log

m2T 2

2δ̃

+
∆L√
n
(t)
i

α
(t)
i

= ∆Lη
∑
i

α
(t)
i√
n
(t)
i

,

where

η :=

√
β

2
log T +

√
1

2
log

m2T 2

2δ̃
+ 1.

Substituting into (15), if the events Ẽ, Et hold,

∆Lη
∑
i

α
(t)
i√
n
(t)
i

≥ L(α(t))− L(α∗).

Hence, in general (regardless of whether Ẽ, Et hold), denoting the indicator function of Ẽ ∩ Et as
1Ẽ∩Et

∈ {0, 1},

∑
i

α
(t)
i√
n
(t)
i

≥ L(α(t))− L(α∗)

∆Lη
1Ẽ∩Et

.

Let

Ψ(t) :=

m∑
i=1

ψ(n
(t)
i − 1),

20



Published as a conference paper at ICLR 2025

where ψ(n) :=
∑n

i=1 i
−1/2. Recall that we pull arm i at time t + 1 with probability α(t)

i . The
expected increase of Ψ(t) is

E
[
Ψ(t+1) −Ψ(t)

∣∣x(t)
]
=

m∑
i=1

(
ψ(n

(t)
i )− ψ(n(t)i − 1)

)
α
(t)
i

=

m∑
i=1

α
(t)
i√
n
(t)
i

≥ L(α(t))− L(α∗)

∆Lη
1Ẽ∩Et

.

Note that

Ψ(T ) =

m∑
i=1

ψ(n
(T )
i − 1)

≤
m∑
i=1

∫ n
(T )
i −1

0

min{τ−1/2, 1}dτ

(a)

≤ m

∫ m−1 ∑m
i=1 n

(T )
i −1

0

min{τ−1/2, 1}dτ

= m

∫ T/m−1

0

min{τ−1/2, 1}dτ

(b)
= m

(
1 +

∫ T/m−1

1

τ−1/2dτ

)

= m

(
2

√
T

m
− 1− 1

)
,

where (a) is because a 7→
∫ a

0
min{τ−1/2, 1}dτ is concave, and (b) is because T ≥ 40m + 1, so

T/m− 1 ≥ 1. Therefore,

m

(
2

√
T

m
− 1− 1

)
≥ E

[
Ψ(T ) −Ψ(m)

]
=

T−1∑
t=m

E
[
Ψ(t+1) −Ψ(t)

]
≥

T−1∑
t=m

E
[
L(α(t))− L(α∗)

∆Lη
1Ẽ∩Et

]

≥ 1

∆Lη

T−1∑
t=m

(
E
[
L(α(t))− L(α∗)

]
−∆LP((Ẽ ∩ Et)

c)
)

(c)

≥ 1

∆Lη

T−1∑
t=m

(
E
[
L(α(t))− L(α∗)

]
−∆L(δ̃ +m2t−2/2)

)
≥ 1

∆Lη

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
− T δ̃

η
− m2

2η

∫ T−1

m−1

t−2dt

≥ 1

∆Lη

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
− T δ̃

η
− m2

2η(m− 1)

≥ 1

∆Lη

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
− T δ̃

η
− m

η
,
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where (c) is by (12). Hence,

1

∆L

T−1∑
t=0

E
[
L(α(t))− L(α∗)

]
≤ 1

∆L

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
+m

≤ ηm

(
2

√
T

m
− 1− 1

)
+ T δ̃ + 2m

(d)
= m

(
2

√
T

m
− 1− 1

)(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)
+ 3m

(e)

≤ m

(
2

√
T

m
− 1

)(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)

≤ 2
√
mT

(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)
,

where (d) is by substituting δ̃ = m/T , (e) is because
√

β
2 log T ≥

√
2 log 81 ≥ 2.9 and√

1
2 log

mT 3

2 ≥ 2.5 (recall that T ≥ 40m+ 1 ≥ 81). Substituting into (11),

1

∆L

(
E[L(P̂ (T ))]− L(α∗)

)
≤ 1

∆LT

T∑
t=1

E
[
L(α(t−1))− L(α∗)

]
+

4∆κ

3∆L

√
logm

2T
+

∆κ

T∆L

≤ 2

√
m

T

(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)
+

2

3

√
logm

2T
+

1

2T

=
1√
T

(
2

√
β

2
m log T +

√
2m log

mT 3

2
+ 2
√
m+

2

3

√
logm

2
+

1

2
√
T

)

≤ 1√
T

(
2

√
β

2
m log T +

√
2m log T 4 +

2
√
m log T√
log 81

+
2

3

√
m log T√

m log(40m+ 1)

√
logm

2
+

1

2
√
81
·
√
m log T√
2 log 81

)

=

√
m log T

T

(√
2β + 2

√
2 +

2√
log 81

+
2

3

√
logm

2m log(40m+ 1)
+

1

2
√
81
· 1√

2 log 81

)

≤
√
m log T

T

(√
2β + 2

√
2 +

2√
log 81

+
2

3

√
log 2

4 log 81
+

1

2
√
81
· 1√

2 log 81

)

≤
√
m log T

T

(√
2β + 3.934

)
≤
√
m log T

T

(√
2β +

3.934

2

√
β

)
≤ 3.382

√
βm log T

T
.

This completes the proof of Theorem 2 (with an improved constant 3.382 instead of 4).
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8.3 SPARSE MIXTURE UPPER CONFIDENCE BOUND-CONTINUUM-ARMED BANDIT
ALGORITHM

The optimal mixture may involve a large number of models. It is sometimes of interest to identify
a small subset of models that can still give diverse samples. We now consider the scenario where
there is a cost associated with each arm. If we have to pay a cost per pull, then this cost can be
absorbed into the function f , and the problem reduces to the aforementioned quadratic multi-armed
bandit. However, if the cost is a “subscription fee” that we have to pay for each arm at each round,
even if we do not pull that arm at that time, until we decide to “unsubscribe” the arm and not pull it
anymore, then we have to modify the algorithm to minimize the following average cost

L(P̂ (T )) +
λ

T

m∑
i=1

max{t ∈ [T ] : b(t) = i}, (16)

where P̂ (T ) is the empirical distribution of the first T samples, b(t) is the arm pulled at time t,
max{t ∈ [T ] : b(t) = i} is the last time we pull arm i, and λ is the subscription fee per round.
Intuitively, we have to subscribe to arm i until the last use time max{t ∈ [T ] : b(t) = i}. As
T → ∞, we hope that the average cost (16) approaches the optimal cost minα (L(α) + λ∥α∥0),
where ∥α∥0 is the number of nonzero entries of α. Minimizing (16) allows us to simultaneously
select the best subset of arms and the optimal mixture in the long run, akin to variable selection
methods in statistical learning.

We now generalize the Mixture-UCB-CAB algorithm to the sparse mixture upper confidence bound
– continuum-armed bandit (Sparse-Mixture-UCB-CAB) algorithm, which has parameters λ ≥ 0 and
β > 1. This algorithm is inspired by the backward elimination method for variable selection (?),
which starts with all variables and gradually removing variables irrelevant to our prediction. Here,
we start with a set of subscribed arms S that contains all arms [m], and gradually dropping the worst
arm i′ as long as the upper confidence bound of the optimal cost without arm i′ is lower than the
lower confidence bound of the optimal cost with arm i′, which implies that dropping arm i′ will have
a high likelihood of reducing the cost. The algorithm is given in Algorithm 3, and the experiments
are presented in Appendix 8.4.

Asymptotically, Sparse-Mixture-UCB-CAB attempts to minimize the cost minα (L(α) + λ∥α∥0).
If a fixed sparsity ℓ is desired instead, we can start with λ = 0, and gradually increase λ at each
round until |S| = ℓ, and then stop unsubscribing arms.

8.4 DETAILS OF THE NUMERICAL EXPERIMENTS

Hyper-parameter Choice. The kernel bandwidths for the RKE and KID metrics were chosen
based on the guidelines provided in their respective papers to ensure clear distinction between mod-
els. The values for ∆L and ∆κ in our online algorithms (7) were set according to the magnitudes of
the metrics and their behavior on a validation subset. The number of sampling rounds was adjusted
according to the number of arms and metric convergence, both of which depend on the bandwidth.
To ensure the statistical significance of results, all experiments were repeated 10 times with different
random seeds, and the reported plots represent the average results.

8.4.1 OPTIMAL MIXTURE FOR QUALITY AND DIVERSITY VIA KID

Suppose P is the distribution of generated images of a model, andQ is the target distribution. Recall
that for KID (3), we take the quadratic term to be κ(x, x′) = k(ψ(x), ψ(x′)) (with an expectation
EX,X′∼P [k(ψ(X), ψ(X ′))])) and the linear term to be f(x) = −2EY∼Q[k(ψ(x), ψ(Y ))] (with an
expectation−2EX∼P,Y∼Q[k(ψ(X), ψ(Y ))]). In order to run our online algorithms, we use ∆L and
∆κ based on a validation portion to make sure the UCB terms have the right magnitude for forcing
exploration.

FFHQ Generated Images. In this experiment, we used images generated by five different models:
LDM (Rombach et al., 2022), StyleGAN-XL (Sauer et al., 2022), Efficient-VDVAE (Hazami et al.,
2022), InsGen (Yang et al., 2021), and StyleNAT (Walton et al., 2022). We used 10,000 images from
each model to determine the optimal mixture. A kernel bandwidth of 40 was used for calculating
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Algorithm 3 Sparse-Mixture-UCB-CAB

1: Input: m generative arms, number of rounds T
2: Output: Gathered samples x(T )

3: Initialize the set of subscribed arms S ← [m].
4: for t ∈ {0, . . . ,m− 1} do
5: Pull arm t+ 1 at time t+ 1 to obtain sample xt+1,1 ∼ Pt+1. Set n(m)

t+1 = 1.
6: end for
7: for t ∈ {m, . . . , T − 1} do
8: repeat
9: Compute

α(t) ← argmin
α: supp(α)⊆S

(
L̂(α;x(t)) + λ|S| − (ϵ(t))⊤α

)
, (17)

where ϵ(t) ∈ Rm is defined in (7). Let the minimum value above be C.
10: Compute the following “worst arm” if |S| ≥ 2:

i′ ← argmin
i∈S

min
α: supp(α)⊆S\{i}

(
L̂(α;x(t)) + λ(|S| − 1) + (ϵ(t))⊤α

)
.

Let the minimum value above be C ′.
11: if C ′ ≤ C then
12: Unsubscribe arm i′ (i.e., S ← S\{i′})
13: end if
14: until no more arms are unsubscribed
15: Generate the arm index b(t+1) ∈ [m] at random with P(b(t+1) = i) = α

(t)
i .

16: Pull arm b = b(t+1) at time t+1 to obtain a new sample x
b,n

(t)
b +1

∼ Pb. Set n(t+1)
b = n

(t)
b +1

and n(t+1)
j = n

(t)
j for j ̸= b.

17: end for
18: return samples x(T )

the RKE, and the online algorithms were run for 8,000 sampling rounds. Figure 1 presents a visual
representation of the impact of our algorithm, along with the corresponding FID and KID scores.

In Tables 1 and 2, we observe that the Precision of the optimal mixture is similar to that of the
maximum Precision score among individual models. On the other hand, the Recall-based diversity
improved in the mixture case. However, the quality-measuring Density score slightly decreased for
the selected mixture model, as Density is a linear score for quality that could be optimized by an
individual model. On the other hand, the Coverage score of the mixture model was higher than each
individual model.

Note that Precision and Density are scores on the average quality of samples. Intuitively, the quality
score of a mixture of models is the average of the quality score of the individual models, and hence
the quality score of a mixture cannot be better than the best individual model. On the other hand,
Recall and Coverage measure the diversity of the samples, which can increase by considering a
mixture of the models. To evaluate the net diversity-quality effect, we measured the FID score of
the selected mixture and the best individual model, and the selected mixture model had a better FID
score compared to the individual model with the best FID.

LSUN-Bedroom We used images generated by four different models: StyleGAN (Karras et al.,
2019), Projected GAN (Sauer et al., 2021), iDDPM (Nichol & Dhariwal, 2021), and Unleashing
Transformers (Bond-Taylor et al., 2022). We utilized 10,000 images from each model to compute
the optimal mixture, resulting in weights of (0.51, 0, 0.49, 0). A kernel bandwidth of 40 was applied,
and the algorithm was run for 8,000 sampling steps. The quality and diversity scores for each model,
including the results for the optimal mixture based on KID, are presented in Table 2.

Truncated FFHQ. We used StyleGAN2-ADA (Karras et al., 2020) trained on FFHQ dataset to
generate images. We randomly chose 8 initial points and used the Truncation Method (Marchesi,
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Model Precision ↑ Recall ↑ Density ↑ Coverage ↑ FID ↓ KID (×102) ↓
LDM 0.856 ± 0.008 0.482 ± 0.008 0.959 ± 0.027 0.776 ± 0.006 189.876 ± 1.976 1.484 ± 0.019
StyleGAN-XL 0.798 ± 0.007 0.515 ± 0.007 0.726 ± 0.018 0.691 ± 0.009 186.163 ± 2.752 1.355 ± 0.028
Efficient-VDVAE 0.854 ± 0.011 0.143 ± 0.007 0.952 ± 0.033 0.545 ± 0.008 490.385 ± 4.377 5.339 ± 0.046
InsGen 0.76 ± 0.006 0.281 ± 0.007 0.716 ± 0.016 0.692 ± 0.005 278.235 ± 1.617 2.292 ± 0.025
StyleNAT 0.834 ± 0.008 0.478 ± 0.007 0.867 ± 0.023 0.775 ± 0.007 185.067 ± 2.123 1.442 ± 0.029

Optimal Mixture (KID) 0.818 ± 0.007 0.57 ± 0.008 0.816 ± 0.025 0.765 ± 0.007 168.127 ± 1.596 1.273 ± 0.018
Mixture-UCB-CAB (KID) 0.828 ± 0.007 0.571 ± 0.008 0.838 ± 0.016 0.787 ± 0.007 170.578 ± 2.075 1.342 ± 0.007
Mixture-UCB-OGD (KID) 0.827 ± 0.006 0.573 ± 0.005 0.825 ± 0.015 0.787 ± 0.006 170.113 ± 1.930 1.334 ± 0.007

Table 1: Quality and diversity scores for the FFHQ experiment, including precision, recall, density,
coverage, and FID metrics (± standard deviation).

Model Precision ↑ Recall ↑ Density ↑ Coverage ↑ FID ↓ KID (×102) ↓
StyleGAN 0.838 ± 0.008 0.446 ± 0.007 0.941 ± 0.019 0.821 ± 0.004 175.575 ± 2.055 1.559 ± 0.027
Projected GAN 0.749 ± 0.015 0.329 ± 0.008 0.592 ± 0.027 0.517 ± 0.008 324.066 ± 3.753 3.834 ± 0.053
iDDPM 0.838 ± 0.006 0.641 ± 0.006 0.660 ± 0.018 0.825 ± 0.006 154.680 ± 3.036 1.513 ± 0.035
Unleashing Transformers 0.786 ± 0.008 0.449 ± 0.006 0.649 ± 0.013 0.581 ± 0.013 339.982 ± 6.118 4.131 ± 0.051

Optimal Mixture (KID) 0.838 ± 0.006 0.589 ± 0.005 0.900 ± 0.016 0.833 ± 0.004 149.779 ± 2.238 1.369 ± 0.024
Mixture-UCB-CAB (KID) 0.835 ± 0.007 0.602 ± 0.007 0.894 ± 0.014 0.834 ± 0.005 151.28 ± 1.801 1.438 ± 0.024
Mixture-UCB-OGD (KID) 0.838 ± 0.008 0.599 ± 0.007 0.902 ± 0.023 0.834 ± 0.006 151.10 ± 1.906 1.434 ± 0.026

Table 2: Quality and diversity scores for the LSUN-Bedroom experiment, including precision, recall,
density, coverage, and FID metrics (± standard deviation).

2017; Karras et al., 2019) to generate images with limited diversity around each of the chosen points.
We used truncation value of 0.3 and generated 5000 images from each model to find the optimal
mixture. The weights for the mixture was (0.07, 0.28, 0.10, 0.04, 0.21, 0.11, 0.12, 0.07). A kernel
bandwidth of 40 was used, and 4,000 sampling steps were conducted.

8.4.2 OPTIMAL MIXTURE FOR DIVERSITY VIA RKE

Truncated FFHQ. We employed StyleGAN2-ADA (Karras et al., 2020), trained on the FFHQ
dataset, to generate images. Eight initial points were randomly selected, and the Truncation Method
(Marchesi, 2017; Karras et al., 2019) was applied with a truncation value of 0.3 to generate images
with limited diversity around these points. For the quadratic optimization, 5,000 images were gener-
ated from each model, using a kernel bandwidth of 40 to identify the optimal mixture. In the online
experiment, a new set of generated images was used, and sampling was conducted over 2,000 steps.

Truncated AFHQ Cat. Similar to the previous experiment, we used StyleGAN2-ADA to generate
AFHQ Cat images. Four initial points were selected, and a truncation value of 0.6 was applied to
simulate diversity-controlled models. For the quadratic optimization, 5,000 images were generated
from each model, with sampling conducted over 1,200 steps to determine the optimal mixture.

Style-Specific Generators. We used Stable Diffusion XL to generate images of cars in distinct
styles: realistic, surreal, and cartoon. For this experiment, we utilized 2,000 images from each
model to determine the optimal mixture, which yielded weights of (0.67, 0.27, 0.06). This mixture
increased the RKE value from 7.8 (the optimal value of the realistic images) to 9.2. We set the kernel
bandwidth to 30 and executed the online algorithms over 1,000 sampling steps.

Sofa Images. We generated images of the object “Sofa” using prompts with environmental de-
scriptions across the models FLUX.1-Schnell (Labs, 2024), Kandinsky 3.0 (Vladimir et al., 2024),
PixArt-α (Chen et al., 2023a), and Stable Diffusion XL (Podell et al., 2024). Solving the RKE op-
timization with 1,000 images revealed that sampling 38% from FLUX and 62% from Kandinsky
improved the RKE score from the one-arm optimum of 7.21 to 7.57. We set the kernel bandwidth
to 30 and conducted the online experiment over 700 steps. We observed that Mixture-UCB-OGD
achieved noticeably faster convergence to the optimal mixture RKE in this scenario.

The prompts followed the structure: “A adjective sofa is verb in a location,” with the terms for
Adjective, Action, and Location generated by GPT-4o (Achiam et al., 2023), specifically for the
object ”Sofa.”
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Figure 6: Visual demonstration of the increase in diversity when mixing arms compared to individual
arms for truncated FFHQ generative models. The RKE values for each model and the mixture serve
as indicators of diversity.
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Figure 7: Performance comparison of online algorithms based on the RKE metric for Simulator
Unconditional Generative Models.

Dog Breeds Images. Stable Diffusion XL was used to generate images of three dog breeds: Poo-
dle, Bulldog, and German Shepherd. As shown in Figure 10, using a mixture of models resulted
in an increase in mode count from 1.5 to 3, supporting our claim of enhanced diversity. We set the
kernel bandwidth to 50 and generated 1,000 images for each breed to determine the optimal mixture,
which was (0.33, 0.31, 0.36). Additionally, the online algorithms were executed for 500 sampling
steps.

Red Bird Images. To observe the performance of mixing the models while generating images on
a single prompt, we generate images with the prompt “Red bird, cartoon style” using Kandinsky 3.0
(Vladimir et al., 2024), Stable Diffusion 3-medium (Esser et al., 2024), and PixArt-α Chen et al.
(2023a). We use 8000 images and a kernel bandwidth of 30 to find the optimal mixture in an offline
manner. The increase in diversity is shown in Figure 2. We observe a noticeable boost in the RKE
and Vendi scores, showing the diversity has improved. The performance of our online algorithms
and the comparison of samples generated by each online algorithm are shown in Figure 11.

Text Generative Models. In this experiment, we used the OpenLLMText dataset (Chen et al.,
2023b), which consists of 60,000 human texts rephrased paragraph by paragraph using the models
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Figure 8: Visual demonstration of the increase in diversity when mixing arms compared to individual
arms for truncated AFHQ Cat generative models. The RKE values for each model and the mixture
represent the diversity.
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Figure 9: Visual comparison of diversity of each arm and the mixture for sofa image generators

GPT2-XL (Radford et al., 2019), LLaMA-7B (Touvron et al., 2023), and PaLM (Chowdhery et al.,
2023). To extract features from each text, we employed the RoBERTa text encoder (Liu et al., 2019).
By solving the optimization problem on 10,000 texts from each model, we found that mixing the
models with probabilities (0.02, 0.34, 0.64, 0) achieved the optimal mixture, improving the RKE
from an optimal single model score of 69.3 to 75.2. A bandwidth of 0.6 was used for the kernel, and
we ran the online algorithms for 7,000 steps to demonstrate their performance. As shown in Figure
12a, the results demonstrate the advantage of our online algorithms, suggesting that our method
applies not only to image generators but also to text generators.

Sparse Mixture Four different initial points and StyleGAN2-ADA were used to generate images
with a truncation of 0.6 around the points, simulating diversity-controlled arms. A value of λ = 0.06
and a bandwidth of 30 were selected based on the magnitudes of RKEs from the validation dataset to
determine when to “unsubscribe” arms in the Sparse-Mixure-UCB-CAB algorithm. We conducted
three scenarios, gradually reducing the number of arms to between one and three, and presented a
comparison of the resulting plots and their convergence values in Figure 12b.

8.4.3 OPTIMAL MIXTURE FOR DIVERSITY AND QUALITY VIA RKE AND
PRECISION/DENSITY

In this experiment, we utilized four arms: three of them are StyleGAN2-ADA models trained on
FFHQ, each using a truncation value of 0.3 around a randomly selected point. The fourth arm is

27



Published as a conference paper at ICLR 2025

Generative Model 1 Generative Model 2 Generative Model 3
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Figure 10: Visual comparison of the diversity across individual arms and the optimal mixture for
Dog Breed Generators and Style-Specific Generators.
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Figure 11: Comparison of our proposed algorithms Mixture-UCB-CAB and Mixture-UCB-OGD
with the baseline one arm online algorithms. We plot the diversity-measuring RKE score of the
generated data and display 9 (randomly-selected) samples produced in the process of each algorithm.

StyleGAN2-ADA trained on CIFAR-10. We generated 5,000 images and used a kernel bandwidth
of 30 to calculate the optimal mixture. When optimizing purely for diversity using the RKE metric,
the high diversity of the fourth arm leads to a probability of 0.91 being assigned to it, as shown in
Figure 13. However, despite the increased diversity, the quality of the generated images, based on
the reference distribution, is unsatisfactory.
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Figure 12: Comparison of online algorithms for the RKE metric on text generative models and the
Sparse Mixture algorithm for FFHQ truncated generators
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Figure 13: Visual demonstration of the effect of combining Precision/Density with RKE. The CI-
FAR10 generator is excluded when these quality metrics are applied.

To address this, we incorporate a quality metric, specifically Precision/Density, into the optimization.
We subtract the weighted Precision/Density from the RKE value, ensuring a balance between quality
and diversity. The weight for the quality metric (λ = 0.2) was selected based on validation data
to ensure comparable scaling between the two metrics. As a result, Figure 13 shows that the fourth
arm, which had low-quality outputs, is assigned a weight of zero.

We use the RKE score as K and the weighted Precision/Density as f according to equation 5. The
online algorithms were run for 4,000 steps, with the results depicted in Figure 5.
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