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1 Overview and Outline

In this supplement, we provide more experiments and analysis as a complement to the main content,
which are outlined below:

• We provide more results of our S3-Router as a new finetuning paradigm in Sec. 2, including
xlsr on LibriSpeech and wav2vec2-large on CommonVoice, and the sparsity-WER trade-offs
achieved by different mask initialization schemes or on different speech processing tasks;

• We provide more results of our S3-Router for ASR pruning in Sec. 3, including an ablation
study of different mask initialization schemes and more benchmarks with PARP [1] for ASR
pruning on more speech SSL models;

• We study more properties of speech SSL models via our S3-Router in Sec. 4, including
the layer-wise similarity of learned masks between different languages and more analysis
regarding the correlation between the learned masks of and phonetics;

2 More Evaluation Results of S3-Router as a New Finetuning Paradigm

Finetuning xlsr on LibriSpeech. We benchmark our S3-Router with standard weight finetuning
on top of the multilingual SSL pretrained xlsr for low-resource English ASR on LibriSpeech. As
shown in Fig. 1, our S3-Router outperforms standard weight finetuning in terms of the achievable
WER, e.g., a 6.02%/8.33% reduction in WER on LibriSpeech test-clean/other when being finetuned
on 10min labeled data, respectively, indicating the decent scalability and generality of our S3-Router
even under the large gap between the pretraining resources and finetuning resources.

Table 1: Benchmark our S3-Router and weight
finetuning on wav2vec2-large and CommonVoice.

Language Dutch Mandarin Spanish Tatar Russian
Weight ft 19.821 26.674 13.864 11.143 17.052
S3-Router 17.327 25.897 11.887 9.912 15.403
Language Italian Kyrgyz Turkish Swedish France
Weight ft 19.265 13.409 15.699 20.807 19.349
S3-Router 17.425 11.279 13.31 18.664 16.304

Finetuning wav2vec2-large on CommonVoice.
We benchmark our S3-Router with standard
weight finetuning on top of English pretrained
wav2vec2-large for phoneme recognition on
other languages from CommonVoice, which is
a high-to-low resource transfer setting as a com-
plement to Sec. 4.3 of our manuscript. As
shown in Tab. 1, consistent with the results in
our manuscript, our S3-Router still wins the lowest achievable PER over weight finetuning, which
further validates the scalability of our method to larger models under cross-lingual transfer settings.
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Figure 1: Benchmark our S3-Router and standard weight finetuning on the test-clean/test-other sets
of LibriSpeech on top of the multilingual pretrained xlsr under different low-resource settings.

Complete sparsity-WER trade-offs of different mask initialization schemes. We provide the
complete sparsity-WER trade-offs achieved different mask initialization schemes for finetuning
wav2vec2-based on LibriSpeech-1h with our S3-Router, as a complement to Tab.1 in Sec. 4.2 of
our manuscript, in Fig. 2, In addition to the lowest achievable WER of our proposed ORI mask
initialization, we can also observe that (1) the achievable WER of random mask initialization can
match or surpass that of standard weight finetuning under small sparsity ratios while it suffers from
a steep increase in WER along with the increase in sparsity ratios due to the lack of utilizing the
priors of the pretrained speech representation; (2) Weight magnitude based initialization features
better scalability to large sparsity ratios, where keeping more important connections, approximately
indicated by higher weight magnitudes, becomes more crucial. However, its achievable WER is even
inferior to that of random mask initialization due to worse trainability, i.e., it is harder to overturn the
ranking between masks via gradients, especially when magnitudes of the pretrained weights cannot
serve as a good metric for indicating their importance on downstream speech. Our proposed ORI
strategy marries the best of both worlds thus wins the best achievable WER.
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Figure 2: Benchmark different mask initialization schemes for finetuning wav2vec2-base on top of
LibriSpeech-1h via our S3-Router. Both WERs on test-clean (left) and test-other (right) are reported.

Complete sparsity-WER trade-offs on different speech processing tasks. We also provide the
complete sparsity-WER trade-offs for finetuning wav2vec2-base via our S3-Router on different
speech processing tasks from SUPERB [2] in Tab. 5/Sec. 4.4 of our manuscript. In particular, we
pick one representative task from each of the four task categories for processing different aspects of
speech (content/speaker/semantics/paralinguistics). As shown in Fig. 3, we can make a consistent
observation as Sec.4 of our manuscript that properly discarding ≤ 10% weights can serve as a decent
alternative, featuring better achievable task performances, for weight finetuning.

3 More Evaluation Results of S3-Router as an ASR Pruning Technique

Pruning xlsr/wav2vec2-base on CommonVoice. We further evaluate our S3-Router-P for ASR
pruning on more speech SSL models as a complement to Sec. 5 of our manuscript. As shown in
Fig. 4, our S3-Router-P consistently achieves comparable or better pruning performances over PAPR
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Figure 3: Benchmark our S3-Router with standard weight finetuning on top of wav2vec2-base on
four representative speech processing tasks from SUPERB [2].

(a) xlsr @ Dutch (b) xlsr @ Mandarin (c) wav2vec2-base @ Dutch
Figure 4: Benchmark our S3-Router-P against OMP and PARP for pruning xlsr/wav2vec2-base on
Dutch/Mandarin from CommonVoice.
under large sparsity ratios across different models and downstream datasets, which indicates the
potential of our method as an all-in-one technique for facilitating the practical usage of speech SSL
models.

Figure 5: Benchmark different mask initialization
schemes for pruning wav2vec2-based on top of
LibriSpeech-1h. WERs on test-clean are reported.

Ablation study of the impact of different
mask initialization schemes for ASR prun-
ing. We adopt different mask initialization
schemes in our S3-Router for ASR pruning
and benchmark their pruning performances in
Fig. 5. We can observe that weight magnitude
based mask initialization wins better scalability
to large sparsity ratios over ORI, although the
latter achieves better finetuning performances
as shown in Sec. 2. We assume this is because
after weight finetuning on downstream speech,
the magnitudes of model weights can serve as
a better indicator for their importance on the
downstream speech, resulting in the better scal-
ability to large sparsity ratios where keeping
more important connections becomes more cru-
cial. Therefore, we adopt weight magnitude
based mask initialization for ASR pruning by default in our manuscript.

4 More Analysis about the Properties of Speech SSL Models via S3-Router

Layer-wise cosine similarity of learned masks between different languages. We visualize the
layer-wise cosine similarity between the learned mask, under a sparsity ratio of 0.1 with near-optimal
performances, for English ASR on LibriSpeech-1h and the ones learned on six languages from
CommonVoice in Fig. 6. In particular, there are totally 24 tunable fully-connected layers in the 12
FFNs of wav2vec2-base. We can observe that (1) the learned masks are similar across languages
with cosine similarities ≥ 0.9; (2) Later blocks generally feature lower mask similarities, indicating
that more language-specific information are encoded in later blocks; (3) The mask similarity ranking
keeps relatively stable across consecutive layers; (4) The mask similarity generally aligns with human
intuitions, e.g., the mask similarity between English and Dutch is higher than that between English
and Mandarin, and the quantitative degree of such alignment is indicated by the correlation between
their mask similarity and their expert-defined similarity in phonetics.
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Figure 6: Visualizing the layer-wise cosine similarity of learned masks, on top of the 24 layers in 12
FFNs of wav2vec2-base, between different languages.

Table 2: Pearson correlation between two similar-
ity metrics calculated on different layers.

Layer ID 0 1 2 3 4 5
Pearson Corr 0.527 0.374 0.585 0.477 0.611 0.431

Layer ID 6 7 8 9 10 11
Pearson Corr 0.561 0.372 0.539 0.366 0.436 0.351

Layer ID 12 13 14 15 16 17
Pearson Corr 0.416 0.271 0.296 0.17 0.125 0.126

Layer ID 18 19 20 21 22 23
Pearson Corr 0.156 0.105 0.225 0.211 0.154 0.118

Correlation between mask similarities and
phonetic similarities calculated on different
layers. As shown in Sec. 6.3 of our manuscript,
there exists a non-trivial correlation between the
two similarity metrics on the first layer. We
further measure the Pearson Correlation Coeffi-
cient [3] between the phonetic similarity and the
mask similarity calculated on top of different
layers. As shown in Tab. 2, we can observe non-
trivial correlations between the two similarity
metrics on early layers while their correlations
on later layers are poor. This further indicates
that early layers in speech SSL models process phonetic features extracted from raw audios, which
are highly correlated to human expertise in phonetics, while later blocks process more task-specific
features, which integrate other high-level information, e.g., for language modeling in ASR.
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