
A Notation

Si: Search options for layeri.

|Si|: Num of search options on layeri.

si: selected search option on layeri from the set Si
oi: default search option applied on layeri, o1..L is the architecture of the baseline model.

(s1, s2, .., sL): A model architecture that applies s1 on layer1, s2 on layer2, ... , sL on layerL
(s1..i−1, xi, oi+1..L): A model architecture that applies s1 on layer1, s2 on layer2, ..., default
search option oi+1 on layeri+1, ... oL on layerL, and search xi on layeri.

Mi: A model candidate that is searched on layeri, it’s in the form of (s1..i−1, xi, oi+1..L).

Mi: All model candidates searching on layeri.

Mi,h: Model candidates searching on layeri, and are mapped to h ∈ H.

ϕ : M→ H: transforms a model architectureM∈M to a finite integer set H

B NASBench-101 Search Details

NASBench-101 defines a search space on 5 ops, each op has 3 options (conv1x1, conv3x3,
maxpool 3x3), and 21 potential edges to connect these ops and input, output ops. It
contains 509M candidates with their number of parameters, accuracy on Cifar-10, and other
information.

We construct the LayerNAS search space by adding a new edge for each layer. Search options
in each layer are used to determine either to include a new op or connect two existing ops. By
doing so, all constructed candidates can be legit, because all candidates are connected graphs.
And this approach of search space construction can satisfy the assumption of LayerNAS: the
best model candidate in layeri can be constructed from candidates in layeri−1 by adding an
new edge.

In the experiments, Regularized Evolution (RE) sets population_size=50, tourna-
ment_size=10; Proximal Policy Optimization (PPO) sets train_batch_size=16, up-
date_batch_size=8, num_updates_per_feedback=10. Both RE and PPO are using MNAS
as objective function: Accuracy × (Cost/Target)−0.07

In Figure 1, we observe that in earlier searching iterations LayerNAS performs slightly worse
than other algorithms. This is because LayerNAS initially searches model candidates with
fewer ops and edges, which intuitively perform poorly. However, after collecting enough
information from early layers, LayerNAS consistently performs better. This is because
LayerNAS does not rely on randomness, rather, it adds ops and edges from successful
candidates in each layers, leading to continuous improvement.

Figure 1: NASBench-101 test accuracy on Cifar-10, average on 100 runs

1

Table 1: Comparison on NASBench-101

Algorithm Validation accuracy Test accuracy
RS 0.9480 0.9401
RE 0.9497 0.9416
PPO 0.9476 0.9396

LayerNAS 0.9505 0.9426
Optimal 0.9432 0.9445

C NATS-Bench Search Details

In the experiments, Regularized Evolution (RE) sets population_size=50, tourna-
ment_size=10; Proximal Policy Optimization (PPO) sets train_batch_size=16, up-
date_batch_size=8, num_updates_per_feedback=10. Both RE and PPO are using MNAS
as objective function: Accuracy × (Cost/Target)−0.07

C.1 NATS-Bench topology search

NATS-Bench topology search defines a search space on 6 ops that connect 4 tensors, each op
has 5 options (conv1x1, conv3x3, maxpool3x3, no-op, skip).

In our experiments, we construct the LayerNAS search space by adding a new tensor for
each layer. Search options in each layer are encoded with all op types that connect this
tensor to previous tensors. So it has only 3 layers, each layer has 5, 25, 125 options.

Validation and test accuracy are shown in Figure 2 and Figure 3.

Figure 2: NATS-Bench topology search valid accuracy on (a) Cifar10 (b) Cifar100 (c)
Imagenet16-120

Figure 3: NATS-Bench topology search test accuracy on (a) Cifar10 (b) Cifar100 (c)
Imagenet16-120

C.2 NATS-Bench size search

NATS-Bench size search provides a dataset with information on model architectures with 5
layers. Each layer is a convolutional layer with different num of channels selected from {8,
16, 24, 32, 40, 48, 56, 64}. The model with 64 channels for all layers has the most model

2

parameters, the largest latency and the best accuracy. The objective is to find the optimal
model with 50% FLOPs.

LayerNAS constructs the search space by using the largest model as base model, and applies
search options that reduce channels per layer. Althoughh LayerNAS steadily improves valid
accuracy over time, test accuracy drops. This is due to in-correlation between test accuracy
and valid accuracy.

Validation and test accuracy are shown in Figure 4 and Figure 5. We can observe that
LayerNAS can outperform other algorithms on both validation and test accuracy. We can
also attribute test accuracy drop in LayerNAS to the lack of correlation with validation
accuracy.

Figure 4: NATS-Bench size search valid accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-
120

Figure 5: NATS-Bench size search test accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-
120

D Dynamic Programming Implementation of LayerNAS for
Multi-objective NAS

Algorithm 1 demonstrates how to implement LayerNAS with Dynamic Programming, which
has clear explanation why search complexity is O(H · |S| · L) .
The implementation is not used in practice because it spends most of time searching in
layer1..L−1, we cannot get a model in expected cost range until last layer is searched.

E Discussion on search space assumptions

Assumption 4.1 sets some characteristics of search spaces that can be leveraged to improve
the search efficiency. Instead of expecting all search spaces can satisfy this assumption, in
experiments, we construct search spaces based on MobileNet to intentionally make them
satisfy Assumption 4.1. While we cannot guarantee that all search spaces can be transformed
to satisfy Assumption 4.1, most search spaces used in existing models or studies either
implicitly use this assumption or can be transformed to satisfy it. We also demonstrate the
effectiveness of this assumption from the experiments on MobileNet.

3

Algorithm 1 Dynamic Programming for Combinatorial Optimization
for l = 1 to L− 1 do

forMl ∈Ml do
for s ∈ Sl+1 do
Ml+1 = apply_search_option(Ml, s)
h = cost(Ml+1)
accuracy = train_and_eval(Ml+1)
if accuracy > Accuracy(Ml+1,h) then
Ml+1,h =Ml+1

end if
end for

end for
end for

E.1 Search space is complete

Assume we are searching for the optimal model s1..sn, and we store all possible model candi-
dates on each layer. During the search process on layern, we generate model architectures
by modifying on to other options in S. Since we store all model architectures for layern−1,
the search process can create all |S|n candidates on layern by adding each sn ∈ S to the
models in Mn−1. Therefore, Mn contains all possibilities in the search space. This process
can then be applied backward to the first layer.

E.2 Sequential search order

Assume, after LayerNAS sequential search, we get optimal model defined as a1..ai..an. For
sake of contradiction, there exists a model a1..bi..an, with superior performance, by applying
a change in previous layers. Since the search space is complete, model a1..bioi+1..on must
exist, and has been processed in Mi. In the sequential search, model a1..biai+1..on can
be created by using ai+1 on layeri+1. Repeating this process for all subsequent layers
will eventually lead to a1..bi..an, contradicting our assumption that optimal model from
sequential search is a1..ai..an. Therefore, we can search sequentially.

E.3 Limit of the assumption

MobileNet architecture does not satisfy Assumption 4.1 by default. Residual requires layeri
and layerj have the same num of filters. Suppose Si = {32, 64, 96}, Sj = {64, 96, 128}, the
residual shortcut cannot be created if si = 32, sj = 96. This is the case when preceding layers
are coupled with succeeding layers. To overcome this issue, we introduce a virtual layer,
with options {64, 96}. We first search this shared filter to create residual shortcuts, and then
search specs for each layer. This transformation ensures that the new search space satisfy
Assumption 4.1. In the case of MobileNet search space, we first search for the common filters
for the block and then for the expanded filters for each layer. This approach allows us to
perform LayerNAS on a search space that satisfies Assumption 4.1.

F Discussion on num of replicas to store

From experiments on MobileNet, we observed that multiple runs on the same model archi-
tecture can yield standard deviations of accuracy ranging from 0.08% to 0.15%. Often times,
the difference can be as high as 0.3%. To address this, we propose storing multiple candidates
for the same cost to increase the likelihood of keeping the better model architecture for every
layer search.

Suppose we have two models with the same cost, x and y, where x is inferior and y is superior,
and the training accuracy follows a Gaussian distribution N(µ, σ2). The probability of x
obtaining a higher accuracy than y is P (x− y > 0), where x− y ∼ N(µx − µy, σx

2 + σy
2).

In emprical examples, µx − µy = −0.002 and σx = 0.001, then x has the probability of 9.2%

4

of obtaining a higher accuracy. When we have L = 20 layers, the probability of keeping the
better model architecture for every layer search is (1− p)2 = 18%.

By storing k candidates with the same cost, we can increase the probability of keeping the
better model architecture. When k = 3, the probability of storing all inferior models is
pk = 0.08%. The probability of keeping the better model architecture for all L = 20 layer
searches is 98.4%, which is practically good enough.

Theoretically, if we store infinite candidates per layer, we are performing a complete grid
search, which guarantees a optimal model architecture.

G Transferability

LayerNAS’s explored model architectures exhibit improved performance across various tasks
as well.

Table 2: Comparison of models on ImageNet
Model ImageNet top-1 acc CoCo mAP Params MAdds

MobileNetV2 72.0 22.1 3.5M 300M
LayerNAS w/o SE 77.1 23.85 7.6M 598M

LayerNAS 78.6 24.84 9.7M 527M
MobileNetV3-Small 67.4 16 2.5M 56M

LayerNAS 69.0 17.94 3.7M 61M
MobileNetV3-Large 75.2 22.0 5.4M 219M

LayerNAS 75.6 23.75 5.1M 229M

H MobileNetV2 and MobileNetV3 Search Details

We aim to search models under different MAdds constrants: 60M (similar to MobileNetV3-
Small), 220M (similar to MobileNetV3-Large), 300M (similar to MobileNetV2), 600M (similar
to MobileNetV2 1.4x).

For each block, we will search the number of output filters of the block first. All layers in the
block have the same number of output filters to create residual block correctly. Following the
search for the block output filters, we search expanded filter and kernel size of each layers in
this block. Strides are fixed for all layers. We use |S| to denote the number of search options
of this layer, which facilitates the computation on the number of unique model architectures,
and max number of required search trials in LayerNAS.

H.1 60M MAdds Model

The search spaces has L = 16 encoded length. Number of unique model architecture is∏
|S| = 5.0e+20. We store up to 300 model candidates per layer, so max number of trials is

300×
∑
|S| = 1.2e+ 5.

H.2 220M MAdds Model

The search spaces has L = 21 encoded length, the number of unique model architecture is∏
|S| = 4.8e + 26 For LayerNAS, we store up to 300 model candidates per layer, so max

number of trials is 300×
∑
|S| = 1.5e+ 5

H.3 300M MAdds Model

The search spaces has L = 26 encoded length, the number of unique model architectures is∏
|S| = 5.3e+30. We store up to 300 model candidates per layer, so max number of trials is

300×
∑
|S| = 1.4e+ 5.

5

Table 3: 60M MAdds Search Space

Operator # Output filter # Expanded Filter strides |S|
conv2d{3x3} 16 2
bneck {3x3} {24, 20, 18, 16, 14, 12} 2 6
Block filter {36, 32, 28, 24, 20, 18, 16} 7

bneck {3x3, 5x5}
{144, 136, 128, 120, 112, 104,
96, 88, 80, 72, 68, 64, 60, 56} 2 28

bneck {3x3, 5x5}
{144, 136, 128, 120, 112, 104,
96, 88, 80, 72 68, 64, 60, 56} 1 28

Block filter {60, 56, 52, 48, 44, 40, 36, 32, 28} 9

bneck {3x3, 5x5, 7x7}
{192, 176, 160, 144, 128,

112, 104, 96, 88, 80, 72, 64} 2 36

bneck {3x3, 5x5, 7x7}
{480, 440, 400, 360, 320, 300,

280, 260, 240, 220, 200, 180, 160} 1 39

bneck {3x3, 5x5, 7x7}
{480, 440, 400, 360, 320, 300,

280, 260, 240, 220, 200, 180, 160} 1 39

Block filter
{96, 88, 80, 72, 64, 60, 56,
52, 48, 44, 40, 36, 32} 13

bneck {3x3, 5x5, 7x7}
{240, 200, 180, 160, 140,

120, 100, 90, 80} 1 27

bneck {3x3, 5x5, 7x7}
{288, 256, 224, 208, 192, 176,
160, 152, 144, 136, 128, 120} 1 36

Block filter
{192, 176, 160, 144, 128, 120, 112,

104, 96, 88, 80, 72, 64} 13

bneck {3x3, 5x5, 7x7}
{576, 544, 512, 480, 448, 416,
384, 352, 320, 288, 256, 224} 2 36

bneck {3x3, 5x5, 7x7}
{1152, 1088, 1024, 960, 896, 832,
768, 704, 640, 576, 516, 448} 1 36

bneck {3x3, 5x5, 7x7}
{1152, 1088, 1024, 960, 896, 832,
768, 704, 640, 576, 516, 448} 1 36

conv2d 1x1 {864, 576}, 2
pool, 7x7
conv2d 1x1 {1536, 1024} 2
conv2d 1x1 {1001}

6

Table 4: LayerNAS Model under 60M MAdds

Input Operator # Output filter # Expanded Filter strides
224× 224× 3 conv2d 3x3 16 2
112× 112× 16 bneck 3x3 16 2
56× 56× 16 bneck 3x3 28 144 2
28× 28× 28 bneck 3x3 28 128 1
28× 28× 28 bneck 5x5 44 96 2
14× 14× 44 bneck 3x3 44 220 1
14× 14× 44 bneck 3x3 44 200 1
14× 14× 44 bneck 7x7 40 160 1
14× 14× 40 bneck 3x3 40 152 1
14× 14× 96 bneck 5x5 96 224 2
7× 7× 96 bneck 3x3 96 448 1
7× 7× 96 bneck 3x3 96 512 1
7× 7× 96 conv2d 1x1 864 1
7× 7× 864 pool, 7x7 1
7× 7× 864 conv2d 1x1 1536 1
7× 7× 1536 conv2d 1x1 1001 1

H.4 600M MAdds Model

The search spaces has L = 31 encoded length, the number of unique model architecture is∏
|S| = 1.6e + 39 For LayerNAS, we store up to 300 model candidates per layer, so max

number of trials is 300×
∑
|S| = 2.0e+ 6

7

Table 5: 220M MAdds Search Space

Operator # Output filter # Expanded Filter strides |S|
Conv2d{3x3} 16 2
bneck {3x3} {24, 20, 18, 16, 14, 12} 1 6
Block filter {36, 32, 28, 24, 20, 16}

bneck {3x3, 5x5}
{96, 88, 80, 72,

68, 64, 60, 56, 48} 2 18

bneck {3x3, 5x5, 7x7}
{124, 116, 108, 100, 92, 84,

72, 68, 64, 56, 48} 1 33

Block filter
{64, 56, 52, 48,

44, 40, 36, 32, 24} 9

bneck {3x3, 5x5, 7x7}
{128, 120, 112, 104, 96,
88, 80, 76, 72, 64, 56} 2 33

bneck {3x3, 5x5, 7x7}
{240, 200, 180, 160,

140, 120, 110, 100, 80} 1 27

bneck {3x3, 5x5, 7x7}
{240, 200, 180, 160,

140, 120, 110, 100, 80} 1 27

Block filter
{160, 140, 130, 120,
110, 100, 80, 70, 60} 9

bneck {3x3, 5x5, 7x7}
{360, 320, 300, 280, 260,
240, 220, 200, 180, 160} 2 30

bneck {3x3, 5x5, 7x7}
{400, 360, 340, 320, 300, 280,

260, 240, 220, 200, 180, 160, 120} 1 36

bneck {3x3, 5x5, 7x7}
{368, 336, 304, 288, 272, 256,
240, 224, 208, 184, 168, 152} 1 36

bneck {3x3, 5x5, 7x7}
{368, 336, 304, 288, 272, 256,
240, 224, 208, 184, 168, 152} 1 36

Block filter
{224, 208, 192, 176, 160,
144, 128, 112, 96, 80} 10

bneck {3x3, 5x5, 7x7}
{960, 880, 800, 720, 640, 560,

520, 480, 440, 400, 360} 1 33

bneck {3x3, 5x5, 7x7}
{1344, 1200, 1056, 960, 888,
816, 768, 720, 624, 576, 480} 1 33

Block filter
{320, 280, 240, 220,

200, 180, 160, 120, 100 } 9

bneck {3x3, 5x5, 7x7}
{1344, 1200, 1056, 960, 888,
816, 768, 720, 624, 576, 480} 2 33

bneck {3x3, 5x5, 7x7}
{1920, 1760, 1600, 1440, 1280,
1120, 960, 880, 800, 720, 640} 1 33

bneck {3x3, 5x5, 7x7}
{1920, 1760, 1600, 1440, 1280,
1120, 960, 880, 800, 720, 640} 1 33

bneck {3x3, 5x5, 7x7} {480, 440, 400, 360, 320, 300, 280}
{1728, 1664, 1600,

1536, 1440, 1280, 1216} 1 7
conv2d 1x1 {960}
pool, 7x7
conv2d 1x1 {1440, 1280} 2
conv2d 1x1 {1001}

8

Table 6: LayerNAS Model under 220M MAdds

Input Operator # Output filter # Expanded Filter strides
224× 224× 3 conv2d 3x3 16 2
112× 112× 16 bneck 3x3 18 1
112× 112× 16 bneck 3x3 24 64 2
56× 56× 28 bneck 3x3 24 48 1
56× 56× 28 bneck 5x5 56 80 2
28× 28× 44 bneck 5x5 56 200 1
28× 28× 44 bneck 5x5 56 100 1
28× 28× 44 bneck 5x5 80 400 2
14× 14× 40 bneck 3x3 80 200 1
14× 14× 96 bneck 3x3 80 272 1
7× 7× 96 bneck 3x3 80 168 1
14× 14× 44 bneck 5x5 112 440 1
14× 14× 40 bneck 5x5 112 576 1
14× 14× 96 bneck 7x7 160 624 2
7× 7× 96 bneck 5x5 160 640 1
7× 7× 96 bneck 3x3 160 640 1
7× 7× 96 conv2d 1x1 960 1
7× 7× 864 pool, 7x7 1
7× 7× 864 conv2d 1x1 1280 1
7× 7× 1536 conv2d 1x1 1001 1

9

Table 7: 300M MAdds Search Space

Operator # Output filter # Expanded Filter strides |S|
Conv2d{3x3} 32 2
bneck {3x3} {24, 20, 16, 14} 1 4
Block filter {48, 44, 40, 36, 32, 28, 24} 7

bneck {3x3, 5x5} {72, 64, 56, 52, 48, 44, 40} 2 14

bneck {3x3, 5x5}
{144, 128, 120, 112,

104, 96, 92, 88, 80, 76} 1 20

bneck {3x3, 5x5}
{144, 128, 120, 112,

104, 96, 92, 88, 80, 76} 1 20
Block filter {60, 56, 52, 48, 44, 40, 36, 32} 8

bneck {3x3, 5x5}
{144, 128, 120, 112,

104, 96, 92, 88, 80, 76} 2 20

bneck {3x3, 5x5, 7x7}
{180, 160, 140, 130,
120, 110, 100, 80} 1 24

bneck {3x3, 5x5, 7x7}
{180, 160, 140, 130,
120, 110, 100, 80} 1 24

bneck {3x3, 5x5, 7x7}
{180, 160, 140, 130,
120, 110, 100, 80} 1 24

Block filter {120, 110, 100, 90, 80, 70, 60} 7

bneck {3x3, 5x5, 7x7}
{360, 320, 280, 260,
240, 220, 200, 180} 2 24

bneck {3x3, 5x5, 7x7}
{360, 320, 280, 260,
240, 220, 200, 180} 1 24

bneck {3x3, 5x5, 7x7}
{360, 320, 280, 260,
240, 220, 200, 180} 1 24

Block filter {144, 128, 120, 104, 96, 88, 80, 72} 8

bneck {3x3, 5x5, 7x7}
{360, 320, 280, 260,
240, 220, 200, 180} 1 24

bneck {3x3, 5x5, 7x7}
{432, 400, 368, 336,

304, 288, 272, 256, 240} 1 27

bneck {3x3, 5x5, 7x7}
{432, 400, 368, 336,

304, 288, 272, 256, 240} 1 27

bneck {3x3, 5x5, 7x7}
{432, 400, 368, 336,

304, 288, 272, 256, 240} 1 27
Block filter {288, 256, 224, 192, 160, 144} 6

bneck {3x3, 5x5, 7x7}
{864, 800, 736, 672,
608, 576, 512, 448} 2 24

bneck {3x3, 5x5, 7x7}
{864, 800, 736, 672,
608, 576, 512, 448} 1 24

bneck {3x3, 5x5, 7x7}
{864, 800, 736, 672,
608, 576, 512, 448} 1 24

bneck {3x3, 5x5, 7x7}
{864, 800, 736, 672,
608, 576, 512, 448} 1 24

bneck {3x3, 5x5, 7x7} {480, 440, 400, 360, 320, 300, 280}
{1728, 1664, 1600,

1536, 1440, 1280, 1216} 1 7
pool, 7x7
conv2d 1x1 {1920, 1600, 1280} 3
conv2d 1x1 {1001}

10

Table 8: LayerNAS Model under 300M MAdds

Input Operator # Output filter # Expanded Filter strides
224× 224× 3 conv2d 3x3 32 2
112× 112× 32 bneck 3x3 24 1
112× 112× 24 bneck 3x3 28 40 2
56× 56× 28 bneck 3x3 28 144 1
56× 56× 28 bneck 3x3 28 88 1
56× 56× 28 bneck 3x3 40 104 2
28× 28× 40 bneck 5x5 40 110 1
28× 28× 40 bneck 3x3 40 180 1
28× 28× 40 bneck 5x5 40 130 1
28× 28× 40 bneck 7x7 90 260 2
14× 14× 90 bneck 3x3 90 220 1
14× 14× 90 bneck 3x3 90 200 1
14× 14× 90 bneck 7x7 120 320 1
14× 14× 120 bneck 5x5 120 288 1
14× 14× 120 bneck 7x7 120 256 1
14× 14× 120 bneck 3x3 120 368 1
14× 14× 120 bneck 7x7 160 608 2
7× 7× 160 bneck 7x7 160 576 1
7× 7× 160 bneck 5x5 160 608 1
7× 7× 160 bneck 3x3 160 448 1
7× 7× 160 bneck 3x3 280 1216 1
7× 7× 280 pool, 7x7 1
7× 7× 280 conv2d 1x1 1920 1
7× 7× 1920 conv2d 1x1 1001 1

11

Table 9: 600M MAdds Search Space

Operator # Output filter # Expanded Filter strides |S|
Conv2d{3x3} 32 2
bneck {3x3} {36, 32, 28, 24, 20, 16} 1 6
Block filter {56, 52, 48, 44, 40, 36, 32, 28} 8

bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 2 14
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 1 14
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 1 14
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 1 14

Block filter {72, 64, 60, 56, 52, 48, 44, 40} 8

bneck {3x3, 5x5}
{180, 160, 144, 128, 120,
112, 104, 96, 92, 88, 80} 2 22

bneck {3x3, 5x5, 7x7}
{240, 220, 200, 180,

160, 140, 130, 120, 100} 1 27

bneck {3x3, 5x5, 7x7}
{240, 220, 200, 180,

160, 140, 130, 120, 100} 1 27

bneck {3x3, 5x5, 7x7}
{240, 220, 200, 180,

160, 140, 130, 120, 100} 1 27

bneck {3x3, 5x5, 7x7}
{240, 220, 200, 180,

160, 140, 130, 120, 100} 1 27
Block filter {200, 180, 160, 140, 120, 100, 90, 80} 8

bneck {3x3, 5x5, 7x7}
{440, 400, 360, 320,
280, 260, 240, 200} 2 24

bneck {3x3, 5x5, 7x7}
{560, 520, 480, 440,

400, 360, 320, 280, 240} 1 27

bneck {3x3, 5x5, 7x7}
{560, 520, 480, 440,

400, 360, 320, 280, 240} 1 27

bneck {3x3, 5x5, 7x7}
{560, 520, 480, 440,

400, 360, 320, 280, 240} 1 27

Block filter
{180, 160, 144, 128,
120, 104, 96, 88, 80} 9

bneck {3x3, 5x5, 7x7}
{560, 520, 480, 440,

400, 360, 320, 280, 240} 1 27

bneck {3x3, 5x5, 7x7}
{560, 528, 496, 464, 432, 400,
368, 336, 304, 288, 272, 256} 1 36

bneck {3x3, 5x5, 7x7}
{560, 528, 496, 464, 432, 400,
368, 336, 304, 288, 272, 256} 1 36

bneck {3x3, 5x5, 7x7}
{560, 528, 496, 464, 432, 400,
368, 336, 304, 288, 272, 256} 1 36

bneck {3x3, 5x5, 7x7}
{560, 528, 496, 464, 432, 400,
368, 336, 304, 288, 272, 256} 1 36

Block filter {320, 288, 256, 224, 192, 160} 6

bneck {3x3, 5x5, 7x7}
{992, 928, 864, 800,

736, 672, 608, 576, 512} 2 27

bneck {3x3, 5x5, 7x7}
{992, 928, 864, 800,

736, 672, 608, 576, 512} 1 27

bneck {3x3, 5x5, 7x7}
{992, 928, 864, 800,

736, 672, 608, 576, 512} 1 27

bneck {3x3, 5x5, 7x7}
{992, 928, 864, 800,

736, 672, 608, 576, 512} 1 27

bneck {3x3, 5x5, 7x7}
{992, 928, 864, 800,

736, 672, 608, 576, 512} 1 27

bneck {3x3, 5x5, 7x7}
{600, 560, 520, 480,
440, 400, 360, 320}

{1920, 1856, 1792, 1728,
1664, 1600, 1536, 1440} 1 24

pool, 7x7
conv2d 1x1 {2560, 2240, 1920} 3
conv2d 1x1 {1001}

12

Table 10: LayerNAS Model under 600M MAdds

Input Operator # Output filter # Expanded Filter strides
224× 224× 3 conv2d 3x3 32 2
112× 112× 32 bneck 3x3 36 1
112× 112× 36 bneck 5x5 36 80 2
56× 56× 36 bneck 5x5 36 72 1
56× 56× 36 bneck 3x3 36 80 1
56× 56× 36 bneck 5x5 36 72 1
56× 56× 36 bneck 3x3 48 144 2
28× 28× 48 bneck 3x3 48 140 1
28× 28× 48 bneck 3x3 48 160 1
28× 28× 48 bneck 3x3 48 130 1
28× 28× 48 bneck 5x5 48 140 1
28× 28× 48 bneck 7x7 140 360 2
14× 14× 140 bneck 5x5 140 360 1
14× 14× 140 bneck 3x3 140 560 1
14× 14× 140 bneck 5x5 140 440 1
14× 14× 140 bneck 7x7 144 360 1
14× 14× 144 bneck 5x5 144 560 1
14× 14× 144 bneck 3x3 144 288 1
14× 14× 144 bneck 5x5 144 400 1
14× 14× 144 bneck 5x5 144 256 1
14× 14× 144 bneck 3x3 192 864 2
7× 7× 192 bneck 5x5 192 928 1
7× 7× 192 bneck 7x7 192 736 1
7× 7× 192 bneck 7x7 192 800 1
7× 7× 192 bneck 3x3 192 928 1
7× 7× 192 bneck 3x3 320 1440 1
7× 7× 320 pool, 7x7 1
7× 7× 320 conv2d 1x1 2560 1
7× 7× 2560 conv2d 1x1 1001 1

13

	Notation
	NASBench-101 Search Details
	NATS-Bench Search Details
	NATS-Bench topology search
	NATS-Bench size search

	Dynamic Programming Implementation of LayerNAS for Multi-objective NAS
	Discussion on search space assumptions
	Search space is complete
	Sequential search order
	Limit of the assumption

	Discussion on num of replicas to store
	Transferability
	MobileNetV2 and MobileNetV3 Search Details
	60M MAdds Model
	220M MAdds Model
	300M MAdds Model
	600M MAdds Model

