A Model Architecture and Configuration

A.1 Overview

In this section, we provide more details on the model architecture as shown in Table 11, where each
modality specific diffuser is based on UNet architecture with different variations detailed in the table.
Another notable difference is the video architecture where we add temporal attention and temporal
shift as discussed in Section 3.3 and we will discuss its detail in the next section.

Table 11: Hyperparameters for our diffusion models. Note the video and image generation uses the
same diffuser.

Modality Video (Image) LDM Audio LDM Text LDM
Hyperparameter

Architecture LDM LDM LDM
z-shape 4 x #frames x 64 x 64 8 x 256 x 16 768 x 1 x 1
Channels 320 320 320
Depth 4 2 2
Channel multiplier 1,2,44 1,2,44 1,2,4,4
Attention resolutions 64,32,16 64,32,16 64,32,16
Head channels 32 32 32
Number of heads 8 8 8

CA embed dim 768 768 768
CA resolutions 64,32,16 64,32,16 64,32,16
Autoencoders AutoKL AudioLDM Optimus
Weight initialization Stable Diffusion-1.4 - Versatile Diffusion
Parameterization € € €
Learning rate 2e -5 5e — 6 5e — 5
Total batch size 256 1024 1024
Diffusion Setup

Diffusion steps 1000 1000 1000
Noise schedule Linear Linear Linear
Bo 0.00085 0.00085 0.00085
Br 0.0120 0.0120 0.0120
Sampling Parameters

Sampler DDIM DDIM DDIM
Steps 50 50 50

n 1.0 1.0 1.0
Guidance scale 2.0 7.5 2.0

A.2 Video LDM Architecture

Except for the base image UNet architecture, we also add temporal attention and temporal shift [2]
before each residual block. Following VDM [21], the temporal attention is a transformer attention
module where we flatten the height and width dimension to batch size dimension and the self-attention
is performed on the time dimension. The temporal shift is illustrated in Fig. 6 where we first split
channels into k£ chunks. Then, we shift the channel dimension numbered O to k£ — 1 by temporal
dimension from 0 to k£ — 1 times respectively. Eventually, we concatenate the shifted chunks by
the hidden dimension. Note that we use & = 3 in the illustration for simplicity but £ = 8 in our
implementation. We then add a convolution layer before the temporal shift module. Finally, we use
residual connection [ 18] and add the output to the input before the convolution layer. The complete
video UNet layer is shown in Fig. 7.

B Model Training

Prompt Encoders Training. As discussed in Section 3.2, we use bridging alignment to perform
contrastive learning between all prompt encoders. We use Adam [26] optimizer with learning rate
le-4 and weight decay le-4.
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Figure 6: Temporal shift [2] illustration. C, H, W represent channel, height, width, respectively. The
vertical line represents time steps from ¢ — 1, ¢, and ¢ + 1. The grey blocks denote “padding tensors”.
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Figure 7: Video UNet layer architecture details including normalization & activation, 2D temporal
attention, followed by temporal shift and 1D spatial convolution.

Diffusion Model Training. We train diffusion model with training objectives and hyperparameters
detailed in Table | and Table 11. For video LDM, we adopt a more specific training curriculum.
We adopt curriculum learning on frame resolution and frames-per-second (FPS). First, the diffuser
is trained on the WebVid dataset of a 256-frame resolution, with the training objective being text-
conditioned video generation. The training clips are sampled from 2-second video chunks with 4 FPS.
Second, the model is further trained on HDVILLA and ACAV datasets, with a 512-frame resolution
and 8 FPS, and the training objective is image-conditioned video generation (the image is a randomly
sampled frame of the clip). Each training clip contains 16 frames sampled from a 2-second video
chunk with 8 FPS.

Joint Generation Training. As discussed in Section 3.2, we train joint generation by aligning
environment encoders and optimize cross-attention layers only in the diffusion models. We use Adam
optimizer with learning rate 1e-5 and weight decay le-4.

C Training Datasets

In this section, we introduce more details about the video and audiovisual training datasets.

Video. WebVid [4] is a large-scale dataset of web videos with diverse content, spanning over 40
categories such as sports, cooking, and travel. It contains over 1.2 million video clips (all without
sound) that are all at least 30 seconds in duration with video descriptions. We perform text— video
and video-text contrastive learning task with this dataset. HD-Villa-100M [54] is a large-scale video
dataset with over 100 million video clips sourced from YouTube. The dataset covers a wide range of
video categories and includes high-quality videos with a resolution of at least 720P. Since it lacks
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curated video description and we use the middle frame as image input to perform image—video
generation.

Audiovisual. SoundNet originally contains over two million sounds and spans a wide range of
categories including music, animal sounds, natural sounds, and environmental sounds. We collected
all currently accessible 1M videos.

D Limitations & Broader Impacts

While the paper primarily focuses on the technical advancements and potential applications of
CoDi, we also consider potential negative social impacts that could arise from the development and
deployment of such technology. These impacts can include:

Deepfakes and Misinformation. As part of a common issue for generative Al models, the ability
of CoDi to generate realistic and synchronized multimodal outputs also raises concerns about the
creation and dissemination of deepfakes. Malicious actors could exploit this technology to create
highly convincing fake content, such as fabricated videos or audio clips, which can be used for
misinformation, fraud, or other harmful purposes.

Bias and Stereotyping. If the training data used for CoDi is biased or contains stereotypes, the
generated multimodal outputs may also reflect these.

E License

We will publicly release our code and checkpoints. We cite licenses from the individual dataset or
package we use from the community and provide the following links for references.
LAION-400M: Creative Common CC-BY 4.0

AudioSet: Creative Common CC-BY 4.0

AudioCaps: MIT

Freesound: Creative Commons

BBC Sound Effect: The BBC’s Content Licence

SoundNet: MIT

Webvid10M: Webvid

HD-Villa-100M: Research Use of Data Agreement v1.0

PyTorch: BSD-style

Huggingface Transformers: Apache

Torchvision: BSD 3-Clause

Torchaudio: BSD 2-Clause
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https://laion.ai/blog/laion-400-open-dataset/
https://research.google.com/audioset/download.html
https://github.com/cdjkim/audiocaps/blob/master/LICENSE
https://freesound.org/help/tos_web/
https://sound-effects.bbcrewind.co.uk/licensing
https://github.com/cvondrick/soundnet/blob/master/LICENSE
https://github.com/m-bain/webvid/blob/main/TERMS.md
https://github.com/microsoft/XPretrain/blob/main/hd-vila-100m/LICENSE
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/pytorch/vision/blob/master/LICENSE
https://github.com/pytorch/audio/blob/main/LICENSE
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