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Abstract

As Al systems approach broadly human-level per-
formance, safety and security research is urgently
needed to prevent severe harms from Al and en-
sure its benefits can be safely and reliably real-
ized. To inform strategic investment, we surveyed
53 experts on the importance and tractability of
105 technical Al safety and security research ar-
eas. Each expert was asked to rate a subset of
areas within their expertise. Our survey revealed
several highly promising research directions cen-
tered around robust early warning and monitor-
ing of Al risks. Some of the most promising
sub-areas included specific capability evaluations
(e.g., CBRN, cyber, and deception), understand-
ing emergence and scaling laws, and advancing
agent oversight. This study is the first to quan-
tify expert priorities across a comprehensive tax-
onomy of Al safety and security research direc-
tions and to produce a data-driven ranking of their
potential impact. These rankings may support
evidence-based decisions about how to effectively
deploy resources toward Al safety and security
research.

1. Introduction

The development of increasingly capable general-purpose
Al systems necessitates technical safety research to ensure
that such systems will remain secure, reliable, and benefi-
cial (Bengio et al., 2024; 2025b). This requires confronting
a wide spectrum of technical challenges, from novel Al-
specific concerns (such as alignment, control, and inter-
pretability) to high-stakes versions of traditional cybersecu-
rity and infrastructure threats (such as model theft, adversar-
ial attacks, and infrastructure vulnerabilities).
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Despite widespread awareness of this urgent challenge
(Leno da Silva et al., 2024; Bengio et al., 2025a), significant
gaps remain in coordinating and prioritizing technical Al
safety and security research efforts. Three bottlenecks have
limited progress:

* Resources: Funding remains inadequate relative to
the scale and urgency of the problem, and especially
relative to the investment in capabilities.

* Expertise: Al safety and security faces a shortage of
researchers with the necessary technical skills.

* Uncertainty: A lack of clarity about which research
directions are most promising hinders effective pri-
oritization by funders, policymakers, and researchers
themselves.

Here we directly address the uncertainty bottleneck by sur-
veying 53 experts from academia, industry, and civil soci-
ety. Collectively, 105 sub-areas of technical Al safety and
security research were assessed for importance (expected
reduction in risk of severe harms) and tractability (ability
for a marginal investment to make significant progress).

Our study reveals a consistent message from respondents:
significant, actionable opportunities exist within technical
Al safety and security research. 52 out of 53 respondents
identified at least one research direction as both important
and tractable (scoring > 4.0 on both dimensions). More
specifically, we reveal a critical immediate priority that
emerged from our survey results: enhancing our ability
to anticipate, detect, and monitor potentially harmful Al
capabilities before they can cause widespread harm, through
improving capability evaluations and evaluation science,
understanding emergence and scaling laws, and advancing
safety around agents and multi-agent systems.

2. Methodology

Our survey aimed to systematically capture experts’ judg-
ments of the importance and tractability of technical inter-
ventions related to Al safety and security.

2.1. Taxonomy Development

We developed a taxonomy of 105 technical Al safety and se-
curity research areas grouped into 20 high-level categories.
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This taxonomy was constructed by distilling recent litera-
ture, e.g. Anwar et al. (2024) and Williams et al. (2024), into
a mutually-exclusive taxonomy, and iterating that taxonomy
several times through consultations with multiple experts to
improve comprehensiveness. The focus was primarily on
model-centric interventions—those with direct effects on Al
model behavior, its evaluation, or its immediate operational
environment. The full taxonomy is available in Appendix B.

2.2. Expert Recruitment & Demographics

We surveyed 53 experts, drawing from academia, indus-
try, and civil society/non-profits, aiming for broad coverage
across the areas of our taxonomy. 81% completed the op-
tional demographic survey. A plurality of respondents were
affiliated with academic institutions (39.5%), followed by
non-profits (34.9%), with industry professionals comprising
16.3%, and smaller shares from government (2.3%), inde-
pendent contributors (2.3%), and other affiliations (4.7%).

Most participants reported primary expertise in technical
fields, with 65% in machine learning/Al and 19% in com-
puter science/engineering. A small share specialized in
public policy (7%) and social sciences (2%). The distribu-
tion of experience among participants was: 16% with over
10 years, 44% with 5 to 10 years, 30% with 3 to 5 years,
and the remainder (10%) with less than 3 years.

Our recruitment strategy primarily involved systematically
inviting first authors of exemplar publications in each sub-
area of our taxonomy, along with secondary authors pos-
sessing relevant expertise and experience. In total, 515
researchers were invited to participate.

The survey was administered anonymously through the
Qualtrics platform from December 21, 2024 to March 4,
2025. Most experts were given a 10-week window to re-
spond. During preliminary analysis, several categories were
identified as having low response rates and an additional 45
experts working in those areas were identified and invited
with a 9-day response window.

2.3. Survey Design & Metrics

Each expert was prompted to select top-level research cate-
gories corresponding with their expertise. Participants then
rated sub-areas within those categories on two key dimen-
sions using a 5-point Likert scale (1 = Strongly Disagree, 5
= Strongly Agree), with an additional option to say “I don’t
know” for any sub-areas they were insufficiently familiar
with. The assessed dimensions were:

e Importance: “Successfully addressing this issue
would significantly reduce the risk of severe harm (loss
of either >100 lives or >$10 billion USD in economic
impact) from Al

» Tractability: “An additional targeted investment of

approximately $10M USD over the next two years
would lead to significant, measurable advancements in
addressing this issue.”!

These definitions were designed to assess the potential for re-
duction in severe harms from an actionable level of funding
($10M USD) in order to assist decision makers considering
strategic marginal investments.

From the importance and tractability ratings we then calcu-
lated a “promise score” (importance X tractability, max=25)
which was used to rank each research area. Additionally,
qualitative feedback was solicited for each high-level area
on high-value challenges, missing sub-areas, and key obsta-
cles.

3. Results & Discussion

Our results revealed clear patterns in research priorities.
First and foremost, we identified directions where experts
perceive significant potential for near-term impact with tar-
geted investment ($10M USD over two years). We addi-
tionally analyze high-importance but low-tractability areas
separately under “Strategic Long-Term Opportunities.”

3.1. Most Promising Sub-Areas for Near-Term Progress

Areas with high promise scores represent directions where
experts perceive significant potential for impactful advance-
ments with targeted investment. The ten highest ranking
sub-areas are listed in Table 1. Full results are available in
Appendix A.

Table 1. Most Promising Sub-Areas

Sub-area I T P n
Emergence & task-specific scaling ~ 5.00 4.25  21.25 4
CBRN evaluations 4.67 433 2022 3
Evaluating deception, scheming 475 425 2019 4
Oversight of LLM-agents 4.67 422 19.70 9
Cyber evaluations 450 425 1913 4
Detecting unmeasured capabilities 438  4.25 18.59 16
Multi-agent metrics 443 414 1835 7
Multi-agent security 4.57  4.00 18.29 7
Quantifying cyber threats 425 425 18.06 4
Managing value conflicts 450 4.00 18.00 4

I = Importance, T = Tractability, P = Promise (IXT),
n = Respondents for sub-area.

The dominant pattern among highly-ranked areas is a fo-
cus on evaluation, monitoring, forecasting, and detection
of potentially dangerous capabilities. This includes under-
standing the relationship between emergent capabilities and
scaling, evaluating specific misuse potentials (chemical, bi-
ological, radiological, and nuclear [CBRN], cyber, decep-
tion), and oversight of LLM-agents. The expert judgments
here suggest that enhancing our capacity to understand and

"Note that this is $10M USD on the current margin, which
implicitly reflects respondents’ assessments of neglectedness.
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anticipate what advanced Al systems can do and what risks
they pose is more likely to succeed in the near-term than
research on direct interventions to Al model safety and se-
curity.

Additionally, multi-agent interactions also emerged as a crit-
ical concern, with all sub-areas of this category ranking in
the top 30% of priorities. This signals growing recognition
that as Al systems become more agentic and interconnected,
ensuring that their interactions yield safe outcomes is an
increasingly urgent research frontier.

Experts consistently favored concrete, empirical approaches
over theoretical frameworks, consistent with our near-term
definitions for tractability. While more speculative research
programs were acknowledged as important, they gener-
ally received lower tractability ratings compared to applied
methodologies, such as evaluation. (For example, “Mecha-
nistic understanding and limits of LLM reasoning” received
mean ratings of 5.0 for importance but only 3.5 for tractabil-
ity.) This suggests that for near-term impact, more practical
work aimed at existing systems offers more leverage than
developing general theories.

3.2. Strategic Long-Term Opportunities

Several research areas received a high rating for importance
(>4.0) despite lower perceived tractability (<3.5). These do-
mains represent strategic priorities that may require longer
timelines and more substantial resource commitments.

Table 2. Importance—Tractability Gap

Sub-area I T Gap n
Access control & interface hardening  4.75 275  2.00 4
Supply chain integrity 4.57  3.00 1.57 7
Mechanistic understanding of LLMs 5.00  3.50 1.50 4
Preventing model self-exfiltration 4.00 275 1.25 4
Weight security & key management 450 325 125 4

I = Importance, T = Tractability, Gap = 1—T,
n = Respondents for sub-area.

Analysis of these areas reveals three key patterns: (1) Se-
curity implementation challenges dominate, with six of the
ten largest importance-to-tractability gaps coming from cy-
bersecurity domains; (2) These gaps appear primarily in
applied areas rather than theoretical frameworks; and (3)
Most require complex technical solutions spanning multiple
domains. These findings point toward potential opportu-
nities for larger, multi-year programs and public-private
partnerships beyond the scope of typical grants.

3.3. Towards a Dual Investment Strategy

Overall, our findings point toward a dual investment strat-
egy: prioritizing near-term resources for capability evalua-
tions and evaluation science, understanding emergence and
scaling laws, and advancing safety around agents and multi-

agent systems, while simultaneously examining sustained,
larger-scale investment in foundational areas like applied
Al security (e.g., access control, supply chain integrity) and
deep model understanding. These latter “moonshot” areas,
though assessed as less tractable with a short time horizon,
may yield dividends for long-term safety, with several rating
>4.5 on importance despite lower tractability ratings.

Notably, our study revealed broad expert optimism about
actionable opportunities in technical Al safety and security
research. An overwhelming majority (52 of 53 experts) iden-
tified at least one research direction as both highly important
and tractable (scoring >4.0 on both dimensions), signaling
significant potential for progress with proper investment.

Our findings broadly corroborate other expert elicitations
on promising technical research directions, e.g., Schuett
et al. (2023), Grace et al. (2024), and Bengio et al. (2025a),
lending further weight to the identified priority areas.

4. Policy Implications

Policy can be a powerful instrument in mitigating critical
research gaps. Specifically, government can directly fund
neglected areas, incentivize investment, play a coordination
role, strengthen Al talent pipelines, and expand researcher
access to frontier models.

¢ Direct Funding: Government’s role in promoting re-
search will depend on the source of the research gap.
In some instances, research areas may be underfunded
because of limited financial resources. To address this,
Congress and relevant executive agencies, such as the
National Science Foundation, should consider directly
appropriating funding toward the most promising re-
search areas identified in this report. Respondents clas-
sified areas as tractable if a $10M USD investment over
the next two years would yield substantial advance-
ments in Al safety and security—an unremarkable sum
by government grantmaking standards that could yield
significant safety dividends. In addition, government
is uniquely positioned to direct higher sums to under-
funded research areas that rate high on importance but
low on tractability (e.g. supply chain security, access
control and interface hardening), including through
R&D agencies like the Defense Advanced Research
Projects Agency (DARPA) or innovation-focused pro-
grams like the CHIPS and Science Act or the American
Science Acceleration Project. It is unlikely that the Al
R&D ecosystem will be able to address these gaps with-
out the large, long-term investments usually provided
by government.

* Incentivizing Investment: Beyond direct funding,
government can: (1) List identified research gaps as
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official priorities to signal interest; (2) Offer tax in-
centives or subsidies for Al safety and security re-
search (Haykel, 2025); (3) Incorporate specific Al
safety and security research commitments into broader
agreements with industry stakeholders, and (4) Lower
research costs by providing computational and other
resources to safety researchers via structures like the
National AI Research Resource (NAIRR) pilot.

* Coordination: Some research areas face neglect due
to limited awareness rather than resource constraints.
Government can address this coordination problem by
proactively communicating research needs and estab-
lishing information-sharing mechanisms that provide
visibility into AT R&D progress.

* Talent Development: Underinvestment often stems
from talent shortages. Short-term solutions include
scholarships for critical Al safety and security areas
and pathways for international talent, while long-term
efforts should expand the domestic Al talent pipeline
through educational funding.

* Researcher Access: Limited access to advanced Al
systems hampers safety research. Policymakers can de-
mocratize access by encouraging industry to waive
costs for under-resourced organizations and create
mechanisms like regulatory sandboxes for government
researchers to access models pre-deployment.

5. Limitations & Future Work

Our study has important limitations: modest sample size
(N=53), uneven coverage across the taxonomy (31 sub-areas
were cut from analysis due to not meeting our minimum
of 3 responses), and its nature as a static snapshot in a
rapidly evolving field. The high percentage of experts with
technical backgrounds may have skewed results away from
topics such as fairness or privacy. The survey’s anonymous
nature made it impossible to verify whether experts favored
their own research areas, although we invited experts from
all subareas to mitigate and ideally average out this bias.

Results should be interpreted as directional indicators rather
than definitive priorities. Future work should pursue broader
sampling with higher response rates, explore expert ratio-
nales through qualitative follow-up studies, and develop
real-time elicitation methods to capture shifting priorities in
this dynamic domain.

6. Conclusion

Navigating the complex landscape of Al safety and security
research demands clear prioritization as human-level capa-
bilities rapidly develop. Our survey of 53 experts across 105

technical research directions provides data-driven guidance
for funders, researchers, and policymakers.

Expert assessments revealed the immediate priority lies in
enhancing early warning and monitoring by improving ca-
pability evaluations and evaluation science, understanding
emergence and scaling laws, and advancing safety around
agents and multi-agent systems. The consistent prioritiza-
tion of research enabling strategic visibility over research
aimed at direct risk-reduction underscores a critical insight:
managing the risks of human-level AI will require robust
systems to understand and anticipate what advanced Al
systems can do.

Our findings also point towards strategic long-term
investments—areas like security engineering and deep
model understanding that require larger-scale, coordinated
efforts despite lower near-term tractability. This suggests a
dual investment strategy: addressing urgent visibility needs
while building foundational capabilities for complex, long-
horizon problems.

Experts consistently favored concrete, empirical interven-
tions over theoretical frameworks. While Al companies
are active in some top-ranked areas, opportunities exist for
targeted support of independent research that provides im-
partial assessment of safety measures.

Despite limitations in sample size, this work provides a
quantitative snapshot of expert opinion and serves as a tem-
plate for iterative improvement in guiding Al safety and
security research prioritization.
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Impact Statement

This paper presents an expert-driven prioritization of Al
safety and security research, designed to guide resource
allocation and enhance society’s capacity to anticipate, un-
derstand, and prepare for rapidly advancing Al systems.
Our primary goal is to accelerate the development of robust
safety measures, thereby fostering the realization of AI’s
considerable societal potential. We offer these findings as
a data-driven tool to empower funders, policymakers, and
the research community in making more informed strategic
decisions within the complex safety and security landscape.
Applying these findings responsibly is crucial; we encour-
age readers to engage with them critically, as one valuable
input alongside diverse research perspectives, taking into
account this study’s specific context, the field’s dynamism,
and the nuanced execution that some identified high-impact
research areas (like dangerous capability evaluations) inher-
ently demand. Ultimately, this work seeks to contribute to
a more effective, coordinated global ecosystem striving for
the development of advanced Al that is demonstrably safe,
secure, and aligned with human interests and values.
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A. Sub-Areas Ranked by Promise Score

The following table contains all ratings from our survey ordered by promise score (importance X tractability). Sub-areas that
received two or fewer ratings in either importance or tractability were excluded from quantitative analysis due to insufficient
data for meaningful statistical interpretation, which led to the exclusion of 31 sub-areas.

Sub-area I T P n
Emergence and task-specific scaling patterns 500 425  21.25 4
CBRN (Chemical, Biological, Radiological, and Nuclear) evaluations 4.67 4.33 20.22 3
Evaluating deception, scheming, situational awareness, and persuasion 475 425  20.19 4
Oversight and monitoring of LLM-agents 4.67 422 19.70 9
Cyber evaluations 450 425 19.13 4
Detecting and addressing previously unmeasured or latent capabilities 438 425 18.59 16
Multi-agent metrics and evaluations 443 414 18.35 7
Multi-agent security 4.57  4.00 18.29 7
Quantifying cyber threats from advanced capabilities 425 425 18.06 4
Manage conflicts between different values 450 4.00 18.00 4
Safety and emergent functionality in multi-agent interactions 457 386 17.63 7
Validating and applying interpretability methods 438  4.00 17.50 8
Mechanistic understanding and limits of LLM reasoning 5.00  3.50 17.50 4
Evaluation methodology and metrics 4.14 420 17.40 15
Control mechanisms for untrusted models 4.00 425 17.00 4
Transparency, information asymmetries, and communication protocols 4.00 425 17.00 5
Detecting and preventing collusion and emergent collective behaviour 443 3.80 16.83 7
Network effects and destabilizing dynamics in agent ecosystems 4.33 3.83 16.61 6
Pluralistic value alignment 4.00  4.00 16.00 4
Evaluating tool affordances for LLM-agents 4.11 3.89 15.99 9
Develop more robust evaluations for which values an LLM encodes 375 425 15.94 4
Studying misalignment through simplified model organisms 4.07 3.86 15.70 14
Confidential computing and environment isolation 4.57 343 15.67 7
Theoretical foundations for evaluation 4.07 381 15.50 16
Improving evaluation robustness 380 407 1545 15
Robustness to underspecification 4.17 3.67 15.28 6
Pretraining alterations to improve Interpretability 4.00 3.80 15.20 5
Understanding how finetuning changes a pretrained model 4.00 375 15.00 5
Transparency 4.13  3.63 14.95 8
Foundational research on operationalizing values in LLMs 425 350 14.88 4
Weight security and key management 450 325 14.63 4
Debate 410 350 1435 10
Continuous monitoring, advanced threat detection, and incident response 3.86 3.71 14.33 7
Datacenter security 4.14 343 14.20 7
Uncertainty quantification 375 375  14.06 4
Defending against poisoning and backdoors 3.75 3.75 14.06 4
Justify value choices for alignment 4.00 350 14.00 4
Scalable data auditing, filtering, and Pretraining with Human Feedback (PHF) 4.00 350 14.00 4
Eliciting Latent Knowledge (ELK) 425 325 13.81 8
Supply chain integrity and secure development 4.57 3.00 13.71 7
Explainability 400 343 1371 7
Develop output-based adversarial training techniques for more robust alignment 3.80  3.60 13.68 5
Better elicitation mechanisms from humans 3.60  3.67 13.20 10
Access control and interface hardening 475 275 13.06 4
Building verifiable and robust Al architectures 392 333 13.06 12
Lifelong learning and goal-directedness in LLM agents 3.67 3.56 13.04 9
Iterated Distillation and Amplification (IDA) 4.00 3.22 12.89 9
Tamper-evidence and tamper-proofing 3.57 3.57 12.76 7
Hardware-integrated monitoring and verification 357 350  12.50 7
Developmental Interpretability 3.75 3.29 12.32 8
Defending against jailbreaks and prompt injections 3.75 3.25 12.19 4
Detecting modified models or poisoned data 4.00  3.00 12.00 4
Decision theory and rational agency 370  3.20 11.84 10
Formal verification of AI systems 382  3.09 11.80 11
Interpretability foundations 3.38 343 11.57 8
Peer incentivisation and automated mechanism design 3.00 375 11.25 4
Human-Al Interaction and collaboration 320 3.50 11.20 5
Preventing model self-exfiltration 4.00 275 11.00 4
Embedded agency 3.55 3.09 10.96 11
Feature and circuit analysis 343 3.17 10.86 7
Specialized chips to compute encrypted data 3.57 3.00 10.71 7
Limiting models’ ability to perform harmful tasks 3.60 2.80 10.08 5
Recursive Reward Modeling 322 313 10.07 9
Mechanism design and multi-agent communication 280  3.50 9.80 5
Retrieval-augmented pre-training 260 3.5 9.75 5
Adversarial robustness to perturbations 3.25 3.00 9.75 4
Scalable techniques for targeted modifications of LLM behavior 3.00 3.00 9.00 5
Theoretical foundations of deep learning 267 333 8.89 3
Reinforcement Learning from Al Feedback (RLAIF) 3.10 2.80 8.68 10

Continued on next page
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Table 3: Sub-areas Ranked by Promise Score (continued)

Sub-area I T P n
Limits of Transformers 233 3.67 8.56 3
Causal incentives 290 290 8.41 10
Control theory applications in Al safety 3.09  2.60 8.04 11
Model robustness and oracle protection 3.00 2.67 8.00 4
Safe reinforcement learning for non-LLM systems 3.00 250 7.50 3
Double descent and overparameterization 2.00 3.33 6.67 3
Implicit bias of optimization algorithms 2.67 233 6.22 3
Optimization and loss landscape analysis 2.00 233 4.67 3

I'=Importance, T = Tractability, P = Promise (I X T, max=25),
n = Number of respondents. (Subareas with two or fewer respondents were excluded from results.)
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B. Taxonomy

Top-level categories

Respondents first selected one or more of the following categories:

1.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

PN RE LD

Theoretical foundations and provable safety in Al systems
Training and finetuning methods for alignment and safety
Scalable oversight and alignment techniques
Understanding in-context learning, reasoning, and scaling behavior
Interpretability, explainability, and transparency
Robustness

Improving the science of Al evaluation

Domain-specific Al evaluation design

Agentic LLMs and single-agent risks

Multi-agent interactions

Cooperative Al and mechanism design

Fairness

Accountability

Ethics

Choosing and operationalizing values in Al

Privacy

Cybersecurity for Al models

Hardware and infrastructure security for Al

Improving general understanding of deep learning
Research on safety in non-LLM systems

Category and sub-area descriptions

The following area descriptions were then shown to respondents alongside importance and tractability questions.

1. Theoretical foundations and provable safety in AI systems: Advancing the theoretical foundations of Al safety by
building models and frameworks that ensure provably correct and robust behavior. These efforts span from verifiable
architectures and formal verification methods to embedded agency, decision theory, incentive structures aligned with
causal reasoning, and control theory.

a.

Building verifiable and robust AI architectures: Constructing Al systems with architectures that support formal
verification and robustness guarantees, such as world models that enable safe and reliable planning, or guaranteed
safe Al with Bayesian oracles. This area emphasizes simplicity and transparency to aid in provability.

Formal verification of AI systems: Applying formal methods to verify that AI models and algorithms meet
stringent safety, robustness, and performance criteria. This includes proving resilience against adversarial inputs
and perturbations, and certifying conformance to specified safety properties under varying conditions.
Decision theory and rational agency: Establishing formal decision-making frameworks that ensure rational and
safe choices by Al agents, potentially drawing on concepts like causal and evidential decision theory.

Embedded agency: Explores how agents can model and reason about themselves and their environment as
interconnected parts of a single system, addressing challenges like self-reference, resource constraints, and the
stability of reasoning processes. This includes tackling problems arising from the lack of a clear boundary between
the agent and its environment.

Causal incentives: Developing frameworks that formalize how to align agent incentives with safe and desired
outcomes by ensuring their causal understanding matches intended objectives. This research provides a formal
language for guaranteeing safety, addressing challenges like goal misspecification, and complementing broader
efforts in agent foundations and robust system design.

Control theory applications in Al safety: Leveraging principles from control theory to ensure stability, robust-
ness, and safety for Al-driven systems interacting with dynamic physical environments. This includes designing
controllers and feedback mechanisms to maintain system integrity, prevent runaway behaviors, and achieve desired
performance criteria under uncertainty.
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2. Training and finetuning methods for alignment and safety: Developing reliable training and finetuning strategies
for AT models to ensure that their outputs remain safe, interpretable, and aligned with intended goals. This involves
understanding how finetuning affects model behavior, employing adversarial training for robust alignment, carefully
adjusting pre-training processes, and improving data quality and auditing methods.

a.

Understanding how finetuning changes a pretrained model: Investigating how finetuning alters a model’s
internal representations and behaviors to better predict, and ultimately control, downstream safety outcomes.
Develop output-based adversarial training techniques for more robust alignment: Developing training
procedures, such as adversarial training focused on internal model representations, or ‘process supervision,’
that directly optimize against adversarial examples and undesirable outputs, making models more resistant to
manipulations that could lead to unsafe behaviors.

. Scalable techniques for targeted modifications of LLM behavior (including unlearning): Creating scalable

methods for precisely adjusting model outputs, such as removing unwanted content or refining responses to adhere
to alignment constraints without broadly degrading performance. This may also include removal of unknown or
latent undesirable capabilities that emerge in large models.

Retrieval-augmented pre-training: Incorporating retrieval mechanisms during pre-training to better ground
models in verified information.

Pretraining alterations to improve interpretability: Altering pre-training protocols to produce models with
clearer internal representations and decision-making pathways, allowing for more effective downstream analysis
and intervention.

Limiting models’ ability to perform harmful tasks: Introducing mechanisms during pre-training that proactively
limit a model’s potential to learn or perform harmful tasks, constraining the model’s capability space to safer
domains before downstream fine-tuning.

Scalable data auditing, filtering, and Pretraining with Human Feedback (PHF): Developing tools for large-
scale data auditing, filtering, training-data attribution, and incorporating human feedback at the pre-training
stage.

3. Scalable oversight and alignment techniques: Developing approaches to guide and align increasingly complex Al
systems even in tasks where direct oversight is challenging, such as by the use of Al feedback, debate, iterative training
processes, and enhanced elicitation methods.

a.

Reinforcement Learning from AI Feedback (RLAIF): Using feedback generated by Al systems to guide
reinforcement learning, effectively scaling the oversight process beyond purely human-labeled data.

Debate: Encouraging multiple models (or model instances) to discuss and critique each other’s reasoning, with
human overseers judging the best arguments.

. Iterated Distillation and Amplification (IDA): An alignment approach where increasingly capable Al systems

are trained by recursively using weaker Als to teach and amplify smarter successors. To address the limitations
of human-defined feedback and reward functions, IDA decomposes complex tasks—using Al assistance—into
simpler subtasks with accessible human or algorithmic evaluation signals, enabling scalable alignment and
improved performance over time.

Better elicitation mechanisms from humans: Improving methods to extract more reflective, aspirational,
and consistent human preferences, to provide data to guide Al systems along these preferences and update in
accordance with changes in values over time.

Recursive reward modeling: Breaking down complex tasks into simpler subtasks for which reward signals can
be more easily specified, then “building up” to oversee more complex behaviors.

4. Understanding in-context learning, reasoning, and scaling behavior: Methods to gain a comprehensive under-
standing of how large language models learn, reason, and scale, such as by examining in-context learning (ICL)
mechanisms, the influence of data and design on behavior, the theoretical foundations of scaling, the emergence of
advanced capabilities, and the nature of reasoning.

a.

Mechanistic understanding of In-Context Learning: Investigating the internal processes by which transformers
perform ICL, including whether these processes resemble emergent optimization behavior, advanced pattern-
matching, or other structural mechanisms. This research may include scenario-based analyses to identify the
circuits critical for ICL under artificial constraints.

10
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g.

Influences on ICL behavior and performance: Examining how the tasks, instructions, pre-training data
distribution, and design choices (e.g., instruction tuning, model size, training duration) shape the range and
reliability of behaviors that can be specified in-context.

Theoretical and representational aspects of scaling: Clarifying when and how scaling drives improvements,
such as by building a more robust theoretical framework to describe scaling laws, or analyzing how increasing
model size and training data influence learned representations.

Emergence and task-specific scaling patterns: Formalizing and forecasting the emergence of new capabilities
as models scale, investigating whether scaling alone can produce certain capabilities, and designing methods for
discovering task-specific scaling laws.

Impact of scaling and training on reasoning capabilities: Determining whether and how increases in model
size and training complexity enhance reasoning abilities, and identifying which aspects of training conditions and
data sources facilitate the acquisition of reasoning skills.

Mechanistic understanding and limits of LLM reasoning: Examining the underlying mechanisms of reasoning
in LLMs, exploring non-deductive reasoning capabilities of LLMs (e.g., causal or social reasoning).

Limits of Transformers: Defining the computational limits of transformers in supporting sophisticated reasoning.

5. Interpretability, explainability, and transparency: Ensuring that Al systems are understandable, trustworthy, and
transparent. This involves developing tools and methods to interpret model internals, refining the reliability and
scalability of interpretability techniques, exploring ways to elicit and explain model reasoning, and improving the
transparency of complex models.

a.

Interpretability foundations: Focuses on theoretical and experimental studies investigating how models represent
and encode concepts, emphasizing structural and abstraction-level insights, including by distinguishing linear
from non-linear encodings, understanding polysemanticity and superposition, examining concept mismatches
between models and humans, and discovering more accurate abstractions for interpretability.

. Validating and applying interpretability methods: Developing rigorous criteria and benchmarks for evaluating

the reliability of interpretability methods, and understanding whether these methods maintain their validity when
applied to actively modify model behavior.

. Feature and circuit analysis: Creating scalable approaches for feature interpretation, circuit discovery, and

feature steering (or top-down/control vectors).

. Eliciting Latent Knowledge (ELK): Developing methods to reveal hidden knowledge embedded within models,

enabling researchers to identify what models implicitly “know” about the world and how this knowledge influences
predictions.

. Developmental interpretability: Investigating how Al models’ internal representations and behaviors evolve

throughout their training process to understand the developmental stages and mechanisms by which complex
capabilities emerge. This research aims to uncover the progressive changes in model structure and function,
facilitating better alignment and safety assurances.

. Transparency. Research here aims to open up the black box of Al systems by uncovering how data, architecture,

and training processes shape model outputs. Example research focuses on advanced documentation frameworks,
auditing tools to surface biases or vulnerabilities, and reporting protocols to effectively explain outputs and
communicate uncertainty.

. Explainability: Methods to understand why a model generates specific outputs. Technical approaches include

developing post-hoc or embedded explanation methods, measuring and improving explanation fidelity, and crafting
user-focused interfaces that clarify causal or logical relationships.

6. Robustness: Ensuring that Al systems remain reliable and secure in the face of adversarial manipulation, misaligned
inputs, and uncertain conditions, such as by protecting against prompt-based exploits, poisoning attacks, and adversarial
perturbations, and introducing control mechanisms and uncertainty quantification methods to maintain resilient system
behavior at scale.

a.

Defending against jailbreaks and prompt injections: Improving state-of-the-art methods for discovering,
evaluating, and defending against prompt injection and “jailbreaking” attacks. Research also focuses on structural
defenses, such as detection, filtering, and paraphrasing of prompts, as well as addressing vulnerabilities stemming
from a lack of robust privilege levels (e.g., system prompt vs. user instruction) in LLM inputs.

11
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Defending against poisoning and backdoors: Understanding how LLMs can be compromised through data
poisoning at various training stages, examining the effect of model scale on vulnerability, testing out-of-context
reasoning under poisoning, and exploring attacks via additional modalities and encodings. This area also includes
detecting and removing backdoors (i.e., Trojan detection) to ensure that covertly embedded harmful behaviors are
mitigated.

Adversarial robustness to perturbations: This area investigates how models can be made more resilient to
carefully crafted adversarial perturbations designed to degrade performance or reveal vulnerabilities. Research
involves identifying methods for bolstering model robustness under challenging conditions, including adversarial
training and certified defenses.

Control mechanisms for untrusted models: Designing and evaluating protocols to control outputs from untrusted
models. This includes methods for monitoring backdoored outputs, integrating control measures with traditional
insider risk management strategies, building safety cases for control tools, and employing white-box techniques
(e.g., linear probes) for continuous oversight.

Uncertainty quantification: Quantifying uncertainty in model predictions. Techniques include ensemble methods,
conformal predictions, and Bayesian approaches to estimate and calibrate model confidence.

7. Improving the science of Al evaluation: Ensuring that Al systems can be accurately assessed and understood. This
includes theoretical work in capability and safety evaluation, as well as improving the reliability and fairness of
evaluation processes.

a.

Theoretical foundations for evaluation: Research includes creating rigorous frameworks for predicting capa-
bilities (as opposed to relying solely on benchmarks) understanding generality and generalization in LLMs, and
developing theory-grounded taxonomies of model capabilities.

. Evaluation methodology and metrics: Research focuses on designing holistic, theory-grounded metrics (e.g.

focused on more than just harmlessness), accounting for scaffolding in evaluations, and characterizing safety-
performance trade-offs.

. Studying misalignment through simplified model organisms: Developing and studying simplified AI models—

“model organisms”—to probe potential misalignment, gain insights into failure modes, and refine evaluation
strategies without the complexity of full-scale systems.

. Improving evaluation robustness: Methods here aim to stabilize evaluations against sensitivity to prompts,

detect and address contaminated data, ensure that evaluations remain meaningful even if models are fine-tuned in
a targeted manner for certain tasks, and mitigate bias in Al evaluations (including biases in crowdsourced human
evaluations).

. Detecting and addressing previously unmeasured or latent capabilities: Developing strategies to uncover

latent harmful abilities within AI models and prevent models from exhibiting undesirable behaviors such as
“sandbagging” or deceptively underperforming during evaluations.

8. Domain-specific AI evaluation design: Developing specialized evaluation tools to assess Al models’ capa-
bilities and safety in critical areas such as automated AI research and development, cybersecurity, chemi-
cal/biological/radiological/nuclear (CBRN) scenarios, and manipulative behaviors like deception and persuasion.

a.

b.

Automated AI R&D evaluations: Designing evaluations to assess a model’s capacity to generate research ideas,
propose improvements to algorithms, or autonomously advance Al capabilities.

Cyber evaluations: Designing evaluations to assess a model’s ability to understand, exploit, or defend against
cybersecurity threats and vulnerabilities.

CBRN (Chemical, Biological, Radiological, and Nuclear) evaluations: Designing evaluations to assess a
model’s understanding of hazardous CBRN materials and scenarios, ensuring it cannot be easily leveraged to
facilitate harmful acts involving these agents.

Evaluating deception, scheming, situational awareness, and persuasion: Designing evaluations to assess how
well models can deceive, strategize, maintain situational awareness, or influence human decision-making.

9. Agentic LLMs and single-agent risks: Developing a deeper understanding of agentic behavior in LLM-based
systems. This work clarifies how LLM-agents learn over time, respond to underspecified goals, and engage with their
environments.

12
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Lifelong learning and goal-directedness in LL.M agents: Investigating how agentic LLMs evolve through
ongoing learning, and potentially exhibit undesirable behaviors due to goal-directedness.

Robustness to underspecification: Enhancing methods to ensure LLM-agents remain aligned despite vague or
shifting objectives.

Oversight and monitoring of LL.M-agents: Building automated oversight and monitoring tools to track LLM-
agent actions.

Evaluating tool affordances for LLM-agents: Evaluating the safety of providing LLM-agents with tools and
affordances, and determining whether robust safety assurances are possible for given affordances.

10. Multi-agent interactions: Research focusing on ensuring safe multi-agent interactions, such as by detecting and
preventing malicious collective behaviors, studying how transparency can affect agent interactions, and developing
evaluations for agent behavior and interaction.

a.

Safety and emergent functionality in multi-agent interactions: Understanding how individual agent dispositions
and capabilities scale into complex multi-agent dynamics, evaluating emergent functionalities (e.g., coordinated
strategies), enhancing robustness of LLM agents to correlated failures stemming from foundationality, and
applying insights from multi-agent RL research to LLM-based systems.

Detecting and preventing collusion and emergent collective behavior: Developing detection techniques (e.g.,
information-theoretic or interpretability-based) for collusion between Al agents, benchmarking and evaluating
collusive tendencies, designing mitigation strategies such as oversight regimes, communication restrictions,
and methods for steering agents, understanding conditions (e.g., agent similarity, communication channels,
environment structure) that facilitate collusion, and understanding why and how general “super-agents” might
develop from many narrow agents.

. Multi-agent security: Assessing unique security risks that arise in multi-agent ecosystems, designing defenses

(e.g., secure communication protocols, improved network architectures, information security), studying how
multiple systems can circumvent safeguards, evaluating robustness of cooperation to adversarial attacks (e.g., if a
small number of malicious agents can destabilize larger groups), evaluating how well agents can adversarially
attack each other, and studying the impact of Al agent’s training dynamics on data generated by each other with
respect to shared vulnerabilities/correlated failure modes.

Network effects and destabilizing dynamics in agent ecosystems: Understanding which network structures
and interaction patterns lead to robust or fragile systems, monitoring and controlling dynamics and co-adaptation
of networks of advanced agents, and identifying important security concerns in existing and future multi-agent
application areas (e.g., finance, energy grids) and applying lessons from those areas to manage destabilizing
forces.

Transparency, information asymmetries, and communication protocols: Studying how agent transparency
(e.g., code access) or predictability of agents can influence cooperation or defection, scaling Bayesian persuasion
and information design to complex multi-agent settings, developing secure information transmission methods
between Al agents to promote cooperation, examining how agent similarity and evidential reasoning about others
affect ability and propensity to cooperate, and developing efficient algorithms for zero- or few-shot coordination
in high-stakes scenarios.

Multi-agent metrics and evaluations: Distinguishing and measuring cooperative dispositions, understanding
agents’ robustness against coercion or exploitation, quantifying traits like altruism or spite, assessing the impact of
capability asymmetries between agents, examining how training processes and data sources influence cooperation,
and developing dangerous capability evaluations for multi-agent systems.

11. Cooperative AI and mechanism design: Fostering beneficial multi-agent ecosystems through research on human-Al
interaction, mechanism design, communication protocols, peer incentivization, and automated mechanism design.

a.

Human-AlI interaction and collaboration: Designing Al systems that can understand and predict human actions
and preferences; creating interfaces and protocols for effective human-Al teamwork; understanding how interactive
Al may change human decision making.

Mechanism design and multi-agent communication: Focuses on foundational concepts like social choice
theory, incentive alignment, and emergent communication protocols in multi-agent systems to ensure cooperation
and fair outcomes.
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C.

Peer incentivisation and automated mechanism design: Focuses on practical and scalable applications of
mechanism design, including methods for incentivizing cooperation among agents, designing secure and scalable
inter-agent contracting and norm enforcement mechanisms, and structured opponent-shaping strategies in complex
environments.

12. Fairness: Research focusing on developing equitable Al systems, including detecting and mitigating bias, ensuring fair
representation across diverse groups, addressing fairness in dynamic or constrained data scenarios, and reconciling
conflicting fairness definitions to align interventions with societal values.

a.

Fairness under dynamic and constrained data scenarios: Ensuring that fairness interventions remain effective
under continual learning, adaptive deployment, or evolving operational contexts.

Fair representation and participation in AI systems: Promoting fair representation and generalization across
different subpopulations, and ensuring inclusive participation in the development and governance of Al systems.

. Bias detection, quantification, and mitigation techniques: Developing systematic methods to detect, measure,

and reduce bias in model outputs, ranging from pre-processing adjustments to post-hoc corrections. This may
also include causal methods for fairness, such as causal modeling techniques to distinguish between genuine
causal relationships and spurious correlations in observed disparities, enabling fairness interventions that address
underlying structural causes.

Fairness in multilingual, cross-cultural, and multimodal contexts: Addressing fairness challenges that arise
when models operate across different languages, cultures, and data modalities.

Intersectional fairness and complex group structures: Addressing compounded biases that arise when protected
attributes overlap, such as race and gender, to ensure fairness approaches capture nuanced harms across intersec-
tional groups. This research develops computational methods and evaluation frameworks to avoid oversimplifying
population categories and to identify disparities affecting complex group structures.

Reconciling multiple fairness definitions and normative trade-offs: Comparing and combining conflicting
formal definitions of fairness to address the normative trade-offs they entail and align fairness interventions with
societal values. This research clarifies the theoretical and practical implications of fairness definitions, helping
practitioners navigate complex policy and ethical considerations.

13. Accountability: Research focusing on ensuring Al systems are transparent, reliable, and compliant, including
developing auditing tools, attributing Al outputs to specific models, mitigating risks of power concentration in Al
development and deployment, and automating regulatory compliance.

a.

Auditing mechanisms: Developing automated post-hoc auditing tools, using privacy-enhancing technology
to facilitate secure audit access to sensitive data, building auditability into systems by design, and establishing
continuous accountability pipelines that monitor, log, and assess model behaviors over time to support transparent
and verifiable assessments of model behaviors.

Methods for detecting and attributing LLLM outputs: Developing techniques—such as watermarking or model
fingerprinting—to identify and attribute content to its source model provides a foundation for accountability,
reduces misinformation risks, and clarifies responsibility.

Regulatory compliance automation: Automating processes to ensure that models conform to legal standards,
industry guidelines, and ethical principles helps organizations proactively meet accountability requirements while
reducing manual oversight burdens.

Methods for mitigating power concentration in Al: Investigating mechanisms to prevent the centralization
of Al capabilities and influence—such as decentralized governance, open-source contributions, and equitable
resource allocation.

14. Ethics: Work on Al ethics includes developing methods for integrating ethical considerations into training, evaluation,
and decision-making processes, as well as techniques for mitigating harmful outputs and ensuring cultural and long-term
ethical consistency.

a.

b.

Ethics-aware training and fine-tuning: Research on learning from imperfect ethical datasets, applying ethics-
aware data curation methods, and incorporating collective ethical principles into model design.

Ethical decision-making frameworks: Developing formal risk-aware, algorithmic harms assessment, and
domain-specific ethical decision-making frameworks tailored for large language models and related Al systems.
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C.

Mitigating harmful outputs: Approaches include refining models to reduce the production of dangerous,
misleading, or otherwise harmful outputs, employing filtering, red-teaming, and reinforcement learning from
human feedback.

Cultural sensitivity and contextual awareness: Techniques aim to adapt models to diverse cultural contexts and
subtle social norms, ensuring that outputs remain appropriate, respectful, and aligned with local values.
Long-term ethical consistency: Research explores methods for maintaining stable, ethically coherent model
behavior over extended periods, including approaches to prevent drift and to preserve core ethical principles
despite shifting inputs.

15. Choosing and operationalizing values in AI: This area focuses on developing principled methods to identify, justify,
and implement value systems within AI models, reconciling diverse ethical priorities, managing conflicts, and creating
robust evaluations to ensure models embody chosen values.

a.

Justify value choices for alignment: Research includes formulating principled criteria and philosophical
foundations that guide why certain values should be encoded into Al systems.

. Manage conflicts between different values: Efforts here explore approaches like multi-objective optimization or

deliberation frameworks to resolve cases where multiple values clash.

. Develop more robust evaluations for which values an LLM encodes: Researchers design metrics and tests to

identify and measure the values present in a model’s behavior, outputs, and decision-making processes.

. Pluralistic value alignment: Strategies focus on simultaneously accommodating multiple, possibly diverse value

systems, enabling Al to adapt to different stakeholders or cultural contexts.

. Foundational research on operationalizing values in LLMs: This includes theoretical and empirical studies on

how to incorporate values directly into training procedures, fine-tuning protocols, and model architectures.

16. Privacy: This area focuses on identifying and mitigating privacy risks arising from new capabilities and deployment
scenarios for LLMs, developing robust conceptual frameworks for privacy definitions, and leveraging Al tools to
preserve and enhance privacy in various application domains.

a.

Identifying emergent privacy risks in new paradigms: Examining novel attack vectors (e.g., inference time
risks) in new paradigms (e.g., retrieval-augmented generation, agent-based interactions, plugin ecosystems) to
uncover how these integrations may lead to unexpected disclosures.

Research on inferring sensitive information from accumulation of innocuous data: Studying how seemingly
harmless data points can be combined to reconstruct sensitive information, enabling adversaries to “weaponize”
aggregate inferences against individuals.

. Privacy challenges in complex data scenarios: Exploring how complex data scenarios, such as cross-lingual and

cross-modal transformations (e.g., images, audio, code snippets) can reveal protected content, examining what can
be extracted from data presented in alternative formats. This also includes work on context-specific privacy norms,
ensuring that privacy measures adapt to different cultural, social, and situational factors rather than relying on
one-size-fits-all policies.

Privacy modeling frameworks: Developing more precise models of privacy that align with user expectations—
potentially informed by human-computer interaction (HCI) research—and grounding these definitions in imple-
mentable policies. This also includes formalizing methodologies to characterize and prioritize the worst-case
privacy outcomes, moving beyond ad hoc assessments and towards systematic threat modeling frameworks.
Data encryption tools for model inputs and outputs: Techniques for encrypting inputs, outputs, and intermediate
representations during runtime to ensure confidentiality and prevent unauthorized access to sensitive queries or
responses.

17. Cybersecurity for AI models: Focuses on protecting model parameters, interfaces, training techniques, and outputs
from unauthorized access, extraction, or misuse using cryptographic, architectural, and procedural safeguards. This
includes ensuring secure weight storage, hardened access control, oracle protection measures, protecting algorithmic
insights, preventing self-exfiltration, and robust data integrity.

a.

Weight security and key management: Research focuses on cryptographic techniques for encrypting and securely
storing model weights at rest and in transit, hardware-based protections (e.g., trusted execution environments) that
ensure the model’s parameters cannot be extracted even with physical access, developing systems for isolating
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weights behind tightly controlled interfaces, and implementing formal verification of key generation, storage, and
rotation protocols.

. Access control and interface hardening: Approaches include creating minimal, verifiable interfaces for weight

access, deploying multiparty authorization and cryptographic attestation protocols to guard against model extrac-
tion, novel authentication and authorization schemes integrating Zero Trust principles at a granular level (beyond
standard IAM tools), and implementing Al firewalls with strict input-output validation.

. Model robustness and oracle protection: Techniques prevent model extraction through inference-only attacks,

detect and filter adversarial inputs designed to reconstruct the model or degrade its integrity, and employ adversarial
training and advanced input/output “reconstruction” methods to limit the risk that internal representations are
inferred from model queries.

. Preventing model self-exfiltration: Methods to ensure that models cannot covertly leak sensitive information

about their internal parameters or training data, or copy their own weights to external devices and networks, such
as output restrictions, sanitization techniques, or fine-grained monitoring of responses.

. Detecting modified models or poisoned data: Developing methods to detect models that have been maliciously

modified or training data which has been poisoned.

. Quantifying cyber threats from advanced capabilities: Threat modeling and evaluation of cyber threats from

advanced Al models, whether via autonomy or providing human uplift for more “’traditional” cyber capabilities.

18. Hardware and infrastructure security for AI: Ensuring the security of Al systems at the hardware and infrastructure
level involves protecting model weights, securing deployment environments, maintaining supply chain integrity, and
implementing robust monitoring and threat detection mechanisms. Methods include the use of confidential computing,
rigorous access controls, specialized hardware protections, and continuous security oversight.

a.

Confidential computing and environment isolation: Using trusted execution environments (such as secure
enclaves) to ensure that model weights and computations remain confidential and tamper-proof during large-scale
Al inference and training. This also involves reducing the attack surface through sandboxed, code-minimal
deployments, specialized hardware/firmware stacks, and maintaining verifiable runtime integrity checks.

Supply chain integrity and secure development: Ensuring end-to-end verification of hardware and software
supply chains through source-verified firmware, SLSA compliance, and secure software development lifecycles
tailored for ML-specific infrastructure. This also includes developing automated tooling to continuously verify the
provenance and integrity of model components, dependencies, and third-party code used in training and inference
pipelines.

. Continuous monitoring, advanced threat detection, and incident response: Developing ML-driven anomaly

detection and logging systems capable of flagging and responding to subtle infiltration attempts or insider threats
in real-time. This also includes red-teaming and automated penetration testing frameworks specialized for Al
systems, including simulations of zero-day attacks and insider compromises.

Hardware-integrated monitoring and verification: Integrating monitoring capabilities directly into hardware,
such as secure counters and tamper-evident seals, along with deploying specialized firmware that can detect
and respond to attempts at parameter theft or physical attacks. This also includes verification tools, such as
hardware-level logging and secured audit trails that remain verifiable under sophisticated tampering attempts for
rapid, evidence-based incident response.

Specialized chips to compute encrypted data: Designing and deploying hardware accelerators optimized for
computations on encrypted data, such as homomorphic encryption schemes, to facilitate efficient encrypted
training and inference without exposing plaintext model parameters or sensitive input data outside the protected
hardware boundary.

Tamper-evidence and tamper-proofing: Implementing tamper-resistant enclosures, seals, and other tamper-
evident mechanisms to ensure that any unauthorized physical access or modification attempts are detectable. Such
measures help maintain the integrity of hardware components and prevent adversaries from compromising the
system at a physical level.

Datacenter security: Relevant research focuses on designing and deploying resilient hardware- and software-
based defenses to prevent model theft and sabotage. This includes methods like encrypted computation, secure
enclaves, continuous anomaly detection, zero-trust architectures, and rigorous supply chain verification to protect
against both external intrusions and insider threats.
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19. Improving general understanding of deep learning: This area focuses on developing rigorous explanations for why
deep neural networks learn effectively, uncovering the principles behind generalization, understanding optimization
behavior, and analyzing how implicit biases and overparameterization influence performance and safety.

a. Theoretical foundations of deep learning: Constructing mathematical models to explain generalization in deep
neural networks despite overparameterization, and studying the influence of network architecture on learning
properties.

b. Optimization and loss landscape analysis: Studying the geometry of loss functions and how optimization
algorithms navigate them, and examining phenomena such as flat versus sharp minima, and the connection
between these properties and robust generalization.

c. Implicit bias of optimization algorithms: Analyzing how algorithms like stochastic gradient descent and related
methods influence learned models, and exploring how implicit regularization affects model performance and
safety.

d. Double descent and overparameterization: Investigating the double descent risk curve and its implications for
model capacity, and how overparameterization can lead to improved generalization.

20. Research on safety in non-LLM systems: Exploring safety challenges in non-LLM systems, such as robotics and
embodied Al, vision and perception systems, and alternative paradigms for developing artificial intelligence (e.g.
whole-brain emulation).

a. Safe reinforcement learning for non-LLM systems: Developing RL algorithms that prioritize safety during
exploration and exploitation, with applications in non-LLM systems such as robotics and embedded Al. This
includes incorporating safety constraints and risk-sensitive objectives into learning processes.

b. Robotics and embodied Al safety: Designing robust control systems, fail-safe mechanisms, and dependable
sensors for physical systems, such as autonomous vehicles, drones, and household robots, to ensure safe human-
robot interaction and accident prevention.

c. Adversarial robustness in vision and perception systems: Studying how malicious inputs can deceive image
recognition or sensor-based models, and creating defenses—such as adversarial training, certifiable robustness
methods, and detection schemes—to maintain reliable perception.

d. Whole-brain emulation: Exploring the theoretical challenges of accurately replicating a human brain’s func-
tionality and ensuring that such emulations—if ever realized—adhere to rigorous safety and ethical standards,
avoiding unintended cognitive hazards or harmful behavioral patterns.
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