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ABSTRACT

Sequential recommendation aims to predict the next click for a particular user based
on their historical interacted item sequences. Recently, diffusion-based methods
have achieved the state-of-the-art performance in sequential recommendation.
However, they fail to effectively utilize the rich semantic information embedded in
items during the diffusion process to accurately guide the generation, leading to sub-
optimal results. To address this limitation, we designed SDREC, a Semantic-aware
Diffusion model for sequential Recommendation. Our model introduces a novel
architecture, the Semantic Fusion Layer, which leverages the embedding
table from the encoder to incorporate item semantics into the diffusion process
through an attention mechanism. Together with the well-designed contrastive and
generative losses, SDREC effectively utilizes the item semantics in diffusion model,
unleashing the potential of sequential recommendation. Our experiments show
that SDREC has over 10% relative gain with superior efficiency compared with
existing methods.

1 INTRODUCTION

Sequential recommendation aims to mine the user’s behavior patterns from historical interaction
sequences and predicts the next item that the user is most likely to click in the future. It has attracted
widespread attention due to its high commercial value in many business scenarios, such as streaming
media (Covington et al., 2016), e-commerce (Chen et al., 2019), and social networking (Zhou et al.,
2018). Since sequential recommendation needs to identify the most suitable item from the existing
item set based on a user’s historical interactions, the effectiveness of the recommendations hinges on
the deep understanding of the semantics of the items (e.g., the categories that a movie belongs to) and
the modeling of user interests (e.g., what kinds of movies does the user like).

In order to efficiently capture the item semantics and user preferences, various types of methods
have been proposed for sequential recommendation (Hidasi & Karatzoglou, 2018; Yuan et al., 2019;
Sun et al., 2019; Xie et al., 2021; Ren et al., 2020). Recently, diffusion model (Ho et al., 2020)
has shown remarkable results in generation tasks from Computer Vision (CV) (Dhariwal & Nichol,
2021; Rombach et al., 2022) and Natural Language Processing (NLP) (Li et al., 2022; Gong et al.,
2022). It defines a sequence of Gaussian distributions (i.e., Markov chain) instead of a single one in
VAEs, granting it powerful fitting capabilities (Sohl-Dickstein et al., 2015; Vahdat & Kautz, 2020).
Moreover, it addresses the training instability in adversarial learning in GANs (Salimans et al., 2016),
making it easier to converge. Diffusion model corrupts inputs with random noises iteratively in the
forward process. Under the guidance of some conditions, it can learn the distribution more deeply by
removing noise and reconstructing the input. Thanks to its strong ability to fit complex distributions
and to generate diverse outputs, it has been achieved the state-of-the-art performance in sequential
recommendation (Wang et al., 2023; Li et al., 2023; Yang et al., 2024).

Despite their advancements, there remain some problems for existing diffusion recommenders.
Diffusion model was initially designed for generative tasks, allowing the model to create content
randomly to some degree as long as it satisfies the provided conditions. In contrast, recommendation
tasks require precise retrieval of suitable items that a user is likely to click in the future (Lin et al.,
2023), which requires a thorough understanding of the semantics of each item. This highlights the
need to effectively integrate item semantics at each diffusion step to accurately guide the generation
process. Unfortunately, existing diffusion recommenders rely solely on user preferences as conditions
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(i.e., historical interaction sequences), resulting in a limited view of item semantics. What’s worse,
these methods introduce noise into user sequences and then pass them to Transformers or MLPs for
denoising (Wang et al., 2023; Bénédict et al., 2023; Li et al., 2023), implicitly attempting to learn
item semantics during the reverse diffusion process (see Figure 1(a)). The presence of noise in the
input sequences hinders the model’s ability to accurately capture the semantic relationships between
items. Consequently, these methods struggle to capture the various semantics of items (e.g., a movie
may belong to multiple categories). This limitation prevents them from effectively modeling users’
diverse and dynamic interests, since user interests are indicated by user historical clicked items. As a
result, they primarily identify simplistic features like historical click patterns as Figure 2(e) shows,
leading to sub-optimal results. Therefore, how to efficiently leverage the item semantics in diffusion
model becomes a vital problem for improved diffusion recommenders.

Denoising
Network

user
sequence

corrupted
user

 sequence

add
noise

historical
sequence

Encoder

next item
Denoising
Network

Semantic
Fusion
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next item

 distribution
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(a) Existing diffusion recommenders (b) SDRec

Figure 1: Comparison of diffusion recommenders. (a) Existing methods, corrupt the user sequences
by adding noise and then feed them to a denoising network, using KL Divergence loss to implicitly
learn item semantics. (b) SDREC, explicitly learn item semantics via contrastive loss in the encoder
and enhance the corrupted item distribution by leveraging the embedding table from the encoder,
which injects semantic information through the Semantic Fusion Layer.

To address the problems mentioned above, we propose a novel Semantic-aware Diffusion model for
sequential Recommendation named SDREC. The model is structured around an Encoder-Decoder
architecture (refer to (b) in Figure 1). The encoder receives clean user sequences and explicitly
capture the semantic relationships between items by contrastive learning. It also discerns user
preferences from historical interactions, generating a conditional signal that effectively encodes
user interests. Guided by this conditional signal, the decoder iteratively recovers the next item
distribution from a noisy one. Before passing the noisy item distribution to the denosing network, we
introduced a Semantic Fusion Layer that leverages the semantic embedding table from the
encoder to transfer semantic information of items into the input distribution. Inspired by the attention
mechanism, the embedding table is weighted by the noisy input distribution, enriching the semantic
context while preserving the inherent randomness in diffusion model. Therefore, the reverse process
of diffusion model can refer to the rich semantics embedded in item embeddings to accurately guide
the generation. To sum up, the contributions of this work are as follows:

• We propose a novel diffusion recommender SDREC, which can effectively utilize the item seman-
tics through the Semantic Fusion Layer, where the noisy input distribution is enriched by
the semantic information from the item embedding table, improving the accuracy of the reverse
process in the diffusion model.

• SDREC adopts an Encoder-Decoder architecture. Equipped with well-designed contrastive and
generative loss, it can efficiently learn the item semantics and model user preferences simultane-
ously.

• We conduct extensive experiments to demonstrate impressive improvements over the baselines.
Meanwhile, our model is more efficient than baselines, which is favorable for online serving.

2 BACKGROUND AND RELATED WORK

2.1 SEQUENTIAL RECOMMENDATION

Given a user’s historical interacted item sequence arranged in chronological order i1, i2, · · · , im,
sequential recommendation aims to capture the user preferences from that and forecasts the next
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item i⋆ that the user is likely to engage with in the future. The success of this task depends on a
deep understanding of item semantics and accurate modeling of user interests. Due to the sequence
format of the user’s historical interactions and the discriminative nature of this task (i.e., distinguish
between items that users are interested in or not), combing sequential models with contrastive learning
to capture the semantics of items and mine user interests becomes a straightforward idea. Such
methods include Convolutions Neural Networks (CNN) (Tang & Wang, 2018; Yuan et al., 2019)
and Recurrent Neural Networks (RNN) (Hidasi & Karatzoglou, 2018; Hidasi et al., 2015). Recent
advances with Transformer-based methods (Kang & McAuley, 2018; Sun et al., 2019) have pushed
their performance even further.

However, in practical scenarios, users’ interests are dynamic and evolving over time (Sachdeva et al.,
2019; Li et al., 2023). To capture such diversity and uncertainty of user behaviors, generative models
have been introduced for sequential recommendation, such as VAE-based (Sachdeva et al., 2019; Xie
et al., 2021) and GAN-based (Bharadhwaj et al., 2018; Ren et al., 2020) methods. These kinds of
approaches can also stimulate new interests for users and discover more business opportunities. How-
ever, these models suffer from intrinsic limitations such as the instability of GANs (Salimans et al.,
2016) and the limited representation capacity of VAEs (Vahdat & Kautz, 2020). Such deficiencies
hinder the deep modeling of complex user behaviors and item semantics.

2.2 DIFFUSION MODEL

Recent proposed diffusion model (Ho et al., 2020) mitigates the weaknesses of VAEs and GANs
and push the state-of-the-art performance even further in generation tasks of both CV (Dhariwal
& Nichol, 2021; Rombach et al., 2022) and NLP (Li et al., 2022; Gong et al., 2022). Inspired by
non-equilibrium thermodynamics (Sohl-Dickstein et al., 2015), diffusion model defines a Markov
chain consisting of T forward diffusion steps, denoted as x1:T , from an original distribution x0.
Specifically, in the forward process q at step t, noise sampled from Gaussian distribution is added:

q(xt|xt−1) ∼ N (
√

1− βtxt−1, βtI), (1)

where {βt}Tt=1 are a series of predefined parameters controlling the amount of noises added at each
diffusion step. As T → ∞, xT resembles an isotropic Gaussian distribution. Thanks to the Markov
property, we can further calculate xt directly from x0 with the following closed-form equation:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (2)

where αt = 1− βt, ᾱt =
∏t

i=1 αi. Using Bayes’ theorem, the posterior distribution q(xt−1|xt, x0)

can be derived from N (c1,tx0 + c2,txt, β̃tI), where c1,t =
√
ᾱt−1βt

1−ᾱt
, c2,t =

√
αt(1−ᾱt−1)

1−ᾱt
, β̃t =

1−ᾱt−1

1−ᾱt
βt. Thus, a neural network model can be used to fit x0 and subsequently learn the reverse

process pθ for any step t:

pθ(xt−1|xt) ∼ N (c1,tfθ(xt, t, c) + c2,txt, β̃tI), (3)

where fθ is the model with parameters θ. Note that a classifier-free conditional diffusion model will
further accept a conditional signal c as input (Ho & Salimans, 2022). The model will be optimized by
maximizing the variational lower bound of the log-likelihood of the input data x0:

L = Ex0
[− log pθ(x0)] ≤ Ex0

[
T∑

t=1

KL (q(xt−1|xt, x0)∥pθ(xt−1|xt))

]
+ C, (4)

where C is a constant independent of the model parameter θ, KL is Kullback-Leibler Divergence.

2.3 DIFFUSION RECOMMENDERS

With the merits of diffusion model’s tractability and strong representation capability (Sohl-Dickstein
et al., 2015; Ho et al., 2020), recent studies have explored integrating diffusion models into sequential
recommendation and achieved state-of-the-art performance (Wang et al., 2023; Li et al., 2023; Yang
et al., 2024). For example, DiffRec (Wang et al., 2023) modifies the noise scale in diffusion model
to ensure personalized recommendations, DiffuRec (Wang et al., 2023) injects uncertainty into
item representations and reconstruct them by diffusion model in order to capture users’ multi-level
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interests, DCDR (Lin et al., 2023) proposes to use step-wise discrete operations to add noise during
the diffusion process, RecFusion (Bénédict et al., 2023) adopts a binomial Markov diffusion process
to fit the discrete recommendation datasets, DreamRec (Yang et al., 2024) proposes to generate the
oracle item via diffusion model without any discriminative information.

Despite their success, these methods have not effectively leveraged item semantics during the diffusion
process to generate high-quality recommendations. Originally, diffusion models were designed for
generative tasks, allowing for some randomness in content creation as long as the provided conditions
were met. However, recommendation tasks require the precise retrieval of items that are likely to
engage the user (Lin et al., 2023), which necessitates a deep and comprehensive understanding of
item semantics to guide generation accurately. Unfortunately, current diffusion recommenders rely
solely on user historical sequences as conditions, lacking a global awareness of item semantics.
Furthermore, the noise introduced to the user sequences impairs the model’s ability to accurately
capture the semantic relationships between items, further reduces the quality of recommendations.

To illustrate how item semantics affect the recommendation quality, we extract data from Movielens-
1M (Harper & Konstan, 2015) as an example. Since category is an inherent attribute of each movie,
we can use categories to express the semantics of movies. We count the number of each category that
appears together with Drama movies (Category 6). As Figure 2(a) shows, Comedy, Romance, Drama,
Action, and Thriller categories (Category 2, 5, 6, 7, and 9) often appear together, suggesting that
Drama movie contains multiple semantics. Figure 2(b) shows the category counts of movies clicked
by a user and (c) shows in a click timeline view. We can see that this user has a strong interest in
Comedy, Drama, Action, and Thriller (Category 2, 6, 7, and 9), which aligns the semantic correlations
confirmed from Figure 2(a). He also occasionally explores other categories like Adventure and
Romance (Category 3 and 5), indicating his preferences are dynamic and diverse.
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(c) Timestamp (Ground Truth)
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(b) Cate counts for this user
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Figure 2: Case study on how item semantics affects the recommendation results. (a) The number
of each category that appears together with Drama movie (Category 6). Darker red indicates stronger
correlations with Drama. (b) The number of each category that the user clicks according to his
historical sequence. Darker red categories denote user major interests. (c) Categories of the movie
clicked by the user at each timestamp. (d) Predictions of SDREC for this user in category level. (e)
Predictions of DiffRec (Wang et al., 2023) for this user in category level.

We applied a diffusion recommender DiffRec (Wang et al., 2023) to this case, shown as Figure 2(e).
The corresponding ground truth is in the blue square (training data) and green square (validation
and test data) in Figure 2(c). We collected top10 results predicted by this method at each click
timestamp and accumulate them in the category level. The results indicate that the movie categories
recommended by DiffRec are largely similar across timestamps without considering the diversity
and dynamics of user interests.This is due to DiffRec’s inability to fully learn and leverage item
semantics (i.e., movie categories) during the diffusion process, resulting in an incomplete modeling
of user interests, which are based on their interaction history. This also leads to inaccurate guidance
during the generation process. As a result, it tends to recommend content mechanically based on past
click patterns. However, user interests are diverse and dynamic, making this approach ineffective.
For SDREC, it can efficiently learn and leverage item semantics through the Semantic Fusion
Layer and produce high-quality recommendations. For example, after identifying Drama is the
user’s main interest, the model can recommend Adventure and Romance (Category 3 and 5) that are
semantically related to Drama.

3 PROPOSED METHOD: SDREC

SDREC includes a semantic encoder and a denoising decoder, cooperating with the contrastive loss
served for item semantic learning and the KL Divergence loss served for next item distribution

4
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learning. It is designed to effectively integrate item semantics into the diffusion process for accurate
generation.

3.1 MODEL DESIGN

Figure 3 shows the Encoder-Decoder architecture of SDREC. The semantic encoder serves to convert
historical item IDs into embeddings and extract the semantic correlations of items, generating a
D-dimensional conditional embedding c, which can also be considered as the representation of user
interests. Based on the condition signal c from the encoder, the decoder is utilized to reconstruct the
distribution of the next item from a noisy input. Before the noisy input is passed to the denoising
network, the embedding table from the encoder will be fed into the Semantic Fusion Layer
to offer a global view of item semantics during the reverse diffusion process.

Linear
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Figure 3: Model architecture overview. A semantic encoder is leveraged to encode historical
sequences into a conditional embedding c. The decoder predicts the clean distribution of the next
item x̂0 based on noisy distribution xt and conditional embedding c. Meanwhile, the Semantic
Fusion Layer is designed to efficiently inject item semantics into the diffusion process.

Semantic Encoder User’s historical interacted items i1, i2, · · · , im, which are sorted in chrono-
logical order, are firstly fed into an embedding layer (i.e., embedding lookup table), producing
m D-dimensional item embeddings e1, e2, · · · , em. Because of the inconsistency of the length of
users’ historical sequences, we just consider the last m items. Conversely, for sequences with less
than m items, padding tokens will be appended to reach the length of m. Then, a Transformer
encoder (Vaswani, 2017) is applied to extract the semantic correlation of items based on their co-
occurrence. Since no noise is injected into the inputs, the encoder can learn item semantics with
greater accuracy. Finally, the last non-pad token embedding from the outputs of the last Transformer
layer will be treated as the conditional embedding c. The above process can be described as below:

c = fφ(i1, i2, · · · , im). (5)

Note that the conditional embedding c can also be regarded as the tight representation of user interests.

Denoising Decoder Following the classifier-free conditional diffusion model (Ho & Salimans,
2022), the decoder generates the distribution of the next item from a noisy one xt, guided by the
conditional signal c. Additionally, a Semantic Fusion Layer is designed to take advantage
of accurate correlations and rich semantics of items from the encoder while preserving the inherent
randomness in the diffusion model. Specifically, given a N -dimensional noisy distribution xt, where
N is the total number of items in the dataset, we regard xt as the attention score in the traditional
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attention mechanism (i.e., QKT ), and the value (i.e., V ) is the detached embedding table E from the
embedding layer of the encoder, which is N ×D dimension. Then, we can perform the attention
mechanism by:

Ot = softmax(xt)× (WvE), (6)
where Wv is the weight matrix in the linear layer. The output Ot is a D-dimensional vector which can
be considered as the weighted sum of all item embeddings according to the input noisy distribution.

By employing this layer, we can integrate global item semantics into the inputs of the denoising
network, effectively addressing the issue of insufficient awareness of item correlations and semantics
in the traditional diffusion recommenders. During the reverse diffusion process, the denoising
network can refer to the rich semantics embedded in item embeddings to accurately guide the
generation direction. Besides, the Semantic Fusion Layer compresses the distribution vector
considering that typically N ≫ D, thus diminishing the input size for the final denoising network
and consequently reducing computational costs.

After that, we project the scalar diffusion timestep t into a D-dimensional embedding by sinusoidal
function (Vaswani, 2017), together with the conditional embedding c and the attention output
Ot, producing a vector that contains both item attributes and noise degree. Subsequently, this
concatenated vector is passed through a denoising network (i.e., MLP) to derive a refined clean next
item distribution, denoted as x̂0. The above process can be described as follows:

x̂0 = fθ(xt, t, c, E). (7)

With the comprehensive awareness of item semantics introduced by Semantic Fusion Layer,
the decoder can reconstruct a more realistic and accurate distribution for the next item.

3.2 TRAINING PHASE

During training, we optimize the encoder and decoder simultaneously, with discriminative learning
for the semantic encoder and generative learning for the denoising decoder.

Discriminative Learning Compared to the generative methods, discriminate methods usually
exhibit superior abilities to capture deterministic features (Bernardo et al., 2007). Thus, contrastive
learning will be applied to the encoder output and the item embeddings, so that the embedding table
E will contain discriminant semantic information (e.g., semantic correlations). Specifically, we
propose to align the conditional embedding c with the next item embedding e⋆:

LD = E(c,e⋆)

[
− log

exp(cT · e⋆)∑
e∈E exp(cT · e)

]
. (8)

This loss minimizes the disparity between the output of the encoder and the embedding of the
ground truth next item. Additionally, it brings similar items closer in the representation space, better
reflecting their semantics and thus enabling the subsequent diffusion model to generate a more
accurate distribution for the next item.

Generative Learning During the generative learning, the decoder will recover the distribution of
the next item based on the conditional signal c and the item semantics injected by the Semantic
Fusion Layer. In the forward process q(xt|xt−1), following the Eq.(2), Gaussian noise is added
to the ground truth distribution x0, which is the one-hot encoding of the ground truth next item i⋆.
In the reverse process, instead of predicting the noise ϵ, we predict the distribution itself (i.e., x̂0 in
Eq.(7) ). Following Jin et al. (2023), we optimize the diffusion model by the KL Divergence loss:

LG = E(x0,c,t) [KL (x0∥fθ (xt, t, c, E))] . (9)

This loss maximizes the probability of the ground truth by bringing fθ(xt, t, c, E) and x0 closer.
Since LG focuses on optimizing the decoder, to stabilize the item representation during training, we
use detach function to block the gradient propagation of the LG to the embedding table E.

By integrating both the discrimination and generation training objectives, the comprehensive training
loss of the entire model is the sum of LD and LG. Besides, to alleviate overfitting, we randomly re-
place the conditional signal c by a zero vector with probability pu, which can be seen as unconditional
training of the diffusion model. Algorithm 1 shows the details of the training phase.
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Algorithm 1 Training Phase
1: repeat
2: Sample user historical sequence i1, · · · , im, i⋆ from training dataset D.
3: c = fφ(i1, i2, · · · , im)
4: e⋆ = fφ.Emb(i⋆)
5: Compute LD by Eq.(8).
6: Sample t ∼ Uniform({1, 2, · · · , T}).
7: x0 = OneHot Encode(i⋆)
8: Compute xt by Eq.(2).
9: E = fφ.Emb.weight.detach()

10: With probability pu: c = 0.
11: Compute LG by Eq.(9).
12: Update φ and θ via loss L = LD + LG.
13: until converged

3.3 SAMPLING PHASE

In the sampling phase, the distribution of the next item will be recovered by the reverse denoising
steps. Inspired by Yang et al. (2024), we first restrict the effect of the conditional signal c at the
beginning of denoising in order to provide more diverse results. We achieve this by designing a
reweight strategy to modify the decoder outputs:

f̃θ(xt, t, c, E) =
1

1 + t
fθ(xt, t, c, E) +

t

1 + t
fθ(xt, t,0, E). (10)

During the early denoising phase (i.e., t = T ), higher t limits the strength of the conditional signal c,
avoiding undermining diffusion generalization. As the denoising step proceeds, gradually decreased t
will guide the model to generate outputs aligned with user interests effectively. Compared to Yang
et al. (2024), our reweight strategy does not require the tuning of the hyper-parameter and thus has
better adaptability.

Subsequently, following Eq.(3), the decoder will gradually recovers the distribution of the next item
by the reverse process starting from a Gaussian noise x̃T ∼ N (0, I), which can be reparameterized
as follows:

x̃t−1 =

√
ᾱt−1βt

1− ᾱt
f̃θ(x̃t, t, c, E) +

√
αt(1− ᾱt−1)

1− ᾱt
x̃t +

√
1− ᾱt−1

1− ᾱt
βtz, z ∼ N (0, I), (11)

where t ∈ {T, T − 1, · · · , 1}. Algorithm 2 shows the details of the sampling phase. Once the final
predicted distribution x̃0 is reconstructed, we firstly exclude items that have interacted within the
user’s historical sequence and then select the TopK items with the highest probabilities in x̃0 to form
the final recommendation list.

Algorithm 2 Sampling Phase

1: Obtain user historical sequence i1, · · · , im from test dataset Dt.
2: c = fφ(i1, i2, · · · , im)
3: E = fφ.Emb.weight
4: Sample x̃T ∼ N (0, I).
5: for t = T, T − 1, · · · , 1 do
6: Compute f̃θ(x̃t, t, c, E) by Eq.(10).
7: Compute x̃t−1 by Eq.(11).
8: end for
9: return x̃0

4 EXPERIMENTS

In this section, we will demonstrate that SDREC exhibits superior recommendation capabilities
compared to state-of-the-art baselines. Furthermore, we highlight the significance of our design
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choices, including the Semantic Fusion Layer and contrastive learning, which play crucial
roles in effectively integrating item semantics into diffusion model for enhanced recommendation.

4.1 EXPERIMENT SETUP

Datasets We use three real-world datasets to validate the performance of our model. 1) Amazon
Beauty and 2) Amazon Toys and Games (He & McAuley, 2016; McAuley et al., 2015) are two
categories of Amazon review datasets, which contain a collection of user-item interactions on Amazon.
3) Movielens-1M (Harper & Konstan, 2015) is a widely used benchmark dataset that includes user
ratings on movies. Following the data preprocessing method of the previous work (Kang & McAuley,
2018; Sun et al., 2019; Li et al., 2023), we treat all reviews or ratings as implicit feedback (i.e., a
user-item interaction), chronologically organize them by their timestamps and discard users and items
with fewer than 5 related actions. The maximum sequence length is set to 200 for MovieLens-1M
dataset, and 50 for the other two datasets. Besides, we adopt the leave-one-out evaluation strategy,
leaving out the last item for test, the second-to-last item for validation, and the rest for training. The
statistics of the processed datasets can be found in Table 1.

Table 1: Statistics of three experimental datasets

Dataset Beauty Toys and Games Movielens
#Users 22,363 19,412 6,040
#Items 12,101 11,924 3,706

#Interactions 198,502 167,597 1,000,209
Avg. interactions per user 8.88 8.63 165.60

#Train Sequences 131,413 109,361 982,089

Baselines We evaluate SDREC against several representative sequential recommendation methods,
including discriminative methods and generative methods. GRU4Rec (Hidasi et al., 2015), utilizes
RNN to model the sequential behavior of users; Caser (Tang & Wang, 2018), devises horizontal and
vertical CNN to exploit user’s recent sub-sequence behaviors; SASRec (Kang & McAuley, 2018),
utilizes a Transformer encoder to model the implicit correlations between items; BERT4Rec (Sun
et al., 2019), proposes to adopt a bidirectional Transformer for recommendation; STOSA (Fan
et al., 2022), adopts a stochastic Transformer with Wasserstein self-attention as sequence encoder;
SVAE (Sachdeva et al., 2019), uses a variational self-attention network to characterize the uncertainty
of user preferences; ACVAE (Xie et al., 2021), adopts an adversarial and contrastive variational
autoencoder to learn personalized characteristics; DreamRec (Yang et al., 2024), generates the oracle
item embeddings via diffusion model without discriminative learning; DiffuRec (Li et al., 2023),
utilizes diffusion method to model users’ multi-level interests; DiffRec (Wang et al., 2023), proposes
to incorporate the diffusion model in collaborative filtering.

Implementation Details Follow the full-ranking protocol (He et al., 2020), we rank all the non-
interacted items for each user. We evaluate all methods with two widely used metrics, H@K (Hit
Rate) and N@K (Normalized Discounted Cumulative Gain), where K = {10, 20}. The code is
implemented in Python 3.9 and PyTorch 1.10.0 and runs on NVIDIA P100 GPU with CUDA 11.8.
We fix the learning rate as 0.001, batch size as 1024 and unconditional diffusion training probability
pu as 0.4. We set the embedding dimension to 64 for the large dataset Movielens and 32 for the other
two datasets. The number of diffusion steps is 32 and the noise schedule is linear across all datasets.
More hyper-parameter settings and tuning range can be found in Appendix A.

4.2 RESULTS

Overall Performance Table 2 shows the overall results of our method against baseline models in
terms of TopK recommendation. Compared to RNN-based method GRU4Rec and CNN-based method
Caser, Transformer-based methods SASRec and BERT4Rec capture more complicated dependency
relations and more complex item semantics, resulting in better recommendations. For generative
approaches, diffusion-based methods DiffuRec, DiffRec and DreamRec achieve better performance
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than VAE-based methods SVAE, ACVAE, and STOSA due to the strong fitting capabilities inherent
in diffusion models. Meanwhile, our approach demonstrates notably enhanced performance across
all datasets than all baselines. This superiority is attributed to our design, which effectively integrates
item semantics into the diffusion process, allowing the denoising network to leverage the rich
semantics embedded in item embeddings to accurately guide the generation direction. A visualized
case provided in Figure 2 also demonstrates the strong ability of SDREC in leveraging the item
semantics. We conducted additional evaluations on two more datasets. Due to space limitations, the
results are provided in Appendix B.

Table 2: Overall recommendation results on three datasets. All results are reported in %. The best
results are in boldface, and the second-best are underlined. ⋆ indicates the results are borrowed from
(Li et al., 2023). “H” denotes Hit Rate while “N” denotes Normalized Discounted Cumulative Gain.
SDREC was conducted three times with different random seeds.

Algorithms Beauty Toys and Games Movielens
H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20

GRU4Rec⋆ 1.94 3.85 0.90 1.38 1.86 3.18 0.94 1.27 10.17 18.70 4.68 6.82
Caser⋆ 2.82 4.41 1.36 1.76 1.83 2.95 0.85 1.13 13.38 22.55 6.14 8.43

SASRec⋆ 6.27 8.98 3.23 3.66 6.55 9.23 3.75 4.33 16.89 28.32 7.73 10.60
BERT4Rec⋆ 3.72 5.79 1.83 2.35 2.93 4.59 1.49 1.90 20.57 29.95 11.13 13.48

STOSA⋆ 6.21 9.59 3.21 3.76 6.94 9.51 3.88 4.38 14.39 24.99 6.08 8.72
SVAE⋆ 1.98 3.15 0.99 1.29 1.36 1.92 0.71 0.85 2.72 5.03 1.23 1.83

ACVAE⋆ 3.88 6.12 2.14 2.70 3.08 4.41 1.85 2.18 19.93 28.97 10.54 12.82
DreamRec 4.32 5.06 2.84 3.03 4.74 5.32 3.23 3.38 20.66 27.60 12.28 14.03

DiffRec 6.25 8.51 3.55 4.14 6.57 8.68 3.88 4.41 11.84 19.93 6.06 8.11
DiffuRec⋆ 7.91 11.11 4.75 5.56 7.46 9.84 4.77 5.37 26.27 36.79 14.79 17.44
SDREC 8.62±.33 11.81±.32 5.27±.19 6.07±.21 9.45±.18 12.34±.18 6.12±.15 6.85±.23 32.38±.77 42.83±.43 18.89±.55 21.51±.28

Ablation Study To verify the effectiveness of each design choice of SDREC, we perform four
ablation experiments, shown in Table 3. The removal of the contrastive loss (w/o discriminative
learning) leads to a significant decline in results. This is mainly due to the lack of constraints
on item representation learning results in inaccurate item semantics, and thus the direction of
the denoising process becomes blurred. After replacing the Semantic Fusion Layer to a
linear layer which simply reduces the dimension from N to D (w/o Semantic Fusion Layer), the
performance drops substantially due to the lack of a comprehensive awareness of item semantics
during the reverse denoising process. Hence, the Semantic Fusion Layer plays a crucial role
in enhancing recommendation performance. Besides, the absence of unconditional training and
sampling (w/o unconditional training and reweight sample) will induce overfitting, leading to a drop
in recommendation performance. However, for Beauty dataset, whether unconditional training is
introduced has little impact on performance. This is because we trained relatively fewer steps on this
dataset (see Table 5), resulting in a less pronounced overfitting phenomenon.

Table 3: Ablation results on three datasets. All results are reported in %. The best results are in
boldface. “H” denotes Hit Rate while “N” denotes Normalized Discounted Cumulative Gain.

Settings Beauty Toys and Games Movielens
H@10 N@10 H@10 N@10 H@10 N@10

w/o discriminative learning 6.82 4.41 7.55 4.97 31.65 18.59
w/o Semantic Fusion Layer 6.27 3.48 7.46 4.53 20.65 11.16
w/o unconditional training 8.61 5.30 9.23 5.96 31.84 18.60

w/o reweight sample 8.43 5.25 9.33 6.03 31.92 18.49
original 8.62 5.27 9.45 6.12 32.38 18.89

Impact of Hyper-parameters We evaluate the recommendation results of SDREC on different
diffusion steps, noise schedules, and unconditional training probabilities pu. Figure 4 shows the
results for Beauty dataset. As we can see, small diffusion steps (i.e., 8) notably hurt the performance.
As the diffusion steps increase (i.e. ≥ 16), we observe a discernible improvement in performance,
while more diffusion steps won’t have much impact. As for the noise schedules, we observe that the
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linear schedule consistently yields the most favorable results, while the truncated linear and square
root schedules offer slightly worse performance compared to the linear schedule. Conversely, the
cosine and truncated cosine schedules have exhibited notably inferior results in our experiments.
Finally, our experiments show that setting unconditional training probabilities pu to 0.4 achieves the
best recommendation performance. The other two dataset results are in Appendix C.
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Figure 4: Impact of some hyper-parameters. Results for SDREC on Beauty dataset with different
diffusion steps, noise schedules, and unconditional training probabilities pu. “H” denotes Hit Rate.
Baseline is DiffuRec (Li et al., 2023).

Inference Efficiency Due to the latency limitation for online systems, the inference speed is crucial
for recommenders. Therefore, we compare the total inference time of three state-of-the-art diffusion
recommenders on the test split of three datasets, shown in Table 4. For a fair comparison, we set
the batch size to 1024 for all datasets and algorithms. Note that the batch size for DiffuRec on
Movielens is set to 512 due to the GPU memory limitations. DreamRec takes the longest inference
time due to its large embedding dimensionality (i.e., > 1024) and extensive diffusion steps (i.e.,
> 500) required for favourable results. In contrast, DiffuRec employs a much smaller embedding
dimensionality (i.e., 128) and achieves superior inference speed. DiffRec applies a smaller network
(i.e., MLP) compared to the four-layer Transformer encoder of DiffuRec, further reducing inference
time. Our method accelerates the inference even more by utilizing Semantic Fusion Layer,
reducing the N -dimensional distribution vector to a D-dimensional vector before passing it through
the denoising network. This reduction significantly cuts down computational complexity.

Table 4: Inference time on test split of three datasets. The best results are in boldface.

Algorithms Beauty Toys and Games Movielens
DreamRec (Yang et al., 2024) 283.42s 239.70s 74.37s

DiffRec (Wang et al., 2023) 10.33s 9.35s 1.47s
DiffuRec (Li et al., 2023) 82.47s 70.34s 113.31s

SDREC 7.51s 6.37s 1.31s

5 CONCLUSION AND LIMITATIONS

In this paper, we propose SDREC, a semantic-aware diffusion model for sequential recommendation
which can efficiently leverage the item semantics during the diffusion process. Inspired by the
attention mechanism, we designed the Semantic Fusion Layer. In this layer, the embedding
table is weighted by the noisy input distribution, allowing the reverse denoising process aware
of the item semantics comprehensively. Combined with contrastive learning, which constraints
the embedding table to learn discriminant information, SDREC will better extract item semantics
contained in the embeddings. Experiments demonstrate promise gain compared with existing methods.
Furthermore, as SDREC shows efficient inference speed, it is friendly to online services.

However, there is still a limitation for SDREC. The current model structure is based on a fixed
candidate set, which is not suitable for handling new items in real recommendation scenarios. We
believe that advanced methods for cold start scenarios will mitigate this problem, which also provides
new research opportunities for future work.
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A SETTINGS OF HYPER-PARAMETERS FOR SDREC

We tuned the learning rate across the range of [0.0001, 0.001, 0.005, 0.01]; the embedding dimension
was explored within [16, 32, 64, 128]; the number of encoding layers were tuned between [1, 2,
4]; the number of diffusion steps were explored in the range of [8, 16, 32, 64, 128]; the diffusion
noise schedule options included [linear, cosine, sqrt, truncated linear, truncated cosine]; and the
unconditional training probability was tested within [0, 0.2, 0.4, 0.6, 0.8].

The final hyper-parameter settings of SDREC for the three experimental datasets are shown in Table 5.

Table 5: Hyper-parameter settings of SDREC for three experimental datasets

Dataset Beauty Toys and Games Movielens
learning rate 0.001 0.001 0.001
training steps 77400 (600 epochs) 107000 (1000 epochs) 480000 (500 epochs)

batch size 1024 1024 1024
pu 0.4 0.4 0.4

#encoder layers 2 1 2
#attention heads 4 4 4

hidden dimension 32 32 64
dropout ratio 0.3 0.5 0.3
diffusion steps 32 32 32
noise schedule linear linear linear

B RECOMMENDATION PERFORMANCE ON MORE DATASETS

Table 6: Recommendation results on two more datasets. The best results are in boldface, and
the second-best are underlined. ⋆ indicates the results are borrowed from (Yang et al., 2024). “H”
denotes Hit Rate while “N” denotes Normalized Discounted Cumulative Gain.

Algorithms YooChoose Zhihu
H@20(%) N@20(%) H@20(%) N@20(%)

GRU4Rec⋆ (Hidasi et al., 2015) 3.89±.11 1.62±.02 1.78±.12 0.67±.03
Caser⋆ (Tang & Wang, 2018) 4.06±.12 1.88±.09 1.57±.05 0.59±.01

SASRec⋆ (Kang & McAuley, 2018) 3.68±.08 1.63±.02 1.62±.01 0.60±.03
DreamRec⋆ (Yang et al., 2024) 4.78±.06 2.23±.02 2.26±.07 0.79±.01

DiffRec⋆ (Wang et al., 2023) 4.33±.02 1.84±.01 1.82±.03 0.65±.09
DiffuRec (Li et al., 2023) 4.72±.10 2.40±.05 1.58±.15 0.58±.05

SDREC 4.92±.08 2.54±.02 2.52±.14 0.91±.04
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To fully test the performance of SDREC, we additionally evaluate the recommendation results on
two more datasets: 1) YooChoose from RecSys Challenge 2015 (on Recommender Systems, 2015)
and we use the purchase sequences of the medium size data; 2) Zhihu (Hao et al., 2021) which is
collected from a socialized knowledge Q&A platform. These two datasets are processed and split
according to (Yang et al., 2024).

We train SDREC on YooChoose dataset for 300 epochs, with pu = 0.2 and truncated linear schedule.
Other hyper-parameters remain consistent with those of Beauty dataset as Table 5 shows. For Zhihu
dataset, we adopt the same hyper-parameters used for Toys and Games dataset except that the learning
rate is set to 0.0005, training epochs are set to 300 and the batch size is set to 256.

The recommendation results for the above two datasets are reported in Table 6. As demonstrated,
SDREC outperforms all baselines, showing the high efficiency of our design.

C MORE RESULTS FOR THE IMPACT OF HYPER-PARAMETERS

Figure 5 and Figure 6 illustrate the impact of some hyper-parameters for SDREC on Toys and Games
and Movielens datasets.
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Figure 5: Impact of some hyper-parameters. Results for SDREC on Toys and Games dataset with
different diffusion steps, noise schedules, and unconditional training probabilities pu. “H” denotes
Hit Rate. Baseline is DiffuRec (Li et al., 2023).
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Figure 6: Impact of some hyper-parameters. Results for SDREC on Movielens dataset with
different diffusion steps, noise schedules, and unconditional training probabilities pu. “H” denotes
Hit Rate. Baseline is DiffuRec (Li et al., 2023).

The choice of unconditional training probability pu does not exert a significant impact on these two
datasets. This is mainly because of the large number of training steps for these two datasets as Table 5
shows. Consequently, even if pu is increased, the sufficient number of conditional training steps
ensures the attainment of favorable results.
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