INFERENCE-FRIENDLY MODELS WITH MIXATTEN TION

003

010 011

012

013

014

015

016

017

018

019

021

Anonymous authors

Paper under double-blind review

Abstract

The size of the key-value (KV) cache plays a critical role in determining both the maximum context length and the number of concurrent requests supported during inference in modern language models. The KV cache size grows proportionally with the number of attention heads and the tokens processed, leading to increased memory consumption and slower inference for long inputs. In this work, we explore the use of MixAttention, a model architecture modification closely related to a blog published by Character.AI (Character.AI, 2024). MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers. Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks. We also explore various configurations of this architecture, identifying those that maintain quality across evaluation metrics while optimizing resource efficiency.

023

1 INTRODUCTION

025 026

Transformer-based language models are getting increasing popular in consumer usage as well as industrial workloads. A general trend seen so far has been that bigger models are better at tasks than smaller models, but that comes at the cost of increased inference cost and slower speed (Hoffmann et al., 2022; Sardana et al., 2024). Further, the memory consumption and latency during inference for causal attention transformer models like Llama (Touvron et al., 2023; Dubey et al., 2024), GPT (Radford et al., 2019), and Gemini (Team et al., 2023) increases linearly with the input length. This causes problems for use cases such as Retrieval Augmented Generation (RAG) (Lewis et al., 2020), where the input to the models can become very long (Leng et al., 2024).

An important component of the Transformer architecture whose memory footprint grows with model size and input length is its KV cache. When generating the next output token, the transformer model 036 processes all the tokens in its context through the attention mechanism. For causal attention models, 037 the internal representation of the previous tokens in the context is unaffected by the newer tokens, and hence it can be cached. This is stored in the KV cache, and its size increase with context length (since it caches information for each token seen so far) and with the size of the model (since 040 there is a separate KV cache for each KV head in the model). Larger KV cache not only means 041 more memory consumption by the model, but it also slows down inference because for long inputs, 042 LLM inference can be dominated by the I/O cost of moving the KV cache from HBM to the GPU's 043 shared memory. Thus, it has become imperative to reduce the size of the KV cache for faster and 044 cost-effective inference with modern LLMs.

Several methods have been proposed for reducing the KV cache size including sparse attention methods (Beltagy et al., 2020), reducing the number of KV heads (Ainslie et al., 2023; Shazeer, 2019), KV quantization (Hooper et al., 2024), inference-time cache sparsification through token eviction (Zhang et al., 2024), or even replacing some of the attention layers with State Space Machine (SSM) layers (Lieber et al., 2024). Most of these methods are compatible with others, for example using GQA with Sliding Window Attention (Jiang et al., 2023), using GQA with quantization (Hooper et al., 2024; Lin et al., 2024), or interleaving SSM layers with Sliding Window Attention layers (Lieber et al., 2024; Ren et al., 2024). In this paper, we explore such a combination proposed by Character.AI where they combine Sliding Window Attention with KV cache sharing across layers (Character.AI, 2024). We train and evaluate several variants of this architecture, and find that differ-

Figure 1: (Left) Variants of MixAttention architecture - green bars represent sliding window attention and the curved lines connecting bars represent KV cache sharing. (Right, top row) We see that MixAttention models are faster and use less memory during inference at 32K context length. (Right, bottom row) MixAttention models maintain quality - they match the standard attention model on most evals. The models are all Mixture of Experts with 2B active and 5B total parameters.

ent ways of combining the two ideas result in very different model abilities. In particular, we find some configurations that match the standard transformer model in most short and long context evals, while being faster and more memory efficient during inference.

1.1 CONTRIBUTIONS

066

067

068

069

071

072

073

074 075

076 077

078

079

081

082

084

085

087

090

105

We find that KV cache sharing between layers and adding sliding window layers speeds up inference and reduces inference memory usage while maintaining model quality, although some eval metrics show some degradation (Figure 1). In addition, our ablation experiments show the following:

- Having a few standard attention layers is crucial for the model's long context abilities. In particular, having the standard KV cache computed in the deeper layers is more important for long context abilities than the standard KV cache of the first few layers.
- KV cache of standard attention layers can be shared between non-consecutive layers without any observed degradation in long context abilities.
- Increasing the KV-cache sharing between sliding window layers too much also hurts the long-context abilities.

2 RELATED WORK

Reducing the KV cache size has been an area of active research, with many different approaches. Inthis section we talk about some of them.

Linear Attention and SSM Models. Transformer models (Vaswani, 2017) differ from traditional 094 Recurrent Neural Networks (RNNs) (Sherstinsky, 2020) and modern State Space Models (Gu et al., 095 2022; Ren et al., 2024) in that Transformer models have an internal representation (the KV cache) 096 that grows linearly with the length of the input. This allows RNNs and SSMs to be faster and more 097 memory efficient during inference. However, it has been seen that while such models are competitive 098 with Transformer models on certain tasks, Transformer models still outperform equally-sized pure 099 RNN or pure SSM models on other tasks, especially some long context tasks (Waleffe et al., 2024). 100 Thus, hybrid architectures which interleave attention layers and SSM layers have been proposed, 101 that show that such hybrid architectures exhibit good long context abilities (Lieber et al., 2024; 102 Ren et al., 2024). Other works have linearized the attention mechanism by replacing the softmax 103 operation with kernelized similarity computation, showing both speed and memory improvements for inference (Katharopoulos et al., 2020). 104

106 KV Quantization. KV quantization works by reducing the precision of the cached key-value
 107 (KV) pairs which reduces the overall storage requirements and improves the data movement efficiency during inference (Lin et al., 2024). Hooper et al. (2024) combined several novel methods for

quantizing the KV cache to achieve significant improvements in long-context language model per formance, achieving context lengths up to 10 million tokens while maintaining performance metrics
 close to those of unquantized models.

111

KV Eviction. KV eviction dynamically remove less relevant or older tokens from the KV cache during inference to reduce its size. This approach ensures that only the most pertinent tokens are retained, helping alleviate memory bottlenecks in long-context tasks. Zhang et al. (2024) proposed Heavy-Hitter Oracle (H₂O), an efficient generative inference approach that selectively evicts tokens from the cache based on their relevance, significantly improving the performance of models operating on large contexts. Chen et al. (2024) introduced NaCl which generalizes H₂O and adds random token eviction to retain long context performance while evicting tokens.

119 KV Head Reduction. Architectures like Multi-Query Attention (MQA) (Shazeer, 2019) and 120 Grouped Query Attention (GQA) (Ainslie et al., 2023) show that the number of KV heads in the 121 attention layer can be decreased without significantly impacting model performance. Multi-Query 122 Attention (MQA) simplifies the standard Multi-Head Attention mechanism (Vaswani, 2017) by shar-123 ing the key and value projections across all attention heads in a layer while retaining independent 124 queries. This approach drastically reduces the size of the KV cache, as fewer unique key-value 125 pairs are stored during inference. However, when serving models on multiple GPUs using Tensor 126 Parallelism (TP) (Shoeybi et al., 2019), the single key and value cache must be replicated across the tensor parallel ranks, thus essentially losing a significant fraction of the memory savings gained 127 from using MQA. Hence, Grouped Query Attention (GQA) extends the same idea of query sharing 128 but instead of having one set of keys and values for all the queries, this architecture partitions queries 129 into multiple sets and shares keys and values within each set, where the number of sets (and hence 130 the number of keys and values) often matches the TP rank. 131

132 **Sparse and Local Attention.** Sparse and Local Attention mechanisms have been extensively ex-133 plored as a means to improve the efficiency of Transformer models by reducing the quadratic com-134 plexity of traditional global attention. Since these methods focus on attending to only a subset of 135 tokens, they reduce the computational and memory costs during both training and inference. One of 136 the most prominent methods in this category is Longformer (Beltagy et al., 2020), which introduces 137 several variants of local attention mechanism including Sliding Window Attention. Sliding Window 138 Attention and its variants restrict the attention of each token to a fixed window of neighboring tokens, rather than all tokens in the sequence, drastically reducing the number of key-value pairs that 139 need to be stored and processed during inference. This method has been shown to work well but 140 often fails on tasks with long-context dependencies due to the fundamental lack of global attention. 141 Sparse Attention mechanisms further optimize the attention computation by introducing sparsity 142 patterns, where only certain key-value pairs are attended to based on predefined criteria (Beltagy 143 et al., 2020). Notably, GPT-3 used interleaving global and local attention layers in its architecture 144 (Brown, 2020). 145

KV Sharing. KV Sharing (Brandon et al., 2024; Wu and Tu, 2024) is a key technique used to reduce the memory footprint of Transformer models during inference by allowing multiple layers to reuse the same key-value (KV) instead of having separate KV pairs for each layer. Brandon et al. (2024) demonstrate that cross-layer attention, where KV caches are shared across different layers, leads to substantial memory savings without degrading accuracy.

151 152

153

3 MIXATTENTION

Standard transformer models use global attention in each layer. To create inference-friendly model
 architectures, we use a combination of sliding window attention layers, standard attention, and KV
 cache reuse layers. Below is a brief discussion on each component:

158 Sliding Window Attention Layers (Beltagy et al., 2020): In Sliding Window Attention (or Local 159 Attention) with window size s, the query only pays attention to the last s keys instead of all the keys 160 preceding it. This means that during inference, the KV cache size needs to only store the KV 161 tensors for the past s tokens instead of storing the KV tensors for all the preceding tokens. In our 162 experiments, we set a window size of s = 1024 tokens. Standard Attention Layers: We found that
even though Standard Attention Layers lead to
bigger KV caches and slower attention computation compared to Sliding Window Attention,
having a few Standard Attention Layers is crucial for the model's long context abilities.

168

KV cache reuse (Brandon et al., 2024; Wu
and Tu, 2024): This refers to a layer in
the transformer network reusing the KV cache
computed by a earlier layer. Hence, if every *l*layers share KV tensors, then the size of KV
cache is reduced by factor of 1/*l*.

We experimented with different combinations
of the components above to ablate the effects of
each of them (Figure 2). We found that not only
do each of the above components play important roles in long context abilities and inference

Figure 2: MixAttention: (Left) A standard transformer model where all layers are standard attention layers. (Middle) Inference-friendly models with MixAttention. Green bars represent sliding window attention and the lines connecting bars represent KV cache sharing. (Right) A model where all layers are sliding window attention.

speed and memory consumption, but also their relative positions and counts have significant effects on those metrics.

The models we trained are 24-layer Mixture of Experts (MoE) models with 1.64B active and 5.21B
total parameters. We used RoPE positional embeddings (Su et al., 2024), and increased the RoPE
base theta as we increased the context length during training. We used Grouped Query Attention
(Ainslie et al., 2023) with 12 attention heads and 3 KV heads.

186 187

188 189

194

196

199

200

201

202

203

204

205

206

207

208

210

211

- 4 EXPERIMENTS
- 4.1 TRAINING

We used LLM Foundry (Mosaic, 2023b) to train MixAttention models. Similar to prior work on training long context models [5, 6], we followed a multi-stage training procedure to impart long context abilities to the models.

- 1. We pretrained the models with a RoPE theta of 0.5M on 101B tokens, where each sequence sequence has been truncated to 4k token length.
- 2. To increase the context length, we then trained the model on 9B tokens on a mix of natural language and code data, where the sequences have been truncated to 32k tokens. We increased the RoPE theta to 8M for this stage. When training at 32k context length (*i.e.*, this step and the next step), we trained only the attention weights and froze the rest of the network. We found that this delivered better results than full network training.
 - 3. Finally, we trained the model on a 32K-length, synthetic, long-context QA dataset [5, 8].
 - To create the dataset, we took natural language documents and chunked them into 1k-token chunks. Each chunk was then fed to a pretrained instruction model and the model was prompted to generate a question-answer pair based on the chunk. Then, we concatenated chunks from different documents together to serve as the "long context." At the end of this long context, the question-answer pairs for each of the chunks were added. The loss gradients were computed only on the answer parts of these sequences.
 - This phase of training was conducted on 500M tokens (this number includes the tokens from the context, questions, and answers). The RoPE theta was kept at 8M for this stage.
- 4.2 EVALUATION
- 213

The models were evaluated on the Mosaic Evaluation Gauntlet v 0.3.0 (Mosaic, 2023a) to measure
 model quality across various metrics including reading comprehension, commonsense reasoning,
 world knowledge, symbolic problem solving, and language understanding. To evaluate the models'

long context abilities, we used RULER (Hsieh et al., 2024) at a context length of 32000 tokens.
 RULER is a composite benchmark consisting of 13 individual evals of the following types:

- Needle-in-a-haystack (NIAH): These types of evals hide a single or multiple keys and values in a long text, and the model is evaluated on its ability to retrieve the correct value(s) from the long context for a given key(s).
- Variable Tracking (VT): This eval provides the model with a long context containing variable assignment statements, and the model is tasked to figure out which variables have a particular value by the end of all the variable assignments.
 - Common and Frequent Word Extraction (CWE and FWE): These tasks ask the model to extract the most common or frequent words from the text.
- Question Answering (QA): Given a long context, the model is asked a question from somewhere in the context and the model is evaluated on whether it can correctly answer that question.

We used SGLang (Zheng et al., 2023) to deploy our models on 1 NVIDIA H100 GPU to run RULER and get inference speed and memory consumption metrics.

5 RESULTS

219

220

221 222

224 225

226

227

228

229

230 231

232

233 234

235 236

237

5.1 POSITION AND COUNT OF STANDARD ATTENTION KV CACHES

To measure the effect of the position and count
of the standard attention KV caches, we tried
four variants (Figure 3). All the configurations
are variants of the configuration proposed in
Character.AI's blog (Character.AI, 2024).

243 *MA*: This variant has a single standard attention KV cache, which is the KV cache of the first layer. All the other standard attention layers share this KV cache.

247
248
249
249
250
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251

- MA-Offset: This variant is similar to MA, but Itles, we train and evaluate the 4 models shown above.
 the first standard attention layer is offset to a later layer to allow the model to process the local context for a few layers before the standard attention layer is used to look at longer contexts.
- MA-Pairs: This variant computes two standard attention KV caches (at the first and thirteenth layer),
 which are then shared with another standard attention layer each.
- We compared these models to a transformer model with Standard Attention and a transformer model with Sliding Window Attention in all layers.
- 260 While the loss curves in Stages 1 and 2 of training were close for all the models, we found that 261 in Stage 3 (training on long context QA dataset), there was a clear bifurcation in the loss curves 262 (Figure 4, top). In particular, we see that configurations MA and MA-EndSlide show much worse loss than the others. These results are consistent with the long context RULER evals, where we 264 found that MA and MA-EndSlide performed much worse than others (Figure 4, bottom). Their 265 performance was similar to the performance of the network with only sliding window attention in 266 all layers. We think the loss in Stage 3 correlates well with RULER evals because unlike Stages 1 and 2, which were next-word prediction tasks where local context was sufficient to predict the next word 267 most of the time, in Stage 3 the model needed to retrieve the correct information from potentially 268 long-distance context to answer the questions. As we see from the RULER evals, MA-Offset and MA-Pairs have better long-context abilities than MA and MA-EndSlide across all the categories.

Figure 4: Effect of Standard Attention Layers: (Top) Loss curves of the models when fine tuning on long context QA dataset. (Bottom) RULER evals for the models. MA and MA-EndSlide perform poorly on long context tasks whereas MA-Offset and MA-Pairs perform well. This indicates that having a standard attention KV cache which is computed in later layers is important for long context abilities. We also found that the loss on long context QA dataset correlates well with the model's long context abilities.

Both MA and MA-EndSlide have only one standard attention KV-cache, which is computed in the first layer, whereas both MA-Offset and MA-Pairs have at least one standard attention KV-cache which is computed in deeper layers. Hence, this indicates that having at least one standard attention KV cache that is computed in the deeper layers of a transformer model is necessary for good long-context abilities.

301 302 303

304

316

292

293

295 296 297

298

299

300

5.2 KV CACHE SHARING IN SLIDING WINDOW LAYERS

We found that increasing the sharing between 305 sliding window layers (Figure 5) degraded 306 the model's long context performance: MA-307 Offset-SlideShare was worse than MA-Offset 308 and MA-Pairs-SlideShare was worse than MA-Pairs (Figure 6). This shows that the KV cache 310 sharing pattern amongst the sliding window 311 layers is also important for long context abili-312 ties. We have provided some more ablation ex-313 periments in the appendix. 314

315 5.3 GAUNTLET EVALS

Using the Mosaic Eval Gauntlet v0.3.0 (Mosaic, 2023a), we measured the performance of MixAttention models on standard tasks like

Figure 5: Increasing KV cache sharing in sliding window layers: To measure the effect of KV cache sharing in the sliding window layers, we compared the architectures shown in the figure above.

MMLU (Hendrycks et al., 2021), HellaSwag (Zellers et al., 2019), etc. to verify that they retain good shorter context abilities. All of the tasks in this eval suite have context lengths of less than a few thousand tokens.

323 We found that MixAttention models have similar eval metrics to the baseline model on commonsense reasoning, language understanding, and world knowledge. However, we see that they perform

Figure 6: Effect of increasing KV cache sharing in sliding window layers: (Top) Loss curves of the models when fine tuning on long context QA dataset. (Bottom) RULER evals for the models. We found that increasing the KV cache sharing in sliding window layers worsened long context abilities of MixAttention Models.

Figure 7: Performance of MixAttention models on the Eval Gauntlet: We found that MixAttention models have similar eval metrics to the baseline model on commonsense reasoning, language understanding, and world knowledge. However, we see that they perform worse on reading comprehension.

worse on reading comprehension. An interesting open question is if a different MixAttention configuration or training MixAttention models longer can recover the reading comprehension abilities.

5.4 INFERENCE SPEED AND MEMORY CONSUMPTION

348

349

350

362

364 365 366

367

368 369

370

371

We benchmarked the inference speed and memory consumption of MixAttention models by deploying them on a single NVIDIA H100 GPU using SGLang and querying them with 300 prompts, with input length 31000 and output length 1000. In Figure 8, we see that the inference speed of Mix-Attention models is much faster than standard attention models. We also see in Figure 8 that with MixAttention, we can support a much larger inference batch size in terms of total number of tokens.

377 Note that the implementation of Sliding Window Attention in SGLang at the time of writing this paper did not optimize the memory consumption for sliding window attention; hence in Figure 8,

Figure 8: Inference with MixAttention: (Left) MixAttention models have significantly faster inference than standard transformers. (Right) MixAttention models can support more tokens, and thus larger batch sizes, during inference.

sliding window attention has the same maximum number of tokens as the standard attention model. Optimizing the memory consumption for sliding window attention should further increase the maximum number of tokens that MixAttention can support during inference.

6 CONCLUSION

We find that MixAttention models are competitive with standard attention models on both longand short-context abilities while being faster during inference and supporting larger batch sizes. We
note that on some long context tasks like Variable Tracking and Common Word Extraction, neither
MixAttention nor standard attention models perform well. We believe this was because our models
weren't trained long enough or the models need a different kind of long context data to be trained
for such tasks. More research needs to be done to measure the impact of MixAttention architectures
on such metrics.

We encourage others to explore more MixAttention architectures to learn more about them. Beloware a few observations to help with further research:

- Adding a standard attention layer in the initial layers by itself does not seem to help long context abilities (for example, see MA-NoShare-1 in the appendix), even if the KV cache from that layer is reused in layers deeper into the network (MA and MA-EndSlide). Hence we recommend placing the first standard attention layer deeper in the network (like MA-Offset) or having multiple standard attention layers, at least one of which is computed at a deeper layer (like MA-Pairs).
 - Sliding window layers also contribute to the model's long context abilities. Increasing the KV cache sharing amongst the sliding window layers worsened long context abilities (MA-Offset-SlideShare and MA-Pairs-SlideShare). For that reason, we think that the 2-3 sharing pattern in sliding window layers (Character.AI, 2024) seems to strike a good balance.
 - Sharing standard attention KV caches between consecutive layers gave mixed results, with slightly worse accuracy on long context QA tasks (see the appendix).
 - In our experiments, MA-Offset and MA-Pair showed great speedup and memory savings during inference, while also maintaining long and short context abilities. Hence, MA-Offset and MA-Pairs might be good configurations for further research.

In general, there is a large hyperparameter space to explore, and we look forward to seeing a variety
of new strategies for reducing the cost of inference via combinations of sliding window attention
and KV cache reuse.

429 REFERENCES

431 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-

432 433	points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4895–4901, 2023.
434 435 436	Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. <i>arXiv preprint arXiv:2004.05150</i> , 2020.
437	William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Raga
438	Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
439	arXiv:2405.12981, 2024.
440 441	Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.
442 443	Character.AI. Optimizing AI Inference at Character.AI — research.character.ai. https://research.character.ai/optimizing-inference/, 2024.
444	Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
446	Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction frame-
447 448	work for llm at inference time. In <i>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 7913–7926, 2024.
449	Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
450	Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
451	arXiv preprint arXiv:2407.21783, 2024.
452	Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state spaces. In <i>International Conference on Learning Representations</i> , 2022.
453	
404	Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jaco
456	Steinhardt. Measuring massive multitask language understanding. In <i>International Conference</i>
457	on Learning Representations, 2021.
458	Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskava, Trevor, Cai, Eliza
459	Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
460 461	ing compute-optimal large language models. In <i>Proceedings of the 36th International Conference on Neural Information Processing Systems</i> , pages 30016–30030, 2022.
462 463 464 465	Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache quantization. <i>arXiv preprint arXiv:2401.18079</i> , 2024.
466 467 468	Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language models? <i>arXiv preprint arXiv:2404.06654</i> , 2024.
469 470 471 472	Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.
473 474 475	Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In <i>International conference on machine learning</i> , pages 5156–5165. PMLR, 2020.
476 477 478	Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, and Michael Carbin. Long Context RAG Performance of LLMs — databricks.com. https://www.databricks.com/blog/long-context-rag-performance-llms, 2024.
479 480 481 482 483	Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera- tion for knowledge-intensive nlp tasks. <i>Advances in Neural Information Processing Systems</i> , 33: 9459–9474, 2020.
484 485	Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer- mamba language model. <i>arXiv e-prints</i> , pages arXiv–2403, 2024.

- 486 Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song 487 Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv 488 preprint arXiv:2405.04532, 2024. 489 Databricks Mosaic. Mosaic eval gauntlet v0.3.0 - evaluation suite. https://github. 490 com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_ 491 GAUNTLET.md, 2023a. 492 493 Llm foundry. Databricks Mosaic. https://https://github.com/mosaicml/ 494 llm-foundry/, 2023b. 495 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language 496 models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 497 498 Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-499 ple hybrid state space models for efficient unlimited context language modeling. arXiv preprint 500 arXiv:2406.07522, 2024. 501 Nikhil Sardana, Jacob Portes, Sasha Douboy, and Jonathan Frankle. Beyond chinchilla-optimal: 502 Accounting for inference in language model scaling laws. In Forty-first International Conference on Machine Learning, 2024. 504 505 Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150, 2019. 506 507 Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory 508 (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020. 509 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan 510 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-511 allelism. arXiv preprint arXiv:1909.08053, 2019. 512 513 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-514 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. 515 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 516 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly 517 capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 518 519 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and 521 efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 522 A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. 523 524 Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert 525 Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-526 based language models. arXiv preprint arXiv:2406.07887, 2024. 527 Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models. 528 arXiv preprint arXiv:2405.10637, 2024. 529 530 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-531 chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4791-4800, 2019. 532 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, 534 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-535 erative inference of large language models. Advances in Neural Information Processing Systems, 536 36, 2024. Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, 538
- 539 Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language models using sglang. *arXiv preprint arXiv:2312.07104*, 2023.

Figure 10: Effect of KV cache sharing between consecutive layers: (Top) Loss curves of the models when fine tuning on long context QA dataset. (Bottom) RULER evals for the models. We found that KV cache sharing between consecutive layers does not consistently increase long context abilities across all evals. However, for tasks like SQuAD QA and Hotpot QA, which can be indicative of long context RAG abilities, the performance was slightly worse when sharing KV cache between consecutive layers.

A ADDITIONAL ABLATIONS

565

566

571 572 573

574 575

A.1 SHARING STANDARD ATTENTION KV CACHES BETWEEN CONSECUTIVE LAYERS

Since the transformer layers progressively up-576 date the latent representation of a token as it 577 progresses through the layers, the Query, Key, 578 and Value tensors might have significantly dif-579 ferent representations for layers that are far 580 apart. Hence, it might make more sense to 581 share KV caches between consecutive layers. 582 To test this, we compared four such config-583 urations: MA-Successive-1, MA-Successive-584 2, MA-Successive-3, and MA-Successive-4 against MA-Pairs. These configurations vary 585 the positions of the standard KV attention lay-586 ers and the distance between the consecutive 587 pairs of standard KV attention layers. 588

Figure 9: KV cache sharing between consecutive layers: To measure the effect of KV cache sharing between consecutive layers, we tried the four configurations above.

We determined that all the models have similar loss curves and similar performance on NIAH single 1, 2, and 3 tasks, which we consider to be the easiest long context tasks. However, we did not see a consistent pattern across the other NIAH tasks. For long context QA tasks, we found that MA-Pairs was slightly better than the others. These results indicate that sharing standard attention KV cache between layers that are further apart does not lead to any significant degradation in long context abilities as compared to sharing standard attention KV cache between consecutive layers.

Figure 11: KV cache sharing between consecutive layers: To measure the effect of KV cache sharing between consecutive layers, we tried the four configurations above.

Figure 12: Effect of no standard attention KV-cache sharing: (Top) Loss curves of the models when fine tuning on long context QA dataset. (Bottom) RULER evals for the models. We found that both MA-NoShare-2 and MA-NoShare-3 were comparable with MA-Offset.

A.2 EFFECT OF SHARING STANDARD ATTENTION KV CACHE

To test the effect of sharing KV cache between standard attention layers, we tried out three configurations: MA-NoShare-1, MA-NoShare-2, and MA-NoShare-3 (Figure 11). We found that MA-NoShare-1 performed very badly on RULER, indicating its lack of long context abilities. However, MA-NoShare-2 and MA-NoShare-3 were comparable to MA-Offset on long context tasks. Hence, we think that further research is needed to ascertain the effects of sharing standard attention KV cache.