
ViSt3D: Video Stylization with 3D CNN
Supplementary Material

Ayush Pande
IIT Kanpur

ayushp@cse.iitk.ac.in

Gaurav Sharma
TensorTour & IIT Kanpur
gaurav@tensortour.com

1 Dataset

1.1 Generating Motion clips

The algorithm for generating motion clips is given in Algorithm 1. It randomly samples a video as
input and generates a random video clip from the input video. We used PySceneDetect library [1] to
detect shot boundaries in the video. Algorithm 2 is used to generate a HSV image from the given
flow of pair of consecutive frames of the video clip generated by Algorithm 1. Algorithm 3 is the key
algorithm which decides whether the generated random video clip has strong motion or not.

1.2 Details

In this Algorithm 1, we select a 16-frame clip from the video that exhibits strong motion. We consider
up to 15, 999 frames from each video. We utilize the PySceneDetect library [1] to generate shots
from the video. Additionally, we employ Transnet-v2 [3], which is a deep learning-based method for
shot detection, to achieve more accurate results. Afterwards, we sort the list of shots obtained from
the above detection algorithms. We randomly select up to 9 shots to find a strong motion clip in the
video. If no such clip is found, we assume that there is no desired strong motion clip in the considered
video. To determine whether a clip has strong motion, we utilize the Farneback’s algorithm [2] to
generate flow maps for the video clip under consideration.

To interpret this flow map, we use Algorithm 2 to highlight areas in the image with strong and low
motion. From the output of the draw_hsv algorithm, we are able to easily interpret which areas of
the motion pair have strong motion, represented by colors near red, and low motion, represented by
colors near blue when visualized. We also utilize Algorithm 3 that employs thresholds to determine
whether the motion qualifies as strong motion and whether a clip can be classified as a strong motion
clip.

The Approve Algorithm 3 takes the output of the draw_hsv Algorithm 2 as input. We perform the
following steps for each frame in the clip.

First, we calculate the variance in the pixel values of the image. We take this as a proxy indicating
motion in the video. If the variance is greater than 100, a threshold determined by initial experiments,
it indicates the presence of areas with strong motion and weak motion in the image. This calculation
is done to account for the relative strength of motion in pixels compared to other pixels.

Next, we find the unique pixel values in the image along with their frequencies. Then, we calculate
the sum of frequencies for all pixels whose values are greater than 80 and store the result in the sums
array.

After that, we iterate through the sums array and increment the approve variable if the sum is greater
than 20000. Then, we check if the value of approve is greater than 9, which indicates the presence of
more than 9 frames with strong motion. If this condition is satisfied, we consider the clip to have
strong motion and add it to our dataset.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Algorithm 1 Generate motion clip(total_frames, video_path)

end← min(15999, total_frames) {Number of frames of video to be processed}
if end = 0 then
return

end if
scenes ← scenedetect(video_path, end) {scenedetect function output a list of shots and its
other parameters. Each entry of scenes list is another list with data like [start_time, end_time,
num_frames]}
sort(scenes,key=lambda x:x[2] ,reverse=True) {sort function sorts the shots by shot length in
descending order}
run_times = 0
while run_times < min(9, len(scenes)) do
start = scenes[run_times][0]
end = scenes[run_times][1]
num_frames = scenes[run_times][2]
if num_frames ≤ 17 then

return False
end if
frame_start = randint(start+ 1, end− 16) {randint generate random number between the
two input numbers}
images = ARRAY[]
imgs = ARRAY[]
video = load_video(video_path)
for i = 0 to frame_start do
ret, prev = read_i(video) {we are reading the ith frame in the video}

end for
ret, prev = read(video) {we are reading the frame whose position in video is given by
frame_start}
append(images, bgr_to_rgb(prev)) {converting prev from bgr to rgb}
prevgray = bgr_to_gray(prev) {converting frame to grayscale}
for i = 0 to frame_count− 1 do
ret, suc = read_i(video)
append(images, bgr_to_rgb(suc))
suc_gray = bgr_to_gray(suc)
flow = calcOpticalFlowFarneback(prevgray, sucgray,None, 0.5, 3, 15, 3, 5, 1.2, 0)
{Calling farneback algorithm for evaluating the flow between frames}
prevgray = suc_gray
hsv_img = draw_hsv(flow) {Algorithm mentioned in 2}
append(imgs, hsv_img)

end for
if len(images) < frame_count then

return FALSE
end if
if approve(imgs, frame_count) then

return (TRUE, outpath, filename, images, frame_start) {Algorithm mentioned in 3}
else
run_times = run_times+ 1

end if
end while

2



Algorithm 2 draw_hsv (flow)

h,w = flow.shape[: 2]
fx, fy = flow[:, :, 0], f low[:, :, 1]
ang = arctan2(fy, fx) + π
v = sqrt(fx ∗ fx+ fy ∗ fy)
hsv = zeros((h,w, 3), uint8)
hsv[. . . , 0] = ang ∗ (180/π/2)
hsv[. . . , 1] = 255
hsv[. . . , 2] = min(v ∗ 4, 255)
bgr = hsv_to_bgr(hsv)
return bgr

Algorithm 3 approve (imgs, frame_count)

sums = ARRAY[]
for i = 0 to frame_count− 1 do
img = imgs[i]
if max(img)−min(img) ≥ 100 then

counts = count_unique_values_with_frequency(img, return_counts = True)
sum = 0
for i = 0 to len(counts[0]) do

if counts[0][i] ≥ 80 then
sum = sum+ counts[1][i]

end if
end for
append(sums, sum)

end if
end for
approve_count = 0
for i = 0 to len(sums) do

if sums[i] > 2000 then
approve_count = approve_count+ 1

end if
end for
return approve_count ≥ float(0.5625 ∗ frame_count)

1.3 Dataset Examples

We show some clips curated with the help of the above-mentioned algorithms to showcase examples
of strong motion clips. These examples are represented by a series of frames from the clips, which
can be seen in Figures 1, 2, 3.

2 Supplementary files details

Table 1 details the video results found in the folders along with their corresponding file descriptions.

3 Limitations

Despite our best efforts to control the flashing artifacts with the proposed intra-clip loss, some
flashing still occurs in challenging edge cases. The utilization of 3D CNN in all components of the
architecture also leads to an increase in both inference time and memory consumption for stylized
video generation, when compared to networks based on 2D CNNs.

3



Figure 1: Some examples of our dataset. 1st, 3rd, 5th, 7th, 9th, 11th, 13th, 15th, 16th frames of clip

Figure 2: Some examples of our dataset. 1st, 3rd, 5th, 7th, 9th, 11th, 13th, 15th, 16th frames of clip

4



Figure 3: Some examples of our dataset. 1st, 3rd, 5th, 7th, 9th, 11th, 13th, 15th, 16th frames of clip

File Name Description
Ours Results/basic_results1.mp4

Ours results on different styles of a single content videoOurs Results/basic_results2.mp4
Ours Results/basic_results3.mp4
Ours Results/basic_results4.mp4
Ours Results/long_video.mp4 Ours results on different styles of a single long content videoOurs Results/long_video1.mp4
Comparative Analysis/comparative_study_result1.mp4

Qualitative comparison between other methods and oursComparative Analysis/comparative_study_result2.mp4
Comparative Analysis/comparative_study_result3.mp4
Comparative Analysis/comparative_study_result4.mp4
Videos_without_intra/basic_results1.mp4

Ours without Intra-clip loss results on different styles of a single content videoVideos_without_intra/basic_results2.mp4
Videos_without_intra/basic_results3.mp4
Videos_without_intra/basic_results4.mp4
Videos_without_temporal/basic_results1.mp4

Ours without temporal loss results on different styles of a single content videoVideos_without_temporal/basic_results2.mp4
Videos_without_temporal/basic_results3.mp4
Videos_without_temporal/basic_results4.mp4
Videos_with_naive_extension_of_2D_stylization/basic_results1.mp4

Results using naive extension of 2D stylization methods to 3D CNN.Videos_with_naive_extension_of_2D_stylization/basic_results2.mp4
Videos_with_naive_extension_of_2D_stylization/basic_results3.mp4
Videos_with_naive_extension_of_2D_stylization/basic_results4.mp4

Table 1: File paths and descriptions of all the Supplementary video results found in various folders.

4 Network Details

4.1 Encoder

We have used pre-trained C3D network and renamed some of the layers of the network for the
simplicity of understanding the architecture in Figure 1 in the main paper. The architecture code of
encoder is shown in Table 2.

4.2 Entangle Subnet

Table 3 details the architecture of Entangle Subnet where weights are pre-initialized such that weights
of first half of the layer is given value 0.3 and the other half is given the value 0.7.

4.3 Appearance Subnets

We designed the architecture layers based on the number of channels in the output feature maps of
the C3D network i.e. the feature map with most number of channels will have the corresponding
appearance map with high number of layers. Table 4 represents architecture of Appearance Subnet 1.

5



Layer Layer Size Stride Output Size Stage
Input 1 3× 16× 128× 128
Conv 3× 3× 3× 3 0 3× 16× 128× 128
Conv+RELU 64× 3× 3× 3 1 64× 16× 128× 128 F1
MaxPool (1, 2, 2) 64× 16× 64× 64 F2
Conv+RELU 128× 3× 3× 3 1 128× 16× 64× 64 F3
MaxPool 2 128× 8× 32× 32 F4
Conv+RELU 256× 3× 3× 3 1 256× 8× 32× 32 F5
Conv+RELU 256× 3× 3× 3 1 256× 8× 32× 32 F6
MaxPool 2 256× 4× 16× 16 F7
Conv+RELU 512× 3× 3× 3 1 512× 4× 16× 16 F8

Table 2: Architecture of Encoder where Stage represents different intermediate feature maps.

Layer Layer Size Stride Output Size Stage
Input
Concat F8+F9 1024× 4× 16× 16

Conv+RELU 512× 1× 1× 1 1 512× 4× 16× 16 F13
Table 3: Architecture of Entangle Subnet where Stage represents different intermediate feature maps.

Layer Layer Size Stride Output Size Stage
Input 512× 4× 16× 16
(Conv+RELU) ×4 512× 3× 3× 3 1 512× 4× 16× 16
Conv+RELU 512× 1× 1× 1 1 512× 4× 16× 16 F9

Table 4: Architecture of Appearance Subnet 1 where Stage represents different intermediate feature
maps.

The table 5 represents architecture of Appearance subnet 2.

Layer Layer Size Stride Output Size Stage
Input 256× 8× 32× 32
(Conv+RELU) ×3 256× 3× 3× 3 1 256× 8× 32× 32
Conv+RELU 256× 1× 1× 1 1 256× 8× 32× 32 F10

Table 5: Architecture of Appearance Subnet 2 where Stage represents different intermediate feature
maps.

The table 6 represents architecture of Appearance subnet 3.

Layer Layer Size Stride Output Size Stage
Input 128× 16× 64× 64
(Conv+RELU) ×2 128× 3× 3× 3 1 128× 16× 64× 64
Conv+RELU 128× 1× 1× 1 1 128× 16× 64× 64 F11

Table 6: Architecture of Appearance Subnet 3 where Stage represents different intermediate feature
maps.

The table 7 represents architecture of Appearance subnet 4.

Layer Layer Size Stride Output Size Stage
Input 64× 16× 128× 128
Conv+RELU 64× 3× 3× 3 1 64× 16× 128× 128
Conv+RELU 64× 1× 1× 1 1 64× 16× 128× 128 F12

Table 7: Architecture of Appearance Subnet 4 where Stage represents different intermediate feature
maps.

6



4.4 Decoder

The architecture of 3D CNN decoder is inspired from the C3D encoder mentioned above. We break
the decoder into four parts where starting of each part takes output of appearance subnet concatenated
channel-wise with the output of the previous part of the decoder. The architecture of decoder is
detailed in Table 8.

Layer Layer Size Stride Output Size Stage
Input F13 512× 4× 16× 16
(Conv+RELU) ×2 256× 3× 3× 3 1 256× 4× 16× 16
Upsample 1

2 256× 8× 32× 32 Part0
Concat F6 512× 8× 32× 32
(Conv+RELU) ×2 256× 3× 3× 3 1 256× 8× 32× 32
Upsample 1

2 256× 16× 64× 64 Part1
Concat F3 384× 16× 64× 64
Conv+RELU 384× 3× 3× 3 1 384× 16× 64× 64
(Conv+RELU) ×2 256× 3× 3× 3 1 256× 16× 64× 64
Conv+RELU 128× 3× 3× 3 1 128× 16× 64× 64
Conv+RELU 128× 3× 3× 3 1 128× 18× 66× 66
Conv+RELU 64× 3× 3× 3 1 64× 16× 64× 64
Upsample (1, 1

2 ,
1
2 ) 64× 16× 128× 128 Part2

Concat F1 128× 16× 128× 128
Conv+RELU 128× 3× 3× 3 1 128× 16× 128× 128
Conv+RELU 64× 3× 3× 3 1 64× 16× 128× 128
Conv+RELU 3× 3× 3× 3 1 3× 16× 128× 128 Part3

Table 8: Architecture of Decoder where Stage represents different components of Decoder.

References
[1] Brandon Castellano. PySceneDetect library for shot boundary detection, 2022.

[2] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Scandinavian
Conference on Image Analysis, 2003.

[3] Tomáš Souček and Jakub Lokoč. Transnet v2: an effective deep network architecture for fast shot transition
detection. arXiv preprint arXiv:2008.04838, 2020.

7


	Dataset
	Generating Motion clips
	Details
	Dataset Examples

	Supplementary files details
	Limitations
	Network Details
	Encoder
	Entangle Subnet
	Appearance Subnets
	Decoder


