
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INFERENCE-FRIENDLY MODELS WITH MIXATTEN-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

The size of the key-value (KV) cache plays a critical role in determining both the
maximum context length and the number of concurrent requests supported during
inference in modern language models. The KV cache size grows proportionally
with the number of attention heads and the tokens processed, leading to increased
memory consumption and slower inference for long inputs. In this work, we ex-
plore the use of MixAttention, a model architecture modification closely related to
a blog published by Character.AI (Character.AI, 2024). MixAttention combines
sliding window attention, where only a small subset of recent tokens is stored in
the KV cache, with KV cache sharing across layers. Our experiments demonstrate
that MixAttention significantly reduces memory usage and improves inference
speed without sacrificing model performance in both short and long-context tasks.
We also explore various configurations of this architecture, identifying those that
maintain quality across evaluation metrics while optimizing resource efficiency.

1 INTRODUCTION

Transformer-based language models are getting increasing popular in consumer usage as well as
industrial workloads. A general trend seen so far has been that bigger models are better at tasks than
smaller models, but that comes at the cost of increased inference cost and slower speed (Hoffmann
et al., 2022; Sardana et al., 2024). Further, the memory consumption and latency during inference
for causal attention transformer models like Llama (Touvron et al., 2023; Dubey et al., 2024), GPT
(Radford et al., 2019), and Gemini (Team et al., 2023) increases linearly with the input length. This
causes problems for use cases such as Retrieval Augmented Generation (RAG) (Lewis et al., 2020),
where the input to the models can become very long (Leng et al., 2024).

An important component of the Transformer architecture whose memory footprint grows with model
size and input length is its KV cache. When generating the next output token, the transformer model
processes all the tokens in its context through the attention mechanism. For causal attention models,
the internal representation of the previous tokens in the context is unaffected by the newer tokens,
and hence it can be cached. This is stored in the KV cache, and its size increase with context
length (since it caches information for each token seen so far) and with the size of the model (since
there is a separate KV cache for each KV head in the model). Larger KV cache not only means
more memory consumption by the model, but it also slows down inference because for long inputs,
LLM inference can be dominated by the I/O cost of moving the KV cache from HBM to the GPU’s
shared memory. Thus, it has become imperative to reduce the size of the KV cache for faster and
cost-effective inference with modern LLMs.

Several methods have been proposed for reducing the KV cache size including sparse attention meth-
ods (Beltagy et al., 2020), reducing the number of KV heads (Ainslie et al., 2023; Shazeer, 2019),
KV quantization (Hooper et al., 2024), inference-time cache sparsification through token eviction
(Zhang et al., 2024), or even replacing some of the attention layers with State Space Machine (SSM)
layers (Lieber et al., 2024). Most of these methods are compatible with others, for example using
GQA with Sliding Window Attention (Jiang et al., 2023), using GQA with quantization (Hooper
et al., 2024; Lin et al., 2024), or interleaving SSM layers with Sliding Window Attention layers
(Lieber et al., 2024; Ren et al., 2024). In this paper, we explore such a combination proposed by
Character.AI where they combine Sliding Window Attention with KV cache sharing across layers
(Character.AI, 2024). We train and evaluate several variants of this architecture, and find that differ-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Standard 
Transformer 

Model

MA MA-Offset MA-Pairs

MixAttention Models

0

100

200

300

400

500

600

Ti
m

e 
(in

 se
co

nd
s)

Time for processing 300 prompts (input: 31K, output: 1K toks)
Standard Attention
MA
MA-Offset
MA-Pairs

0

1

2

3

4

To
ke

ns
 (i

n 
m

illi
on

)

1e6 Maximum inference batch size

Commonsense
reasoning

Language
understanding

Reading
Comprehension

World
knowledge

0.0

0.1

0.2

0.3

0.4

Short context evals (Mosaic Eval Gauntlet)
Standard Attention
MA
MA-Offset
MA-Pairs

Needle-in-a-haystack SQuAD QA Hotpot QA
0

20

40

60

80

100

Ac
cu

ra
cy

Long context evals (RULER) at 32K context length

Figure 1: (Left) Variants of MixAttention architecture - green bars represent sliding window attention and the
curved lines connecting bars represent KV cache sharing. (Right, top row) We see that MixAttention models
are faster and use less memory during inference at 32K context length. (Right, bottom row) MixAttention
models maintain quality - they match the standard attention model on most evals. The models are all Mixture
of Experts with 2B active and 5B total parameters.

ent ways of combining the two ideas result in very different model abilities. In particular, we find
some configurations that match the standard transformer model in most short and long context evals,
while being faster and more memory efficient during inference.

1.1 CONTRIBUTIONS

We find that KV cache sharing between layers and adding sliding window layers speeds up inference
and reduces inference memory usage while maintaining model quality, although some eval metrics
show some degradation (Figure 1). In addition, our ablation experiments show the following:

• Having a few standard attention layers is crucial for the model’s long context abilities. In
particular, having the standard KV cache computed in the deeper layers is more important
for long context abilities than the standard KV cache of the first few layers.

• KV cache of standard attention layers can be shared between non-consecutive layers with-
out any observed degradation in long context abilities.

• Increasing the KV-cache sharing between sliding window layers too much also hurts the
long-context abilities.

2 RELATED WORK

Reducing the KV cache size has been an area of active research, with many different approaches. In
this section we talk about some of them.

Linear Attention and SSM Models. Transformer models (Vaswani, 2017) differ from traditional
Recurrent Neural Networks (RNNs) (Sherstinsky, 2020) and modern State Space Models (Gu et al.,
2022; Ren et al., 2024) in that Transformer models have an internal representation (the KV cache)
that grows linearly with the length of the input. This allows RNNs and SSMs to be faster and more
memory efficient during inference. However, it has been seen that while such models are competitive
with Transformer models on certain tasks, Transformer models still outperform equally-sized pure
RNN or pure SSM models on other tasks, especially some long context tasks (Waleffe et al., 2024).
Thus, hybrid architectures which interleave attention layers and SSM layers have been proposed,
that show that such hybrid architectures exhibit good long context abilities (Lieber et al., 2024;
Ren et al., 2024). Other works have linearized the attention mechanism by replacing the softmax
operation with kernelized similarity computation, showing both speed and memory improvements
for inference (Katharopoulos et al., 2020).

KV Quantization. KV quantization works by reducing the precision of the cached key-value
(KV) pairs which reduces the overall storage requirements and improves the data movement effi-
ciency during inference (Lin et al., 2024). Hooper et al. (2024) combined several novel methods for

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

quantizing the KV cache to achieve significant improvements in long-context language model per-
formance, achieving context lengths up to 10 million tokens while maintaining performance metrics
close to those of unquantized models.

KV Eviction. KV eviction dynamically remove less relevant or older tokens from the KV cache
during inference to reduce its size. This approach ensures that only the most pertinent tokens are
retained, helping alleviate memory bottlenecks in long-context tasks. Zhang et al. (2024) proposed
Heavy-Hitter Oracle (H2O), an efficient generative inference approach that selectively evicts tokens
from the cache based on their relevance, significantly improving the performance of models operat-
ing on large contexts. Chen et al. (2024) introduced NaCl which generalizes H2O and adds random
token eviction to retain long context performance while evicting tokens.

KV Head Reduction. Architectures like Multi-Query Attention (MQA) (Shazeer, 2019) and
Grouped Query Attention (GQA) (Ainslie et al., 2023) show that the number of KV heads in the
attention layer can be decreased without significantly impacting model performance. Multi-Query
Attention (MQA) simplifies the standard Multi-Head Attention mechanism (Vaswani, 2017) by shar-
ing the key and value projections across all attention heads in a layer while retaining independent
queries. This approach drastically reduces the size of the KV cache, as fewer unique key-value
pairs are stored during inference. However, when serving models on multiple GPUs using Tensor
Parallelism (TP) (Shoeybi et al., 2019), the single key and value cache must be replicated across
the tensor parallel ranks, thus essentially losing a significant fraction of the memory savings gained
from using MQA. Hence, Grouped Query Attention (GQA) extends the same idea of query sharing
but instead of having one set of keys and values for all the queries, this architecture partitions queries
into multiple sets and shares keys and values within each set, where the number of sets (and hence
the number of keys and values) often matches the TP rank.

Sparse and Local Attention. Sparse and Local Attention mechanisms have been extensively ex-
plored as a means to improve the efficiency of Transformer models by reducing the quadratic com-
plexity of traditional global attention. Since these methods focus on attending to only a subset of
tokens, they reduce the computational and memory costs during both training and inference. One of
the most prominent methods in this category is Longformer (Beltagy et al., 2020), which introduces
several variants of local attention mechanism including Sliding Window Attention. Sliding Window
Attention and its variants restrict the attention of each token to a fixed window of neighboring to-
kens, rather than all tokens in the sequence, drastically reducing the number of key-value pairs that
need to be stored and processed during inference. This method has been shown to work well but
often fails on tasks with long-context dependencies due to the fundamental lack of global attention.
Sparse Attention mechanisms further optimize the attention computation by introducing sparsity
patterns, where only certain key-value pairs are attended to based on predefined criteria (Beltagy
et al., 2020). Notably, GPT-3 used interleaving global and local attention layers in its architecture
(Brown, 2020).

KV Sharing. KV Sharing (Brandon et al., 2024; Wu and Tu, 2024) is a key technique used to
reduce the memory footprint of Transformer models during inference by allowing multiple layers to
reuse the same key-value (KV) instead of having separate KV pairs for each layer. Brandon et al.
(2024) demonstrate that cross-layer attention, where KV caches are shared across different layers,
leads to substantial memory savings without degrading accuracy.

3 MIXATTENTION

Standard transformer models use global attention in each layer. To create inference-friendly model
architectures, we use a combination of sliding window attention layers, standard attention, and KV
cache reuse layers. Below is a brief discussion on each component:

Sliding Window Attention Layers (Beltagy et al., 2020): In Sliding Window Attention (or Local
Attention) with window size s, the query only pays attention to the last s keys instead of all the keys
preceding it. This means that during inference, the KV cache size needs to only store the KV
tensors for the past s tokens instead of storing the KV tensors for all the preceding tokens. In our
experiments, we set a window size of s = 1024 tokens.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Standard 
Transformer 

Model

MA MA-Offset MA-Pairs Sliding 
Window 
Model

MixAttention Models

Figure 2: MixAttention: (Left) A standard trans-
former model where all layers are standard attention
layers. (Middle) Inference-friendly models with Mix-
Attention. Green bars represent sliding window atten-
tion and the lines connecting bars represent KV cache
sharing. (Right) A model where all layers are sliding
window attention.

Standard Attention Layers: We found that
even though Standard Attention Layers lead to
bigger KV caches and slower attention compu-
tation compared to Sliding Window Attention,
having a few Standard Attention Layers is cru-
cial for the model’s long context abilities.

KV cache reuse (Brandon et al., 2024; Wu
and Tu, 2024): This refers to a layer in
the transformer network reusing the KV cache
computed by a earlier layer. Hence, if every l
layers share KV tensors, then the size of KV
cache is reduced by factor of 1/l.

We experimented with different combinations
of the components above to ablate the effects of
each of them (Figure 2). We found that not only
do each of the above components play impor-
tant roles in long context abilities and inference
speed and memory consumption, but also their relative positions and counts have significant effects
on those metrics.

The models we trained are 24-layer Mixture of Experts (MoE) models with 1.64B active and 5.21B
total parameters. We used RoPE positional embeddings (Su et al., 2024), and increased the RoPE
base theta as we increased the context length during training. We used Grouped Query Attention
(Ainslie et al., 2023) with 12 attention heads and 3 KV heads.

4 EXPERIMENTS

4.1 TRAINING

We used LLM Foundry (Mosaic, 2023b) to train MixAttention models. Similar to prior work on
training long context models [5, 6], we followed a multi-stage training procedure to impart long
context abilities to the models.

1. We pretrained the models with a RoPE theta of 0.5M on 101B tokens, where each sequence
sequence has been truncated to 4k token length.

2. To increase the context length, we then trained the model on 9B tokens on a mix of natu-
ral language and code data, where the sequences have been truncated to 32k tokens. We
increased the RoPE theta to 8M for this stage. When training at 32k context length (i.e.,
this step and the next step), we trained only the attention weights and froze the rest of the
network. We found that this delivered better results than full network training.

3. Finally, we trained the model on a 32K-length, synthetic, long-context QA dataset [5, 8].
• To create the dataset, we took natural language documents and chunked them into

1k-token chunks. Each chunk was then fed to a pretrained instruction model and the
model was prompted to generate a question-answer pair based on the chunk. Then, we
concatenated chunks from different documents together to serve as the “long context.”
At the end of this long context, the question-answer pairs for each of the chunks were
added. The loss gradients were computed only on the answer parts of these sequences.

• This phase of training was conducted on 500M tokens (this number includes the tokens
from the context, questions, and answers). The RoPE theta was kept at 8M for this
stage.

4.2 EVALUATION

The models were evaluated on the Mosaic Evaluation Gauntlet v 0.3.0 (Mosaic, 2023a) to measure
model quality across various metrics including reading comprehension, commonsense reasoning,
world knowledge, symbolic problem solving, and language understanding. To evaluate the models’

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

long context abilities, we used RULER (Hsieh et al., 2024) at a context length of 32000 tokens.
RULER is a composite benchmark consisting of 13 individual evals of the following types:

• Needle-in-a-haystack (NIAH): These types of evals hide a single or multiple keys and val-
ues in a long text, and the model is evaluated on its ability to retrieve the correct value(s)
from the long context for a given key(s).

• Variable Tracking (VT): This eval provides the model with a long context containing vari-
able assignment statements, and the model is tasked to figure out which variables have a
particular value by the end of all the variable assignments.

• Common and Frequent Word Extraction (CWE and FWE): These tasks ask the model to
extract the most common or frequent words from the text.

• Question Answering (QA): Given a long context, the model is asked a question from some-
where in the context and the model is evaluated on whether it can correctly answer that
question.

We used SGLang (Zheng et al., 2023) to deploy our models on 1 NVIDIA H100 GPU to run RULER
and get inference speed and memory consumption metrics.

5 RESULTS

5.1 POSITION AND COUNT OF STANDARD ATTENTION KV CACHES

MA MA-OffsetMA-EndSlide MA-Pairs

Figure 3: KV Cache position and counts: To measure
the effect of the position and count of the standard at-
tention KV caches on MixAttention’s long context abil-
ities, we train and evaluate the 4 models shown above.

To measure the effect of the position and count
of the standard attention KV caches, we tried
four variants (Figure 3). All the configurations
are variants of the configuration proposed in
Character.AI’s blog (Character.AI, 2024).

MA: This variant has a single standard atten-
tion KV cache, which is the KV cache of the
first layer. All the other standard attention lay-
ers share this KV cache.

MA-EndSlide: This variant is the same as MA,
but the last layer is a sliding window attention
layer. This was done to measure how much hav-
ing standard attention in the last layer affects
long-context abilities.

MA-Offset: This variant is similar to MA, but
the first standard attention layer is offset to a later layer to allow the model to process the local
context for a few layers before the standard attention layer is used to look at longer contexts.

MA-Pairs: This variant computes two standard attention KV caches (at the first and thirteenth layer),
which are then shared with another standard attention layer each.

We compared these models to a transformer model with Standard Attention and a transformer model
with Sliding Window Attention in all layers.

While the loss curves in Stages 1 and 2 of training were close for all the models, we found that
in Stage 3 (training on long context QA dataset), there was a clear bifurcation in the loss curves
(Figure 4, top). In particular, we see that configurations MA and MA-EndSlide show much worse
loss than the others. These results are consistent with the long context RULER evals, where we
found that MA and MA-EndSlide performed much worse than others (Figure 4, bottom). Their
performance was similar to the performance of the network with only sliding window attention in
all layers. We think the loss in Stage 3 correlates well with RULER evals because unlike Stages 1 and
2, which were next-word prediction tasks where local context was sufficient to predict the next word
most of the time, in Stage 3 the model needed to retrieve the correct information from potentially
long-distance context to answer the questions. As we see from the RULER evals, MA-Offset and
MA-Pairs have better long-context abilities than MA and MA-EndSlide across all the categories.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Effect of Standard Attention Layers: (Top) Loss curves of the models when fine tuning on long
context QA dataset. (Bottom) RULER evals for the models. MA and MA-EndSlide perform poorly on long
context tasks whereas MA-Offset and MA-Pairs perform well. This indicates that having a standard attention
KV cache which is computed in later layers is important for long context abilities. We also found that the loss
on long context QA dataset correlates well with the model’s long context abilities.

Both MA and MA-EndSlide have only one standard attention KV-cache, which is computed in the
first layer, whereas both MA-Offset and MA-Pairs have at least one standard attention KV-cache
which is computed in deeper layers. Hence, this indicates that having at least one standard attention
KV cache that is computed in the deeper layers of a transformer model is necessary for good long-
context abilities.

5.2 KV CACHE SHARING IN SLIDING WINDOW LAYERS

MA-Offset MA-PairsMA-Offset-SlideShare MA-Pairs-SlideShare

Figure 5: Increasing KV cache sharing in sliding win-
dow layers: To measure the effect of KV cache sharing
in the sliding window layers, we compared the architec-
tures shown in the figure above.

We found that increasing the sharing between
sliding window layers (Figure 5) degraded
the model’s long context performance: MA-
Offset-SlideShare was worse than MA-Offset
and MA-Pairs-SlideShare was worse than MA-
Pairs (Figure 6). This shows that the KV cache
sharing pattern amongst the sliding window
layers is also important for long context abili-
ties. We have provided some more ablation ex-
periments in the appendix.

5.3 GAUNTLET EVALS

Using the Mosaic Eval Gauntlet v0.3.0 (Mo-
saic, 2023a), we measured the performance of
MixAttention models on standard tasks like
MMLU (Hendrycks et al., 2021), HellaSwag (Zellers et al., 2019), etc. to verify that they retain
good shorter context abilities. All of the tasks in this eval suite have context lengths of less than a
few thousand tokens.

We found that MixAttention models have similar eval metrics to the baseline model on common-
sense reasoning, language understanding, and world knowledge. However, we see that they perform

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: Effect of increasing KV cache sharing in sliding window layers: (Top) Loss curves of the models
when fine tuning on long context QA dataset. (Bottom) RULER evals for the models. We found that increasing
the KV cache sharing in sliding window layers worsened long context abilities of MixAttention Models.

Figure 7: Performance of MixAttention models on the Eval Gauntlet: We found that MixAttention models
have similar eval metrics to the baseline model on commonsense reasoning, language understanding, and world
knowledge. However, we see that they perform worse on reading comprehension.

worse on reading comprehension. An interesting open question is if a different MixAttention con-
figuration or training MixAttention models longer can recover the reading comprehension abilities.

5.4 INFERENCE SPEED AND MEMORY CONSUMPTION

We benchmarked the inference speed and memory consumption of MixAttention models by deploy-
ing them on a single NVIDIA H100 GPU using SGLang and querying them with 300 prompts, with
input length 31000 and output length 1000. In Figure 8, we see that the inference speed of Mix-
Attention models is much faster than standard attention models. We also see in Figure 8 that with
MixAttention, we can support a much larger inference batch size in terms of total number of tokens.

Note that the implementation of Sliding Window Attention in SGLang at the time of writing this
paper did not optimize the memory consumption for sliding window attention; hence in Figure 8,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 8: Inference with MixAttention: (Left) MixAttention models have significantly faster inference than
standard transformers. (Right) MixAttention models can support more tokens, and thus larger batch sizes,
during inference.

sliding window attention has the same maximum number of tokens as the standard attention model.
Optimizing the memory consumption for sliding window attention should further increase the max-
imum number of tokens that MixAttention can support during inference.

6 CONCLUSION

We find that MixAttention models are competitive with standard attention models on both long-
and short-context abilities while being faster during inference and supporting larger batch sizes. We
note that on some long context tasks like Variable Tracking and Common Word Extraction, neither
MixAttention nor standard attention models perform well. We believe this was because our models
weren’t trained long enough or the models need a different kind of long context data to be trained
for such tasks. More research needs to be done to measure the impact of MixAttention architectures
on such metrics.

We encourage others to explore more MixAttention architectures to learn more about them. Below
are a few observations to help with further research:

• Adding a standard attention layer in the initial layers by itself does not seem to help long
context abilities (for example, see MA-NoShare-1 in the appendix), even if the KV cache
from that layer is reused in layers deeper into the network (MA and MA-EndSlide). Hence
we recommend placing the first standard attention layer deeper in the network (like MA-
Offset) or having multiple standard attention layers, at least one of which is computed at a
deeper layer (like MA-Pairs).

• Sliding window layers also contribute to the model’s long context abilities. Increasing the
KV cache sharing amongst the sliding window layers worsened long context abilities (MA-
Offset-SlideShare and MA-Pairs-SlideShare). For that reason, we think that the 2-3 sharing
pattern in sliding window layers (Character.AI, 2024) seems to strike a good balance.

• Sharing standard attention KV caches between consecutive layers gave mixed results, with
slightly worse accuracy on long context QA tasks (see the appendix).

• In our experiments, MA-Offset and MA-Pair showed great speedup and memory savings
during inference, while also maintaining long and short context abilities. Hence, MA-
Offset and MA-Pairs might be good configurations for further research.

In general, there is a large hyperparameter space to explore, and we look forward to seeing a variety
of new strategies for reducing the cost of inference via combinations of sliding window attention
and KV cache reuse.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 4895–4901, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Character.AI. Optimizing AI Inference at Character.AI — research.character.ai. https://
research.character.ai/optimizing-inference/, 2024.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction frame-
work for llm at inference time. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 7913–7926, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pages 30016–30030, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pages 5156–5165. PMLR, 2020.

Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, and Michael Carbin. Long Context
RAG Performance of LLMs — databricks.com. https://www.databricks.com/blog/
long-context-rag-performance-llms, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv e-prints, pages arXiv–2403, 2024.

9

https://research.character.ai/optimizing-inference/
https://research.character.ai/optimizing-inference/
https://www.databricks.com/blog/long-context-rag-performance-llms
https://www.databricks.com/blog/long-context-rag-performance-llms


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Databricks Mosaic. Mosaic eval gauntlet v0.3.0 - evaluation suite. https://github.
com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_
GAUNTLET.md, 2023a.

Databricks Mosaic. Llm foundry. https://https://github.com/mosaicml/
llm-foundry/, 2023b.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws. In Forty-first International Conference
on Machine Learning, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory
(lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791–4800, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
models using sglang. arXiv preprint arXiv:2312.07104, 2023.

10

https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://https://github.com/mosaicml/llm-foundry/
https://https://github.com/mosaicml/llm-foundry/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Figure 10: Effect of KV cache sharing between consecutive layers: (Top) Loss curves of the models when fine
tuning on long context QA dataset. (Bottom) RULER evals for the models. We found that KV cache sharing
between consecutive layers does not consistently increase long context abilities across all evals. However, for
tasks like SQuAD QA and Hotpot QA, which can be indicative of long context RAG abilities, the performance
was slightly worse when sharing KV cache between consecutive layers.

A ADDITIONAL ABLATIONS

A.1 SHARING STANDARD ATTENTION KV CACHES BETWEEN CONSECUTIVE LAYERS

Figure 9: KV cache sharing between consecutive lay-
ers: To measure the effect of KV cache sharing be-
tween consecutive layers, we tried the four configura-
tions above.

Since the transformer layers progressively up-
date the latent representation of a token as it
progresses through the layers, the Query, Key,
and Value tensors might have significantly dif-
ferent representations for layers that are far
apart. Hence, it might make more sense to
share KV caches between consecutive layers.
To test this, we compared four such config-
urations: MA-Successive-1, MA-Successive-
2, MA-Successive-3, and MA-Successive-4
against MA-Pairs. These configurations vary
the positions of the standard KV attention lay-
ers and the distance between the consecutive
pairs of standard KV attention layers.

We determined that all the models have similar loss curves and similar performance on NIAH single
1, 2, and 3 tasks, which we consider to be the easiest long context tasks. However, we did not see a
consistent pattern across the other NIAH tasks. For long context QA tasks, we found that MA-Pairs
was slightly better than the others. These results indicate that sharing standard attention KV cache
between layers that are further apart does not lead to any significant degradation in long context
abilities as compared to sharing standard attention KV cache between consecutive layers.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Figure 11: KV cache sharing between consecutive layers: To measure the effect of KV cache sharing between
consecutive layers, we tried the four configurations above.

Figure 12: Effect of no standard attention KV-cache sharing: (Top) Loss curves of the models when fine tuning
on long context QA dataset. (Bottom) RULER evals for the models. We found that both MA-NoShare-2 and
MA-NoShare-3 were comparable with MA-Offset.

A.2 EFFECT OF SHARING STANDARD ATTENTION KV CACHE

To test the effect of sharing KV cache between standard attention layers, we tried out three con-
figurations: MA-NoShare-1, MA-NoShare-2, and MA-NoShare-3 (Figure 11). We found that MA-
NoShare-1 performed very badly on RULER, indicating its lack of long context abilities. However,
MA-NoShare-2 and MA-NoShare-3 were comparable to MA-Offset on long context tasks. Hence,
we think that further research is needed to ascertain the effects of sharing standard attention KV
cache.

12


	Introduction
	Contributions

	Related Work
	MixAttention
	Experiments
	Training
	Evaluation

	Results
	Position and Count of Standard Attention KV Caches
	KV cache sharing in sliding window layers
	Gauntlet Evals
	Inference Speed and Memory Consumption

	Conclusion
	Additional Ablations
	Sharing Standard Attention KV caches between consecutive layers
	Effect of sharing standard attention KV cache


